
z/OS IBM

 

Encina Toolkit Executive
Guide and Reference

 
 
 
 SC24-5919-00



 



z/OS IBM

Encina Toolkit Executive
Guide and Reference

 
 
 
 SC24-5919-00



  
 

 Note 

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”
on page 783.

First Edition (March 2001)

This edition, SC24-5919-00, applies to Version 1 Release 1 of z/OS Encina (program number 5694-A01), and to all subsequent
releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for reader's comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60
1701 North Street
Endicott, NY 13760-5553
United States of America

 
FAX (United States & Canada): 1+607+752-2327
FAX (Other Countries):

Your International Access Code +1+607+752-2327
 

IBMLink (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1989, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



  
 

 Contents

About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxi
Who Should Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxi
What You Need to Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxi
Document Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Reference Section Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxiii
Where to Find More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxiii

z/OS DCE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
z/OS MVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Softcopy Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Internet Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Using LookAt to Look up Message Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxiv
Accessing Licensed Books on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxv

Part 1. Overview, Configuration, and Installation . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Online Transaction Processing: Enterprise Computing . . . . . . . . . . . . . . . . . . . .  3
Distributed Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Open Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
DCE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Transactional RPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Encina Strategy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The z/OS Encina Toolkit Executive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
What the z/OS Encina Toolkit Executive Includes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Chapter 2. Configuration and Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Command Line Administrative Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Chapter 3. Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Encina Toolkit Parts Shipped in HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Encina Toolkit Parts Shipped in PDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Encina Installation Verification Procedure (IVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Running the IVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Chapter 4. TIDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Introduction to TIDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Using TIDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
TIDL File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Limitations of TIDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Files TIDL Produces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Details of TIDL Generated Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Building Clients and Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
TIDL Input and Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Part 2. User's Guide Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 5. Transactional-C Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Introduction to Transactional-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Transactional-C Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Advantages of Using Tran-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

 Copyright IBM Corp. 1989, 2001  iii



  
 

The Tran-C Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Considerations for Developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Introduction to the Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Chapter 6. Writing Client Applications in Tran-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Hello, World: An Introductory Stand-Alone Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Introduction to the Sample Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Registering Module and Function Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Initializing a Tran-C Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Locating Server Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Beginning and Ending Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Aborting Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Registering and Using Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Transactional Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Creating Asynchronous Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Maintenance and Monitoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
Exiting a Tran-C Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Chapter 7. RPC Communications in Toolkit Executive Applications . . . . . . . . . . . . . . . . . .  83
General Information About TRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
Using TRPC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Setting the TRPC Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Chapter 8. Advanced Tran-C Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Saving and Restoring Tran-C Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Overview of External Function Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Calling Toolkit Functions from Tran-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Tran-C and TX Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
Debugging Tran-C Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Chapter 9. Compiling Encina Toolkit Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Referring to the Installation Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Referring to the DCE Installation Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Setting Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Specifying Toolkit and DCE Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Specifying Toolkit and DCE Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
Compiling Clients with Server Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Considerations for Threaded Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
Header Files for Tran-C Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
Resolving Tran-C Compilation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

Chapter 10. X/Open TX Interface for Encina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Implementation Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
X/Open Standard Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Encina Extensions to the X/Open Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 11. Transactional Programming Using TRAN . . . . . . . . . . . . . . . . . . . . . . . . .  109
An Overview of TRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Reasons to Use TRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Registering Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Getting Transactional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
Controlling the Lexical Scope of Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

iv Encina Toolkit Executive Guide and Reference  



  
 

A TRAN Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
Related Toolkit Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

Chapter 12. Transaction Service Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
Transaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Transaction Service Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
Important Abstractions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Transaction Service Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Transaction Service Header Files and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Chapter 13. TRAN Data Types Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Data Types and Functions for Transaction Identification . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Special-Purpose Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Creation Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Construction Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Copy Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Data Access Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Comparison Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Object Destruction Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Array and String Destruction Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

Chapter 14. TRAN Initialization and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

Chapter 15. TRAN Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
Beginning and Ending Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
Application Status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Transaction State Data Types and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
Application Callbacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Application-Controlled Prepare  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Outcome Delivery Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Chapter 16. TRAN Communication Service Interface . . . . . . . . . . . . . . . . . . . . . . . . . .  139

Chapter 17. TRAN Recovery Service Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Restart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Optimizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Asynchronous Upcall Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Sharing Log Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Dynamic Recovery Service Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

Chapter 18. TRAN Administrative Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151
Heuristic Outcomes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Administrative RPC Interfaces for the TRAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Chapter 19. TRAN Application Environment Specification . . . . . . . . . . . . . . . . . . . . . . .  155
Environment Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Initialization and Termination Upcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Application Identifier Generation Upcall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Synchronization Upcalls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Scheduling Upcalls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Memory Allocation Upcalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
Time Upcalls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Chapter 20. TRAN Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

  Contents v



  
 

Chapter 21. Thread-to-Tid Mapping Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

Chapter 22. Thread-to-Tid Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Setting and Querying a Thread's Current Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Explicitly Decertifying and Certifying Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Registering Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 23. TRPC Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
TRPC and the Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Flow of a Transactional RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
Important Abstractions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Chapter 24. TRPC Data Types and Auxiliary Functions Overview . . . . . . . . . . . . . . . . . .  175

Chapter 25. TRPC Application Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
Initialization Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Before Sending Request Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
After Receiving Request Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Before Sending Reply Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
After Receiving Reply Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Client Side Exception Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Server Side Exception Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Callback Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Abort RPC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Application Address Manipulation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Server-side Transaction Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Termination Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Chapter 26. Wrapper Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Chapter 27. The Encina Abort Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Abort Reasons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Abort Strings and Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Exported Variables and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Encina Internationalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Chapter 28. TRDCE Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter 29. Writing a Simple Client-Server Application . . . . . . . . . . . . . . . . . . . . . . . .  191
Overview of the Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Defining the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
Writing the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196
Writing the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
Notes on Building and Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

Chapter 30. Making the Sample Application Transactional . . . . . . . . . . . . . . . . . . . . . . .  203
Making the Application Transactional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
Making the Server Recoverable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204
Modifying Server Initialization and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204
Specifying Which Operations Are Part of a Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . .  205
Aborting Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Notes on Building and Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208
Using TX in the Order Application Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

vi Encina Toolkit Executive Guide and Reference  



  
 

Notes on Building the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Chapter 31. Using Nested Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
Introduction to Nested Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
Using Nested Transactions in the Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

Chapter 32. Using Abort Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Overview of Aborting with Abort Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
Defining Abort Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
Aborting a Transaction with an Abort Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
Using Abort Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

Chapter 33. Using the Encina Trace Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
Types and Levels of Trace Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
Valid Trace Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
Format of Trace Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
Controlling the Amount of Trace Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225
Enabling and Disabling Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Directing Trace Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Formatting Trace Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228

Chapter 34. Tracing and Debugging Encina Toolkit Applications . . . . . . . . . . . . . . . . . .  229
General Information about Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
Overview of Tracing in the Encina Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230
Requirements for Using Encina Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
Enabling Tracing in Encina Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

Part 3. Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Chapter 35. Tran-C Functions and Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Basic Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
abort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
abortCheck  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
abortCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
abortFormat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
abortFunctionName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
abortModuleName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
abortNamedTran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
abortNamedTranWithCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
abortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
abortWithCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
catchAbort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
cofor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
commError  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
concThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
concurrent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
currentFunctionName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
currentModuleName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
exitTC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
exitTConInterrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
getAbortData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
getCompletedTid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

  Contents vii



  
 

getContainingTid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
getTid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
inFunction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
initTC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
initTCWithTRPC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
inModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
inTransaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
inWrapEachTrpc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
postInitTC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
preInitTC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
quiesceTC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
registerApplCallback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
registerTranCallback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
registerTRPCCallbacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
resumeTran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
setAbortData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
subThread  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
subTran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
tc_DumpState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
tc_InitTRPC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
tc_RestoreTranContext  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
tc_SaveTranContext  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
topLevel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
tranMemAlloc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
tranMemFree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
tranMutexInit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
tranMutexInitOnce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
tranMutexLock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
tranMutexTerminate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
tranMutexTryLock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
tranMutexUnlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
transaction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
trpcPermitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
useAbortFormat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
watchNamedTran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
watchTran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
wrapEachTrpc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Chapter 36. Tran-C Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
applCallback_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
tranCallback_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
tranMutex_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Chapter 37. ThreadTid Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
threadTid_Begin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
threadTid_Certify  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
threadTid_Decertify  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
threadTid_DumpState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
threadTid_End  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
threadTid_IsCertified  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
threadTid_Lookup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
threadTid_RegisterCallback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

viii Encina Toolkit Executive Guide and Reference  



  
 

threadTid_RegisterTrpcCallbacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
threadTid_Resume  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
threadTid_Suspend  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Chapter 38. ThreadTid Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
threadTid_event_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Chapter 39. TRAN Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Initialization Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Transaction Identification Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
Application Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
Communications Service Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328
Recovery Service Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
Administrative Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
Application Environment Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
Diagnostic Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Special-Purpose Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
tran_Abort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
tran_AbortDataToReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
tran_AbortFamily  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
tran_AbortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
tran_AddressCons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
tran_AddressCopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
tran_AddressCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
tran_AddressData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
tran_AddressDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
tran_AddressEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
tran_AddressFamilyCons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
tran_AddressFamilyCopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
tran_AddressFamilyCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
tran_AddressFamilyData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
tran_AddressFamilyDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
tran_AddressFamilyEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
tran_AddressFamilyLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
tran_AddressLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
tran_Alarm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
tran_ApplIdCons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
tran_ApplIdCopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
tran_ApplIdCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
tran_ApplIdData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
tran_ApplIdDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
tran_ApplIdEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
tran_ApplIdLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
tran_ApplIdLocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
tran_ApplIsRecoverable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
tran_Begin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
tran_CallAfterCWRT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
tran_CallAfterFinished  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
tran_CallAfterResolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
tran_CallAfterRestart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
tran_CallBeforeAbort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
tran_CallBeforePrepare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
tran_CallDuringRestart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

  Contents ix



  
 

tran_CallOnHeuristicDamage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
tran_CallTransactionallyBeforePrepare  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
tran_CommBlockFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
tran_CommIdentifyBlindRequest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
tran_CommInit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
tran_CommProvideAddressInfo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
tran_CommReceived  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
tran_CommReceivedReply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
tran_CommReceivedRequest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
tran_CommSendingBlindRequest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
tran_CommSendingReply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
tran_CommSendingRequest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
tran_CommServiceAlwaysSendsReply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
tran_CommServicePromisesToMatchReplies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
tran_DeclareLastCall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
tran_DeclareReportableHeuristicDecisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
tran_DeferCommit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
tran_DelayAbort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
tran_DumpState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
tran_End  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
tran_ForceGroupIdCons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
tran_ForceGroupIdCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
tran_ForceGroupIdCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
tran_ForceGroupIdData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
tran_ForceGroupIdDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
tran_ForceGroupIdEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
tran_ForceGroupIdLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
tran_ForceHeuristicOutcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
tran_ForciblyFinish  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
tran_GetCoordinator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
tran_GetGlobalState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
tran_GetLocalState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
tran_GetRelativeCommitState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
tran_Init  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
tran_ListTransactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
tran_LogRecordCons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
tran_LogRecordCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
tran_LogRecordCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
tran_LogRecordData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
tran_LogRecordDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
tran_LogRecordLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
tran_MessageCons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
tran_MessageCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
tran_MessageCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
tran_MessageData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
tran_MessageDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
tran_MessageIdentical  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
tran_MessageLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
tran_Prepare  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
tran_PrePrepare  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
tran_ProlongFinish  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
tran_ProlongResolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
tran_PropertyAdd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
tran_PropertyKeyCons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

x Encina Toolkit Executive Guide and Reference  



  
 

tran_PropertyKeyCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
tran_PropertyKeyCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
tran_PropertyKeyData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
tran_PropertyKeyDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
tran_PropertyKeyEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
tran_PropertyKeyLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
tran_PropertyRetrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
tran_PropertyValueArrayDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
tran_PropertyValueCons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
tran_PropertyValueCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
tran_PropertyValueCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
tran_PropertyValueData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
tran_PropertyValueDestroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
tran_PropertyValueEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
tran_PropertyValueLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
tran_ProvideOutcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
tran_Ready  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
tran_RecAcknowledge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
tran_RecBlockFunctions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
tran_RecDynamicallyRegisters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
tran_RecExplicitlyAcknowledges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
tran_RecInit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
tran_RecMustForceGroup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
tran_RecordHeuristicOutcome  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
tran_RecReadOnly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
tran_RecRefuse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
tran_RecRegister  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
tran_RecReplay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
tran_RecUsingForceGroup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
tran_RequestPromptFinish  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
tran_RequireCompleteOutcome  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
tran_RequireDistributedOutcome  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
tran_RequireHeuristicDamageReporting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
tran_Reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
tran_Secure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
tran_SecurityKeyCons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
tran_SecurityKeyCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
tran_SecurityKeyCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
tran_SecurityKeyDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
tran_SecurityKeyEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
tran_SecurityKeyLength  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
tran_SelectivelyCoordinate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
tran_SetCoordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
tran_SetEphemeralOutcomeDeliveryLimit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
tran_SetEphemeralOutcomeRequirementLimit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
tran_SpecialEnvironment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
tran_StandardEnvironment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
tran_StringDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
tran_Terminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
tran_TidArrayDestroy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
tran_TidEqual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
tran_TidHash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
tran_TidIsDescendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
tran_TidIsRelated  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

  Contents xi



  
 

tran_TidIsTopLevel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
tran_TidKnownDescendents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
tran_TidParent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
tran_TidTopAncestor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
tran_TidToString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Chapter 40. TRAN Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  523
tran_abort_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
tran_address_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
tran_addressFamily_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
tran_applId_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
tran_forceGroupId_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
tran_globalState_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
tran_localState_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
tran_logRecord_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
tran_message_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
tran_mutex_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
tran_outcomeQuality_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
tran_propertyKey_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
tran_propertyValue_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
tran_recOptimization_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
tran_relativeCommitState_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
tran_securityKey_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
tran_status_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
tran_tid_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Chapter 41. TRDCE Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
trdce_BindingImport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
trdce_BindingSetProtectionLevel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
trdce_CreateThreadPool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
trdce_DefineInterface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
trdce_Free  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
trdce_FreeBindingVector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
trdce_FreeProtseqVector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
trdce_GetDCEStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
trdce_IsPrincipalSet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
trdce_ListInterfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
trdce_NormalizeProtseq  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
trdce_OfferInterface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
trdce_ProtectLevelFromString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
trdce_QualifyName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
trdce_QueryInterface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
trdce_RegisterSimpleDispatch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
trdce_ReturnCallbackBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
trdce_ReturnKeyFile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
trdce_ReturnPrincipal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
trdce_ReturnSupportedProtseqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
trdce_ReturnWkEndpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
trdce_SecKeyManagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
trdce_SecLoginContextCertify  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
trdce_SecLoginContextCreate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
trdce_SecLoginContextRefresh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

xii Encina Toolkit Executive Guide and Reference  



  
 

trdce_SecManagement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
trdce_ServerListen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
trdce_ServerRegister  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
trdce_SetKeyFile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
trdce_SetPrincipal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Chapter 42. Abort Facility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  579
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
encina_FormatAbortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
encina_FreeAbortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
encina_GetAbortCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
encina_GetAbortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
encina_GetAbortString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
encina_RegisterAbortFormatter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
encina_SetAbortCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
encina_SetAbortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
encina_SetAbortString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

Chapter 43. Abort Facility Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  589
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
encina_abortReason_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
encina_status_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Chapter 44. TRPC Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
trpc_BindingCopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
trpc_BindingFromStringBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
trpc_BindingToStringBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
trpc_BindWkEndpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
trpc_CallAfterReceivingReply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
trpc_CallAfterReceivingRequest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
trpc_CallBeforeSendingReply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
trpc_CallBeforeSendingRequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
trpc_CallOnClientException  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
trpc_CallOnRpcTermination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
trpc_CallOnServerException  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
trpc_CallToGetTid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
trpc_ConsBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
trpc_CreateBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
trpc_DumpState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
trpc_Free  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
trpc_FreeBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
trpc_GetAddressFromBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
trpc_GetApplIdFromBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
trpc_GetCompatibleLocalAddress  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
trpc_GetEnvironment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
trpc_GetRpcHandleFromBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
trpc_GetWrapTid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
trpc_Init  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
trpc_InitWithTrdce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
trpc_IsLocallyWrapped  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
trpc_InqObjectFromBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

  Contents xiii



  
 

trpc_InqTimeoutFromBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
trpc_ReceiveCallbackData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
trpc_ResetBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
trpc_SendCallbackData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
trpc_ServerSideAbortReason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
trpc_SetEnvironment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
trpc_SetObjectBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
trpc_SetTimeoutBinding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
trpc_SetTranTimeout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
trpc_Terminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
trpc_TerminateRpc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
trpc_UseProtseqVector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
trpc_UseWkEndpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

Chapter 45. TRPC Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  651
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Cautions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
trpc_handle_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
trpc_ifSpec_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
trpc_outOfBandMode_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
trpc_status_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
trpc_tranInfo_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

Chapter 46. X/Open TX Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  657
Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
Standard TX Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  657
Encina TX Extension Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  657
tx_allow_nesting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
tx_begin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
tx_close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
tx_commit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
tx_get_rollback_code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
tx_get_rollback_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
tx_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
tx_open  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
tx_RegisterXaUpcalls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
tx_rollback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
tx_set_commit_return  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
tx_set_rollback_code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
tx_set_rollback_string  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
tx_set_transaction_control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
tx_set_transaction_timeout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
tx_DumpState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Chapter 47. General Functions and Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  679
encina_StatusToString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
encina_StatusToSymbol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
encina_StringToStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
encina_SymbolToStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
tidl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

Chapter 48. Trace Facility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  691
indentTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
interpretTrace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

xiv Encina Toolkit Executive Guide and Reference  



  
 

trace_DumpRingBuffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
trace_FileUpcall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
trace_FormatBuffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
trace_Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
trace_Unregister  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
traceListener  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
translateError  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
translateTraceId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Chapter 49. Trace Facility Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  707
trace_buffer_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
trace_uid_t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

Appendix A. Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
TRAN Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
Tran-C Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
TRPC Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
ThreadTid Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
TRDCE Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
TX Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
BDE Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Utilities Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
DCE Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

Appendix B. Administrative RPC Interfaces for the Encina Toolkit . . . . . . . . . . . . . . . . . .  739
General Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
RPC Interfaces for Toolkit Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  742

Appendix C. Building Encina Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  751
Encina Include Files and Libraries for C and C++ Programs . . . . . . . . . . . . . . . . . . . . . . . .  751
Platform-Specific Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

Appendix D. Source Code for the Sample Applications . . . . . . . . . . . . . . . . . . . . . . . .  753
The telshop.c File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  753
The base_merchandise.c File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  761
The merch_client.c File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  767
The base_recArray.c File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  769
The server_utils.c File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  772
The utilities.h File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  775
The merch.h File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  778
The recArray.h File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  779
The server_utils.h File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  780
The merchandise.tidl File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  781
The merchandise.tacf File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  782

Appendix E. Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
Programming Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  785

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
z/OS DCE Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  793
z/OS SecureWay Security Server Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  793

  Contents xv



  
 

Tool Control Language Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  794
IBM C/C++ Language Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  794
z/OS DCE Application Support Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  794
Encina Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

xvi Encina Toolkit Executive Guide and Reference  



  
 

 Figures

1. Path of an RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
2. Flow of an RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
3. merchandise.tidl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4. merchandise.tacf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5. Building Encina Clients and Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
6. Qualifying Automatic Variable's Types as Volatile . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
7. The “Hello, World” Program in Tran-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
8. Output from Running the “Hello, World” Program Successfully . . . . . . . . . . . . . . . . . . . .  48
9. Sample Client Initialization Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

10. Sample Client LookupServer Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
11. Syntax of the transaction Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
12. Transaction Loop in the Sample Telshop Application . . . . . . . . . . . . . . . . . . . . . . . . . .  55
13. Syntax of the topLevel Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
14. Syntax of the subTran Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
15. Syntax of the subThread Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
16. Syntax of the concurrent Construct Terminated by the coEnd Statement . . . . . . . . . . . . . .  59
17. Syntax of the concurrent Construct with onCommit and onAbort Clauses . . . . . . . . . . . . . .  59
18. Syntax of the cofor Construct with onCommit and onAbort Clauses . . . . . . . . . . . . . . . . .  60
19. Syntax of the cofor Construct Terminated by the coEnd Statement . . . . . . . . . . . . . . . . .  60
20. Example of Using the cofor Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
21. Syntax of the Suspend Clause within a transaction Construct . . . . . . . . . . . . . . . . . . . . .  62
22. Syntax of the resumeTran Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
23. Syntax of the wrapEachTrpc Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
24. Defining the Abort Code, Format, and Scope for an Abort Reason . . . . . . . . . . . . . . . . . .  65
25. Example Function for Formatting an Abort Reason . . . . . . . . . . . . . . . . . . . . . . . . . . .  66
26. Example of Aborting a Transaction with an Abort Code . . . . . . . . . . . . . . . . . . . . . . . .  68
27. Syntax of the catchAbort Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
28. Retrieving an RPC Status Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
29. Using Exceptions to Simulate the catchAbort Statement . . . . . . . . . . . . . . . . . . . . . . . .  75
30. Example Transaction Construct and Its Pseudo-Code Expansion . . . . . . . . . . . . . . . . . . .  91
31. Explicit Transaction and threadTid Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
32. Pseudo-code Using TX and Tran-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
33. The “Hello, World” Program in TRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
34. Output from the TRAN “Hello, World” Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
35. Application Components: Sample Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116
36. Two-Phase Commit Message Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
37. Initialization Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
38. Transactional Communication Example: Simple RPC . . . . . . . . . . . . . . . . . . . . . . . .  140
39. Asynchronous Communication Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
40. Commitment Protocol: Prepare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144
41. Commitment Protocol: Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
42. Commitment Protocol: Finished . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146
43. admin_tran_types.idl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
44. admin_tran.idl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
45. TRPC Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
46. Flow of a Transactional RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
47. Sample Order-Entry Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
48. Sample Order-Entry Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
49. IDL File for the Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
50. Files Used and Produced by the IDL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

 Copyright IBM Corp. 1989, 2001  xvii



  
 

51. Using an Attribute Configuration File to Control Errors and Exceptions . . . . . . . . . . . . . .  196
52. The OrderItem Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
53. Initializing the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
54. Using the encina_StatusToString Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
55. The Client Portion of the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
56. Initializing Tran-C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
57. The Tran-C transaction Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206
58. Adding Transactions to the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206
59. Aborting a Transactions to the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208
60. Using TX to Start and End a Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
61. An Alternate Method of Detecting Aborts Using TX . . . . . . . . . . . . . . . . . . . . . . . . . .  210
62. Closing the TX Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210
63. Using a Nested Transaction in the Sample Application . . . . . . . . . . . . . . . . . . . . . . . .  216
64. Using Abort Codes in Our Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
65. Defining Abort Codes for Our Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
66. Example Function for Formatting an Abort Reason . . . . . . . . . . . . . . . . . . . . . . . . . .  219
67. Specifying the Abort Format to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
68. Aborting a Transaction Using an Abort Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
69. Registering Abort Formatting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
70. The REGISTER_ABORT_FORMATTER Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
71. The Encina Toolkit Administration Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  739
72. admin.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
73. admin_types.idl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
74. admin_gen.idl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
75. telshop.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
76. base_merchandise.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
77. merch_client.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
78. base_recArray.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
79. server_utils.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
80. utilities.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
81. merch.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
82. recArray.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
83. server_utils.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
84. merchandise.tidl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
85. merchandise.tacf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782

xviii Encina Toolkit Executive Guide and Reference  



  
 

 Tables

1. Input File Names for TIDL on Different File Systems . . . . . . . . . . . . . . . . . . . . . . . . . .  34
2. Output File Names TIDL Generates on Different File Systems . . . . . . . . . . . . . . . . . . . .  34
3. Transaction Clause and Callback Interactions in Nested Transactions . . . . . . . . . . . . . . . .  77
4. TX Interface Abort Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
5. First-Byte Values for Naming Variable-Sized Objects . . . . . . . . . . . . . . . . . . . . . . . . .  126
6. TRAN Property Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
7. Encina Trace Class and Their Default Destinations . . . . . . . . . . . . . . . . . . . . . . . . . .  224
8. Standard Trace Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
9. Valid Trace Component Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

10. Special Trace Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
11. TRAN Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  713
12. Transactional-C Abort Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  716
13. Tran-C Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  717
14. TRPC Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  723
15. TRDCE Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728
16. TX Interface Abort Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  731
17. Possible Return Values from Administrative RPC Functions . . . . . . . . . . . . . . . . . . . . .  741
18. Encina Toolkit Executive Include Files and Libraries for C Programs . . . . . . . . . . . . . . . .  751
19. Platform-Specific Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

 Copyright IBM Corp. 1989, 2001  xix



  
 

xx Encina Toolkit Executive Guide and Reference  



  
 

About This Book

This book introduces the z/OS Encina Toolkit Executive, which is part of z/OS Version 1 Release 1
Modification level 0. The purpose of this book is to help software designers and programmers use the
Toolkit to develop transactional remote procedure calls (TRPCs) for z/OS Distributed Computing
Environment (DCE) client-server applications.

On z/OS, you can write only ephemeral clients (those with no recovery service of their own). In
combination with Application Support (AS), applications can use TRPCs to transactionally access IMS
data from a workstation client, using the Recoverable Resource Management Services (RRMS), one
component of which is z/OS Resource Recovery Services (RRS).

This book describes installation, administration, and use of the z/OS Encina Toolkit Executive.

Who Should Use This Book

This book is for system and network administrators who install and administer the z/OS Encina Toolkit
Executive. It is also for system designers, application designers, host application programmers, and client
application programmers who develop client-server applications using transactional RPCs in the Encina
environment.

What You Need to Know

You need to understand:

� The basic concepts of DCE

� The z/OS operating environment

� Transaction processing concepts

� The concepts and practice of the transactional remote procedure call and the Encina functions that
support it.

System and network administrators additionally need to understand how to use the administration facilities
IBM DCE provides. Designers and programmers additionally need familiarity with the DCE Interface
Definition Language (IDL) and C.

 Document Conventions

This book uses the following conventions:

Bold Words or characters highlighted in this manner represent system elements that
you must enter into the system literally, such as commands, calls, options, path
names, literal strings for command lines, data types, functions, and files.

Italic Words or characters highlighted in this manner represent values for variables that
you must supply. This includes user-supplied information on command lines,
function arguments, attributes, and parameters and arguments in syntax
definitions, examples, and text. New terms are highlighted the first time they are
defined.

UPPERCASE Environment variables appear in regular type, with UPPERCASE LETTERS.

 Copyright IBM Corp. 1989, 2001  xxi



  
 

Example font Examples of screen output and file contents and constants in syntax definitions,
examples, and text appear in constant width type style.

[ ] Brackets enclose optional items in format and syntax descriptions. Options are
preceded by a hyphen and are followed by an optionvalue where required. Some
options do not require an argument.

Required arguments Required arguments are not surrounded by square brackets ([ ]) in the command
syntax. Required arguments must be entered in the specified order, unless a
hyphen precedes them. You can enter required arguments with hyphens in any
order on the command line.

{ } Braces in format and syntax descriptions enclose a list from which you must
choose an item.

| A vertical bar separates items in a list of choices enclosed in braces.

{...} An ellipsis within braces ({...}) indicates that you can enter one or more arguments
or groups of arguments. An ellipsis following an argument or group of arguments
indicates that you can enter multiple arguments or groups of arguments.

< > Angle brackets enclose the names of keys on the keyboard.

<Return> The notation <Return> refers to the key on the keyboard that is labeled with the
word Return, the word Enter, or the left arrow.

<Ctrl-x> or ¬x The notation <Ctrl-x>, where x is the name of a key, indicates a control-character
sequence. For example, <Ctrl-d> means hold down the Control key while you
press the letter 'd.'

Entering commands When instructed to “enter” or “issue” a command, type the command and then
press <Return>. For example, the instruction “Enter the ls command” means type
the ls command and then press <Return>.

% A % (percent sign) represents the command shell prompt. (Your prompt may be
different.)

Note: A Note: in the documentation contains information of special importance.

Caution: A Caution: in the documentation contains information that you need to know to
avoid damaging software or equipment or both.

Warning: A Warning: in the documentation contains information urging you to beware of a
serious, potential hazard.

IN, OUT, INOUT In function and procedure call examples, the IN declaration indicates parameters
whose contents are not modified during the execution of the function or procedure.
The OUT declaration indicates parameters whose contents are undefined until
modified by the called function, and which are used to return modified data to the
calling routine. The INOUT declaration indicates parameters whose values are
used when first passed to a function or procedure, and are then modified by that
function or procedure. These parameters serve as both IN and OUT parameters.

xxii Encina Toolkit Executive Guide and Reference  



  
 

Reference Section Conventions

In the reference sections, functions and data types are arranged alphabetically in their respective sections.
Each function, command, and data type is presented in the following format.

The name of the function, command, or data type and a short description of its use begins each topic.
After this occur the following sections. (Note that not every topic includes all of these sections.)

� Synopsis — lists the syntax for the command, data type, or function

� Attributes — list attributes of object types and their defaults

� Arguments — describe the arguments to the command

� Fields or Parameters — describe the fields in a data type or the parameters of a function

� Enumerated Types — list and describe the enumerated constants in the data type (if the data type is
an enumerated type)

� Description — describes the command, data type, or function; discusses how the arguments or
parameters are related; and outlines requirements for its execution

� Note — highlights important points

� Caution — highlights actions that may cause problems

� Privilege Required — lists permissions required to use the command

� Examples — show typical use of the command

� Return Values — list possible return values in programming documentation

� Output— shows output of the command

� Related Information — gives pointers to related information

Where to Find More Information

Where necessary, this book references information in other books using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the
z/OS Information Roadmap, SA22-7500. For complete titles and order numbers of the books for z/OS
DCE, refer to the publications listed in the “Bibliography” on page 793.

For information about installing z/OS Encina components, see the z/OS Program Directory.

This section lists where to find more information about z/OS DCE and other products.

 z/OS DCE

For introductory information about DCE, see:

� z/OS DCE Introduction, GC24-5911

For information about planning and configuring z/OS DCE components, see:

� z/OS DCE Planning, GC24-5913

� z/OS DCE Configuring and Getting Started, SC24-5910

For information about z/OS DCE administrative tasks and facilities and administrative commands and
syntax, see:

  About This Book xxiii



  
 

� z/OS DCE Administration Guide, SC24-5904

� z/OS DCE Command Reference, SC24-5909

For information about developing client code and using DCE Threads, Security, Directory, and RPC
services, see:

� z/OS DCE Application Development Guide: Introduction and Style, SC24-5907

� z/OS DCE Application Development Guide: Core Components, SC24-5905

� z/OS DCE Application Development Guide: Directory Services, SC24-5906

For details about application programming interfaces (APIs), see:

� z/OS DCE Application Development Reference, SC24-5908

For all the z/OS DCE messages and codes, see:

� z/OS DCE Messages and Codes, SC24-5912.

 z/OS MVS

� z/OS MVS Programming: Resource Recovery, SA22-7616

� z/OS MVS Initialization and Tuning Reference, SA22-7592

� z/OS UNIX System Services Command Reference, SA22-7802

� z/OS UNIX System Services User's Guide, SA22-7801.

 Softcopy Publications

The z/OS Encina library is available on a CD-ROM, z/OS Collection, SK3T-4269. The CD-ROM online
library collection is a set of unlicensed books for z/OS and related products that includes the IBM Library
Reader. This is a program that enables you to view the BookManager files. This CD-ROM also
contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

 Internet Sources

The Softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Using LookAt to Look up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS messages. You can also use
LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

xxiv Encina Toolkit Executive Guide and Reference  



  
 

You can use LookAt on the Internet at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Web site by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message ID and select the
release with which you are working.

Note:  Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in z/OS MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.
3. Select Access Profile.
4. Select Request Access to Licensed books.
5. Supply your key code where requested and select the Submit button.

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

Note:  You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
 2. Select Library.
 3. Select zSeries.
 4. Select Software.
 5. Select z/OS.

6. Access the licensed book by selecting the appropriate element.

  About This Book xxv



  
 

xxvi Encina Toolkit Executive Guide and Reference  



  
 

Part 1. Overview, Configuration, and Installation

 Copyright IBM Corp. 1989, 2001  1



  
 

2 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 1. Online Transaction Processing: Enterprise
Computing

Online transaction processing (OLTP) is the backbone of business throughout the world: it provides
banking services in San Francisco to a customer in Hong Kong; it coordinates parts inventories in
Tennessee with a manufacturing facility in Detroit; it records a cash sale in Seattle at a headquarters in
Boston.

To stay competitive, an enterprise requires fast and reliable access to information. Furthermore, it must
be able to keep this information up-to-date easily, even through system failures across a broad network
shared among many users. In this way, superior OLTP technology facilitates more efficient and
dependable delivery of goods and services throughout an enterprise.

 Distributed Systems

Historically, transaction processing solutions have been centralized systems. Today, however, business is
becoming more decentralized.

Computing today is distributed among PCs, workstations, and mainframes. By distributing computing
resources, an enterprise achieves greater configuration flexibility because applications and data can be
placed where they are being used. Moreover, networking systems together facilitates realtime
interdepartmental data sharing (important for tasks such as decision support) without the need to copy
secure data.

Distributed applications need a way to call remote computation. The client-server model is the most
common way to organize software to run on distributed systems. A client is an application that requests
work from other applications, called servers. (A single application can be both a client and a server.)

 Open Systems

While distributed computing addresses many business challenges, it introduces further complexity within
the computing environment. The primary obstacle is linking heterogeneous computing platforms in a
manner that applications can communicate with one another and can be run on different machines over
time. The present interest in the open systems approach is that it enables:

Portability By emphasizing common application programming interfaces (APIs), open systems permit
applications developed on one platform to run on others.

Interoperability
With common communication protocols, open systems permit distributed applications to work
together by sharing data, or computing resources, or both.

Evolution Modularity and published internal interfaces ease the adoption of new technologies and new
standard protocols and interfaces.

The result is that open systems provide the flexibility to meet changing computing requirements, letting the
enterprise select from a wide range of vendors and equipment.

 Copyright IBM Corp. 1989, 2001  3



  
 

 Investment Protection

In implementing distributed systems, corporations must protect their investments — both in existing and in
future systems. To address the former, it is essential that new technologies interoperate with established
OLTP environments. At the same time, it is critical that these emerging technologies and standards
provide an extendable foundation for developing new computing applications that will last well into the next
century. Encina and its implementation on z/OS, the z/OS Encina Toolkit Executive, provide this
foundation by enhancing DCE with transactional semantics.

 DCE

DCE is a modular collection of interfaces with communications and resource sharing services for
developing secure distributed applications. DCE provides an infrastructure for distributed computing
services, hiding the complexity of the specific operating system and network transport.

DCE uses the concept of a cell. A cell is a group of machines that work together and are administered as
a unit. DCE gives each cell the services it needs, providing basic building blocks for constructing
distributed client-server systems:

� The Cell Directory Service (CDS) is a name service for dynamically locating servers, so that
applications do not need to specify endpoints (network addresses).

� The Security Service on z/OS supports three levels of DCE security:

Authentication – identifies individual participants

Protection levels – determine how often a server checks the client's authentication

Authorization – uses access control lists (ACLs) to restrict services to those with required
permissions

� A Distributed Time Service (DTS) for addressing discrepancies between remote clocks

� A Distributed File System (DFS) for accessing remotely stored files

At the heart of DCE is the remote procedure call (RPC). A remote procedure call (RPC) is a programming
paradigm similar to the well-known procedure call mechanism. Both procedure call mechanisms transfer
control and data within a program.

You use an RPC for a call within a client program that accesses a procedure on a server. An RPC is like
a standard procedure call except a process other than the caller runs the procedure, which can be located
on a different computer system. However, to the caller, RPCs look the same as calls to local procedures.
This is because RPCs make the details of network communications transparent to applications. Also, like
local procedures, RPCs have input and output parameters and can return values. When a remote
procedure is called, the parameters of the call are passed over the network to the environment where the
call is actually processed. Meanwhile, the calling environment waits for the results of the procedure
execution. The calling environment is a program that is typically called a client. The environment where
the call runs is called a server. When the server finishes running the procedure, it ships the results back
to the client, which then resumes running as if returning from a local procedure call.

“DCE RPC Model” on page  5 describes RPCs in some detail.

Before a client can make an RPC to a server to request a procedure, it must first connect (or bind) with an
appropriate server.

4 Encina Toolkit Executive Guide and Reference  



  
 

 Binding

The relationship between a client and a server is called binding. Servers advertise themselves to provide
the information that clients need to select them. A server registers each interface it supports with the RPC
runtime library and publishes its binding information. It:

� Selects the communications protocol it can use

� Registers its endpoint (network address) in the endpoint map (a simple database that relates
interfaces to network addresses of servers supporting these interfaces)

� Exports all other binding information to the CDS

After advertising itself in this manner, a server listens for RPCs.

The binding information is called the binding handle. The client needs to know:

� Which interfaces the server supports
� Which communications protocol the server can use (for example, TCP/IP)
� Protocol-specific address information, typically including the host name and an endpoint

DCE RPC Model

DCE RPC consists of the following two components:

Interface Definition Language (IDL) is used loosely to describe both the interface definition language
and the compiler that accepts a file (the file extension is .idl) containing operation descriptions
(functions that remote procedures implement). An operation description includes the types of
parameters and the return values of operations. IDL produces C files that contain code to pack and
unpack operation parameters to and from the request and response messages. (This packing and
unpacking is also called marshalling and unmarshalling.) The output C files are appropriately linked
with the server and the client programs.

DCE RPC run-time library is the run-time library that the DCE RPC system exports. The DCE RPC
run-time library uses the Concert Multi-thread Architecture (CMA) exception model to raise and catch
exceptions.

To use DCE RPC in an application, you must define the remote procedure call for the client and server
applications. The server writer produces an interface definition file. This file contains declarations of
remote procedures and their parameters and return values. IDL accepts this file and produces client and
server stub files. The stub files contain calls to functions in the DCE RPC run-time library that marshall
(pack) and unmarshall (unpack) the parameters of the RPC and send and receive messages. The stub
files are appropriately linked with the client and server programs.

A client program makes an RPC as it would a local procedure call. Stubs mask the lower-level complexity
of RPC calls by making them appear to be local procedure calls.

The following figure shows the path of an RPC:

  Chapter 1. Online Transaction Processing: Enterprise Computing 5



  
 

return
data

apparent path
of data

due to IDL
and RPC

RPC
runtime

RPC
runtime

Client
stub

Server
stub

RPC
interface

RPC
interface

Calling
code

Remote
procedure

input arguments
Actual path of data

RPC Client RPC Server

Figure 1. Path of an RPC

When a client initiates an RPC, it actually calls the client stub function IDL has generated. (Client stubs
are also called the native client stubs.) The client stub packs the procedure parameters (the in
parameters) of an RPC into a request and sends the request message. The client stub then waits for the
reply message to return. On the server side, when the DCE RPC runtime receives the request message,
it calls the server stub IDL has generated. The server stub unmarshalls the in parameter. It then calls the
server manager function that the server writer has provided for the corresponding RPC. (Manager
functions, also called native manager functions, are linked to the server code and implement the actual
operations of the remote procedure.) When the manager function returns, the server stub marshalls the
out parameter and sends a reply message to the client. The client DCE RPC runtime receives the reply
message and passes it to the client stub. The client stub unmarshalls the out parameter and returns
control back to the application. The entire operation provides the semantics of a local procedure.
Figure 2 shows the steps of a DCE RPC.

1.
Initiate call

2.
Marshal IN
Arguments

3.
Send Request 4.

Request Message

5.
Wait

6.
Receive
Message

7.
Unmarshal IN
Arguments

8.
Call
Manager

9.
Manager
Returns

10.
Marshal OUT
Arguments

11.
Send
Reply

12.
ReplyMessage13.

Receive Reply
14.
UnMarshal OUT
Arguments

15.
Call
Returns

Clie
nt

Clie
nt S

tu
b

DCE R
PC ru

ntim
e

Ser
ve

r S
tu

b

Ser
ve

r

DCE R
PC ru

ntim
e

Figure 2. Flow of an RPC

The following list indicates steps that Figure 2 depicts:

1. The client starts the remote call.

6 Encina Toolkit Executive Guide and Reference  



  
 

2. The client stub marshalls the in parameters and passes them to the DCE RPC runtime.

3. The DCE RPC runtime sends the request.

4. The request message goes over a communication channel to the server.

5. The DCE RPC runtime at the client waits for the reply message.

6. The DCE RPC runtime at the server receives the request message and passes it to the server stub.

7. The server stub unmarshalls the request message.

8. The server stub calls the manager function.

9. The manager function returns.

10. The server stub marshalls the out parameters and passes them to the DCE RPC runtime.

11. The DCE RPC runtime sends the reply message.

12. The reply message goes over a communication channel.

13. The DCE RPC runtime at the client receives the reply message and passes it to the client stub.

14. The client stub unmarshalls the out parameters.

15. The remote procedure returns to the client.

Each process generally has a distinct address space, a portion of memory reserved for that process.
Although access to information in transaction processing is asynchronous, RPCs are synchronous. This
means that with RPCs the client typically blocks while waiting for a response from a server. However,
DCE allows multiple parallel execution environments (called threads) to be active in a single address
space. Threads provide concurrency, so that a single client can hold many RPC conversations at once.
Replication of services lets a single server simultaneously handle multiple client requests.

 Transactional RPCs

An RPC lets your client program call a procedure on another machine. When a failure occurs with an
RPC, it is often difficult to determine exactly what happened. A failure can occur for various reasons—an
RPC may not reach its destination, an acknowledgment can be lost, or a server may be unable to fulfill the
request. An RPC that fails can partially change information.

An RPC uses at most once semantics. The requested application program runs at most one time.
Transactional RPCs address the shortcomings of RPCs by providing exactly once semantics. If a
transactional RPC returns a code indicating success, this guarantees that the actions the call specifies
have occurred once and only once on the target machine. A code indicating failure guarantees that the
actions a call specifies are not done at all if the transaction aborts. Thus, transactional RPCs ensure there
are no partial updates. The transaction makes all changes or none of them.

Transactions conform to the ACID properties:

Failure Atomicity
A transaction is successful (it is said to commit) or unsuccessful (it is said to abort). Either
all of the operations that make up a transaction take effect, or none take effect. Any
operations performed by an aborted transaction are undone so its effects are not visible.

Consistency A transaction changes distributed data consistently. Changes made to one data set are
consistently made to all data sets. For example, for a transaction transferring funds from
your savings to your checking account; consistency ensures that your checking balance
increases by the same amount that your savings account decreases. The application
program is responsible for ensuring consistency.

  Chapter 1. Online Transaction Processing: Enterprise Computing 7



  
 

Isolation Each transaction appears to run independently of other transactions that may be running at
the same time. The effects of a transaction are not visible to other transactions until it
completes (commits or aborts). Although transactions may run concurrently, they appear
to run serially; two or more transactions act as if one completed before the other began,
even if they run at the same time.

Durability Also known as permanence. Once completed, the effects of a transaction are permanent.
A subsequent failure (such as abnormal end to a program, communication failure, and so
on) does not undo the effects of the transaction.

The transaction processing system is responsible for the atomicity, isolation, and durability properties. It
thus reduces all forms of failure during the execution of a transaction to one, consistency. A failed
transaction aborts completely, with the appearance that nothing happened.

Transactional RPCs adds bracketing calls around a transaction to carry additional information about the
transaction. Bracketing demarcates the transaction as a single unit of work. If a transactional RPC fails
or the initiating transaction is notified of an error, the transaction is aborted.

A distributed transaction processing system maintains the ACID properties in distributed transactions with
two features:

 � Recoverable processes

� A commit protocol

See “Transactional RPCs” on page 166 for information about transactional RPCs and Encina components.

Recoverable and Ephemeral Processes

A recoverable process or recoverable application is one that logs its actions and can restore earlier states
in case of failure. (They use exactly-once semantics.) Recoverable processes must store transaction
state information. Processes that manage application data (such as resource managers) must also store
descriptions of changes to data.

An ephemeral process or ephemeral application is one that does not directly support recoverable data.
Clients that issue requests to servers are ephemeral applications. On z/OS, you can write only ephemeral
clients (those with no recovery service of their own).

Two-phase Commit Protocol

The two-phase commit protocol, as the name implies, involves two phases: a prepare phase and a
resolution phase. In each transaction, one process (or participant) acts as the coordinator. The
coordinator oversees the activities of the other participants in the transaction to ensure a consistent
outcome.

The actions that occur when a transaction completes without aborting are extremely important because
this is the point at which a transaction can become permanent. First, one of the participants in the
transaction becomes the coordinator of the transaction, and it confirms whether all other participants were
able to complete their work for the transaction. Second, if there were no problems, the transaction is
committed. Committing a transaction means that the changes associated with that transaction become
permanent.

A transactional RPC uses Encina's two-phase commit protocol to ensure that an application program
makes all or no changes to a collection of resources.

1. The first phase is the prepare phase. One participant in the transaction is the coordinator of the
transaction. The coordinator makes sure that all participants agree that any data changes should be

8 Encina Toolkit Executive Guide and Reference  



  
 

permanent. Each participant prepares to commit, logs successful completion of this preparation, and
sends a message to the coordinator that it has completed the prepare phase. After receiving such
messages from all participants, the coordinator writes its own prepare record to the log. This ensures
the transaction will complete, even if the system fails.

2. The second phase is the resolution phase (sometimes called the commit phase). The coordinator
sends a commit notification to each participant. Each writes a log record to indicate the transaction is
committed, releases any resources held on behalf of the transaction, and sends an acknowledgment
to the coordinator. The coordinator informs all participants of the outcome. After the participants
make the changes a transaction has requested and the coordinator has written a commit record, the
changes become permanent. Even if the system fails, the commit record in the log indicates
reinstating the changes.

Logging both prepare and commit phases lets participants in the transaction determine whether changes
for the transaction have been made or must still be made in permanent storage. This protects those
changes from problems in case one or more of the participants in the transaction fails.

 Encina Strategy

Distributed and open computing offer the promise of multivendor solutions that deliver application
interoperability and portability. At the same time, open systems provide the freedom to select and
upgrade computing platforms as needs change. In this way, open, distributed transaction processing
systems are the basis for an enterprise-computing strategy that preserves investments—from the desktop
to the data center. Encina is Enterprise Computing In a New Age.

Key to delivering on these promises is to define a widely available set of common foundation services that
emphasize existing and emerging standards. The IBM DCE substantially establishes this infrastructure.
DCE offers the necessary communication and resource sharing services that provide a common platform
for developing secure, distributed applications.

While DCE addresses many of the complexities of distributed computing, developers of distributed
applications face further problems for which transaction processing concepts are relevant. Transaction
processing is fundamental to enterprise computing because it provides data integrity in the face of
concurrency and system failures. The Encina family of transaction processing products simplifies the
construction of reliable distributed systems and provides the guarantees of integrity required for
mission-critical enterprise computing.

The z/OS Encina Toolkit Executive expands the DCE foundation to include services that support
distributed transaction processing.

The z/OS Encina Toolkit Executive

The z/OS Encina Toolkit Executive is a set of C function libraries containing callable C functions. It is
packaged as a Dynamic Link Library (DLL). It provides a set of tools for building client components of
distributed, transactional applications.

The z/OS Encina Toolkit Executive supports only ephemeral clients, those with no facility for logging
results or recovery. You use the z/OS Encina Toolkit Executive to build ephemeral clients that achieve
permanence by communicating with recoverable applications—for example, by contacting a recoverable
server.

  Chapter 1. Online Transaction Processing: Enterprise Computing 9



  
 

Some interfaces contained in the z/OS Encina Toolkit Executive are not functional in ephemeral clients.
However, to make applications recoverable, application developers can provide the equivalent of Encina
functions existing on other systems but not in the z/OS Encina Toolkit Executive.

To use Toolkit functions, an application must be linked with the Toolkit libraries while it is compiling.
When the program runs, functions residing in the Encina DLL are called.

Note:  The z/OS Encina Toolkit Executive uses the standard z/OS DCE interfaces, including z/OS pthread
functions. For information about reentrancy, see the z/OS Language Environment (LE)
documentation.

To implement transactional RPCs, you must have the Encina Toolkit installed on both the client and the
server. The Encina Toolkit Executive extends the services of DCE with core technologies that enable
client-server transaction processing. It includes Transactional-C, a high-level application programming
interface that provides transaction demarcation and concurrency management. The Encina Toolkit
Executive also extends the remote procedure call (RPC) technology of DCE to transparently ensure
transactional integrity over distributed computations. Supporting these application programming interfaces
is the Encina Distributed Transaction Service (TRAN), a powerful, distributed, two-phase commit engine.
DCE and the Encina Toolkit Executive together permit a workstation or S/390 or zSeries 900 machine to
initiate transactions, to locate services, to securely invoke those services, and to commit distributed
transactions.

What the z/OS Encina Toolkit Executive Includes

The Encina Toolkit Executive extends the services of DCE with core technologies that enable client-server
transaction processing. It contains the following components:

 Transactional-C (Tran-C)
This is a high-level API (consisting of a set of macros and library routines) for a transactional extension to
the C language. It simplifies transaction demarcation, concurrency control, and exception handling.
Tran-C is a high-level component.

It lets you use the modules in the Toolkit, such as TRAN. It also provides the bracketing that lets you
distinguish a transaction as a single unit of work. The following is a simple example of transaction
definition in Tran-C:

transaction{...
 debit (salaryExpense,amount);
 credit (accountsPayable,amount);

enterAuditData (employeeIdentifier,amount, date);
 ...}
 onCommit

printf ("Transaction succeeded.");
 onAbort

printf ("Transaction failed.");

The bracketed statements of the transaction construct make up a single unit of (distributed) work. The
onAbort clause simplifies the handling of exceptions in that any errors resulting in transaction abort are
trapped within this branch.

10 Encina Toolkit Executive Guide and Reference  



  
 

Distributed Transaction Service (TRAN)
This is the means by which a consensus is reached among transaction participants as to whether to
commit or to abort. The actual standard for reaching this consensus is the two-phase, presumed-abort
commit protocol. TRAN is a low-level component. On the server, it is the coordinator for transactions.
TRAN provides the logic for the two-phase commit protocol, but does not include a mechanism for
communicating with other Transaction Services. Instead it furnishes opaque transaction state information
to the TRPC component for inclusion in transactional RPCs. The TRPC component then takes care of
sending and receiving the messages required to execute the two-phase protocol. By separating
communications and the transaction service, TRAN can be used with alternative communication facilities
such as other RPCs or peer-to-peer implementations. In fact, a single instance of TRAN can support
multiple communication mechanisms simultaneously, meaning that a transaction can send server requests
in a number of different ways and yet still offer implicit two-phase commit over all participants. TRAN
provides similar support for integrating multiple-recovery services, each of which provides the rollforward
and rollback services for recoverable data.

Transactional RPC Service (TRPC)
This extends the DCE RPC with transaction semantics. Thus, remote computation initiated with a
transactional RPC exhibits the ACID properties. (This is true in conjunction with a resource manager used
by the application that supports these properties.) If a standard RPC fails, the client generally cannot
determine whether the message never arrived at the server, whether the server failed during the
computation, or whether the return message was lost. This indeterminacy is unacceptable for transaction
processing. When a transactional RPC fails, however, the encompassing transaction is aborted. When
the semantics required for transaction processing are more restrictive, either a transaction is completed
successfully by all participants, or an abort is issued, causing any local or remote modifications to be
rolled back.

To programmers, TRPC looks just like the DCE RPC, upon which it is based. All of the DCE RPC
features (the high-level API, name and security service integration) are offered with TRPC as well. TRPC
consists of two components:

� Transactional Interface Definition Language (TIDL) is both an extended DCE IDL and a preprocessor
for interface definition files. As a language, TIDL lets developers more easily include the additional
information that TRPC requires.

� A library of functions that supports communication for TRAN.

TRPC is a bi-level component. This is interface is available to application developers. It provides
high-level features but requires attention to detail.

Thread-to-Tid Mapping Service (threadTid)

This is a library that associates transactions with threads. This is a low-level component that is more
structured than TRAN. TRAN lets a thread work on several transactions. The threadTid lets a thread
work for one transaction at a time, but multiple threads (each using threadTid) can work for the same
transaction, as long as all parts of the application can support threading.

  Chapter 1. Online Transaction Processing: Enterprise Computing 11



  
 

X/Open TX Interfaces (TX)
This is an API for managing transactions. The X/Open TX interface is a standard that lets application
programs start and end transactions, and get information about the status of transactions. The Encina TX
Interface supports and extends the X/Open specification, Distributed Transaction Processing: The TX
(Transaction Demarcation) Specification. TX is an alternative to Tran-C for C programmers.

Transarc/Encina DCE (TRDCE) Utilities library
This is a library of functions. Some of these provide simpler interfaces to common DCE services; others
extend DCE functionality.

Base Development Environment (BDE)

This is Encina's internal portability layer, upon which the z/OS Encina Toolkit Executive's components are
built.

Coordinator Migration and Ephemeral Clients

A window of vulnerability exists in the two-phase commit protocol. The server relinquishes control over its
data from the time it has prepared to commit until the transaction coordinator informs participants of the
transaction outcome. The server keeps all relevant data locked pending the transaction outcome. If the
transaction coordinator cannot be reached during this window, access to data is blocked.

This vulnerability is substantially reduced by migrating the role of transaction coordinator from clients to
more reliable servers. In this way, the Encina Toolkit Executive reduces the likelihood that a coordinating
machine is inadvertently shut down or rebooted at an inappropriate time. Moreover, in this way ephemeral
clients (those with unrecoverable data) can begin and end transactions.

Heuristic Outcome Support

While coordinator migration reduces the likelihood of blocking, failures can still potentially result in the
extended locking of critical data. For these situations, it can be necessary to force the outcome of the
blocked transaction so that other computation can proceed. Such heuristic outcomes require that
consistency be temporarily sacrificed in favor of availability. Moving the coordinator from the client to the
server reduces the likelihood of blocking. However, failures that lock data for extended time periods can
still occur. In such cases, heuristic outcomes—forcing the outcome of the blocked transaction so that
other computation can proceed—may be necessary. Encina provides this capability.

 tkadmin Commands

tkadmin commands are not available on z/OS. However, you can use the tkadmin commands from
another system where Encina is installed, such as AIX, against:

� a transactional z/OS AS IMS OTMA server
� an ephemeral client that is also set up as a nontransactional RPC server capable of supporting Encina

tracing commands.

12 Encina Toolkit Executive Guide and Reference  



  
 

Threads in Transactional Applications

A single server program typically services requests that multiple client programs make. To expedite the
handling of multiple requests, most modern client-server development environments provide a mechanism
for intraprocess multitasking. Encina supports the use of multiple parallel execution sequences, called
threads, within the single address space of a process. A thread, also known as a lightweight process, is
an execution environment within an address space. Threads that belong to the same parent process
usually do not interfere with each other. In most cases, it is not necessary to protect portions of a
process's address space from various threads of the process.

Within a threaded environment, interthread communication through shared data structures is so simple
that the ability to restrict access to some portions of shared memory is necessary. This is done using
mutual exclusion facilities (mutexes). A mutex is a synchronization object that ensures only one thread
can execute in a particular section of code or access a particular portion of memory at a single time. A
mutex has essentially two states: locked (no other thread can execute the particular piece of code or
access the agreed upon memory) and unlocked (access is available to any thread). Mutexes can prevent
incompatible accesses from occurring, such as the case where one thread is reading some data while
another thread is changing it. See “Transactional Mutex” on page 78 for more information on
transactional mutexes.

Callbacks, Upcalls, and Return Codes

Encina's support and development environment for transactional applications is based on the modules of
the Encina Toolkit. Three mechanisms exchange information between Toolkit modules, within application
programs, and between clients and servers:

� Callback procedures that an application component can register to be invoked at specific points
during a specific transaction.

� Upcall1 procedures that, once registered, are called at specific points during all transactions.

� Return codes from calls made directly to library functions or to the interfaces of the Toolkit modules
themselves.

Callbacks are procedures that are associated with individual transactions; they notify applications that
certain events have occurred. Callbacks are registered with TRAN, which controls and monitors the
transitions between transaction states. Registering callbacks is an optional part of the actions of specific
transactions.

Upcalls are procedures that are called to perform the actions required by certain states of a transaction or
to progress to the next state of a transaction. Both callbacks and upcalls are registered with TRAN, which
controls and monitors the transitions between transaction states. Registering the upcalls associated with
these states is a part of the application initialization process. Registering callbacks is an optional part of
the actions of specific transactions.

Return codes are the values that calls return to functions. Return codes are usually integer values that
indicate success or failure.

1 Upcalls are associated with transactional servers. z/OS provides upcalls but does not directly support them because it does not
provide server support.

  Chapter 1. Online Transaction Processing: Enterprise Computing 13



  
 

Outline of an Encina Transactional Application

Although different transactional applications can provide greatly varying functionality, most have a common
structure. A typical transactional application consists of three basic stages:

1. Initialization: The application initializes the basic services used, such as system and network
interfaces, and initializes any local data it uses. In applications using the client-server model, server
applications register with a directory service during this stage; client applications query such services
to determine the location of an appropriate server. During this stage, the application also initializes
any administrative services it requires, such as logging and problem recovery services, before
accepting or initiating any transactions.

2. Transactions: The application performs atomic operations on local and remote data in the form of
transactions. Any changes made to recoverable data modified by transactions are logged so that
these changes are permanent. This means that, once made, these changes survive across
transactions, separate runs of the application, and system failures or other restarts.

3. Cleanup and Exit: The application gracefully terminates administrative modules such as logging and
problem recovery services, completing all pending interaction with the files those services maintain.
The application surrenders its network identifier, and, if the application is a server, unregisters from the
network's directory service.

For the transactions stage of an Encina application, the higher-level interfaces, such as Transactional-C,
provide common functionality that simplifies transactional programming. Low-level interfaces like TRAN
are more complex but enable flexibility and greater control over transactions. The requirements of an
application determine which interfaces are appropriate for the application.

14 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 2. Configuration and Administration

The z/OS Encina Toolkit Executive assumes that a DCE cell is installed and configured. It also assumes
that the DCE Directory Service and Security Service are configured and that RPC is available.

Encina Toolkit configuration consists of creating CDS entries. Encina uses CDS to track its resources in a
cell. Encina components can register their names in CDS and use CDS to contact each other throughout
the cell. By default, Encina servers assume that the Encina root directory is /.:/encina. z/OS Encina
client support assumes that the subdirectory /.:/encina/trpc exists. Encina servers running on other
platforms may have their own subdirectories. If Encina is already configured in the cell, the required CDS
entries may already exist. Also, ensure that the ACL on the /.:/encina/trpc directory provides insert (i)
permission for all authenticated users.

The Encina root CDS directory can be changed from the default value through the ENCINA_CDS_ROOT
environment variable. The z/OS value for this variable must match the value on the other systems in the
cell.

Individual products or clients using the Toolkit may have some configuration information—see the
product-specific information. The writer of a client needs to know the following information about the
intended server:

� Whether authenticated RPCs are required

� The CDS name of the server

Administration of Encina can be done using a set of command line administrative tools.

Command Line Administrative Tools

The Encina Toolkit supports a command line interface, tkadmin, for administration. z/OS does not
support entering these commands, but it does support using tkadmin to administer z/OS Encina from
other platforms that do support entering the commands. From this other system you can use the tkadmin
commands against:

� a transactional z/OS AS IMS OTMA server
� an ephemeral client that is also set up as a nontransactional RPC server capable of supporting Encina

tracing commands.

For information about the Encina Toolkit administration command, see the Encina Toolkit administrator's
guide for your system.

In addition, the following utilities are provided for formatting trace output, interpreting Encina error
messages, and starting a Trace Listener server:

� indentTrace — indents nested functions in formatted trace output.

� interpretTrace — converts binary ring buffer files to human-readable format.

� traceListener — starts a Trace Listener server.

� translateError — translates status code from one form to another.

� translateTraceId — displays information associated with one or more trace identifiers.

(See the Toolkit administrator's guide for your system for a description of these utilities.)

 Copyright IBM Corp. 1989, 2001  15



  
 

16 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 3. Installation

The z/OS Encina Toolkit Executive is part of z/OS. If you choose to install the z/OS Release 1 Server
Pack, you will not need to install the Toolkit separately. If you choose the z/OS PDO, you can install the
Toolkit using SMP/E.

The Program Directory contains the directions for installing the Encina Toolkit using SMP/E. The following
information details where the installed files reside.

Encina Toolkit Parts Shipped in HFS
 � /usr/lpp/encina/bin

contains executable files, for example, the tidl compiler

 � /usr/lpp/encina/etc

contains executable files and scripts, for example, trace formatting routines

 � /usr/lpp/encina/include

contains header files

 � /usr/lpp/encina/lib

contains libEncina.x

 � /usr/lpp/encina/msg/C

contains posix format symbol and trace preprocessor files

 � /usr/lib/msg

contains the message catalogs

 � /usr/lpp/encina/example/telshop

contains the Telshop example program and the Telshop Installation Verification Procedure

Encina Toolkit Parts Shipped in PDS

The ECNDLL DLL provides the runtime callable functions that Encina applications use. ECNDLL is
installed in SYS1.LPALIB.

Encina Installation Verification Procedure (IVP)

The Encina IVP verifies that Encina is correctly installed. It is a prebuilt version of the Telshop example
program, consisting of a Telshop client and a base_merchandise server. It is found in the
/usr/lpp/encina/example/telshop directory, along with a README.IVP file that contains the information
found here. This section describes how to setup and run the Telshop IVP.

The Telshop program offers an example from the domain of telephone shopping. In this example,
customers use the telephone to place orders for merchandise. The program tracks inventory and allows
queries and sales. It does not support returns, restocking, or payment.

 Copyright IBM Corp. 1989, 2001  17



  
 

In client-server applications, a client program interfaces with the user, accepting requests and displaying
the results of those requests. The Telshop client does this. It accepts orders for merchandise from users,
and communicates those orders to the server.

The base_merchandise server contains program logic and manipulates an in-storage array for its data,
because z/OS Encina does not support recoverable data.

Setting Up the IVP

In addition to this chapter, see the README.IVP file in /usr/lpp/encina/example/telshop.

You need to do the following steps before running the Telshop IVP.

Note:  You must have the proper DCE administration authority to perform these commands. You may
also change values such as principal or group names, directory names, and keytab file names as
long as you do so consistently.

The quickest way to do the IVP setup is to run the dcesetup.dcecp script supplied in the
/usr/lpp/encina/example/telshop directory. The script consists of dcecp commands. To run this script
do the following steps:

1. dce_login as cell_admin:

dce_login cell_admin <cell_admin_password>

2. Run the script:

dcecp dcesetup.dcecp /.:/encina/examples <cell_admin_password>

3. Check that the ownership of the keytab file is correct. See the note in Step 6 on page 19.

To do the setup manually, perform the following steps:

1. Create the following CDS directories if they do not already exist:

dcecp -c directory create /.:/encina
dcecp -c directory create /.:/encina/trpc

2. Create the encina_examples group and give it authority to the /.:/encina/trpc directory:

dcecp -c group create encina_examples
dcecp -c acl modify /.:/encina/trpc \
 -add {group encina_examples rwti}

3. Create accounts for telshop-prin and merch-prin:

18 Encina Toolkit Executive Guide and Reference  



  
 

dcecp
> principal create telshop-prin
> principal create merch-prin

> group add encina_examples -member telshop-prin
> group add encina_examples -member merch-prin

> organization add none -member telshop-prin
> organization add none -member merch-prin

> account create telshop-prin \
 -group encina_examples \
 -organization none \
 -password telshop-prin-pw \
 -mypwd <cell_admin_password>
> account create merch-prin \
 -group encina_examples \
 -organization none \
 -password merch-prin-pw \
 -mypwd <cell_admin_password>

> exit

4. Give the encina_examples group permission to allow the merch server to write to the DCE endpoint
map:

dcecp -c acl modify \
 /.:/hosts/<your_hostname>/config/epmap \

-add {group encina_examples s}

5. Create a CDS directory for the merch server entry and give the encina_examples group authority to
this directory:

dcecp
> directory create /.:/encina/examples
> acl modify /.:/encina/examples \

-add {group encina_examples rwi}
> exit

6. Store the merch principal's password in a keytab file:

dcecp -c keytab create \
 /.:/hosts/<your_hostname>/config/keytab/merch-prin \

-attr {{storage /tmp/merch-prin.ktf} \
{data {{merch-prin plain 1 merch-prin-pw}}}}

Note:  The file /tmp/merch-prin.ktf is created by dcecp with read/write access restricted to local host
super users. If you intend to start the server from a non-super user, you must change the
ownership for the file so that the user can read from and write to this file. To change the
permissions, su to an id with superuser privileges and enter:

chown <non-super_user_name> /tmp/merch-prin.ktf

  Chapter 3. Installation 19



  
 

Running the IVP
1. dce_login as merch-prin.

2. cd to the directory containing the telshop and base_merchandise executable programs.

3. Start the base_merchandise server in the background:

base_merchandise /.:/encina/examples/merch-entry merch-prin
/tmp/merch-prin.ktf null null &

The parameters are:

CDS entry name
  principal name

keytab file name
null and null for parameters not needed in z/OS

4. dce_login as telshop-prin.

5. Start the telshop client program:

telshop /.:/encina/examples/merch-entry

6. At this point, you can exercise any of the client's functions. At any point, you can type ? for a list of
all the legal commands that you can type at that point in the program. The following is a sample run:

20 Encina Toolkit Executive Guide and Reference  



  
 

Telshop: ?

Valid commands are:
 b: Begin an order
 e: Exit the program
 ?: Prints a help message.
Telshop: b

Command: ?

Valid commands are:
 q: Query an item's availability
 o: Order a quantity of some item
 s: Submit an order
 c: Cancel. End this order without submitting it
 ?: Prints a help message

Command: q

Check item: 12 (requesting an inventory check of item 12)
There are 17 of item 12

Command: o (request to place an order)

Order item: 12 (ordering item 12)
Quantity: 4

Command: q

Check item: 12
There are 13 of item 12

Command: s (submit the order of item 12)

Order processed.

Telshop: e (exit Telshop client program)

7. The base_merchandise server runs indefinitely in the background. You should stop it to free
resources and avoid problems. To stop the server:

a. Find out the pid:

ps -lf

 b. Enter:

kill -9 <pid>

  Chapter 3. Installation 21



  
 

22 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 4. TIDL

This chapter covers both the Transactional Interface Definition Language (TIDL) and the execution of the
TIDL compiler. TIDL is an extension to the Distributed Computing Environment (DCE) Interface Definition
Language (IDL) that adds transactional semantics to the operations defined for an interface. The
information presented in this chapter assumes that you are already familiar with DCE IDL and creating
interface definition files; see z/OS DCE Application Development Guide: Core Components for additional
background.

Introduction to TIDL

TIDL defines client-server interfaces for Encina transactional applications. Like IDL, TIDL interface
definition files contain descriptions of the operations to perform through remote procedure calls (RPCs).
TIDL, however, also lets you specify which operations are transactional and which are not. “Using TIDL”
provides an overview of using TIDL. See “TIDL File Format” on page 25 for details on how TIDL differs
from IDL and for information about the limitations of TIDL.

You must define the interfaces for a transactional application in a TIDL interface definition file before
writing the client and server application code. After you define the interfaces, you can compile the TIDL
interface definition file, using the TIDL compiler. The TIDL compiler is a preprocessor that generates files
containing stub code for the client and server applications. “Files TIDL Produces” on page  27 describes
the various files the TIDL compiler produces.

The TIDL compiler is run with the tidl command. The tidl command provides several options that you can
use to control the generation of stub files. For example, you can use options to specify include paths, the
names of output files, and so on. You can also use them to specify generating files for DCE clients rather
than Encina clients. See “tidl” on page 684 for more information.

 Using TIDL

This section provides a general overview of how to use TIDL to define interfaces for transactional
applications that use the TRPC mechanism Encina provides. An example TIDL file is used as an
illustration. (For a complete description of TRPC, see Chapter 23, “TRPC Overview” on page 165.)

A TIDL compiler (tidl) uses two files to generate the stub and header files for use with DCE RPC:

� A TIDL file containing the interface description for Encina's TIDL compiler to process. In addition to
stub and header files, the compiler generates an IDL file to use as input to the DCE IDL compiler.
“TIDL File Format” on page  25 provides details about the syntax of TIDL. “Files TIDL Produces” on
page  27 provides details about the files TIDL generates.

� A transactional attribute configuration file (TACF) that specifies which of the operations defined in the
associated TIDL file to export. Using an attribute configuration file lets the same TIDL file contain
multiple definitions for an operation. Operations can be exported selectively for different applications
by changing the TACF file.

Figure 3 on page 24 shows the interface description from the TIDL file for a sample interface named
merchandise. The first line contains a universal unique identifier (UUID) for this interface. You can
use the DCE RPC uuidgen utility to generate a UUID as well as an empty TIDL or IDL template file
that can serve as the basis for your specialized TIDL file.

 Copyright IBM Corp. 1989, 2001  23



  
 

[
uuid(BBB83d4c-e722-18fd-9ed2-cB37cf69BBBB),
version(1.B)
]

interface merchandise
{
[transactional] void merchandise_QueryItem([in] trpc_handle_t h,

[in] long stockNum,
[out] long GamountP);

[transactional] void merchandise_OrderItem([in] trpc_handle_t h,
[in] long stockNum,
[in] long amount);

}

Figure 3. merchandise.tidl

Following the UUID is the version number of the interface. The version number is used in some of the
internal data structure names TIDL and IDL produce, uniquely identifying the client and server stubs
produced from a certain version of the TIDL input file. The form of the version number is
major-version-number.minor-version-number. If the version number is a single integer, TIDL interprets this
as the major number and automatically supplies a minor number of 0.

Note:  TRPC does not support distinct, coexisting versions of the same interface.

The name of the interface (in this case merchandise) and the actual interface definition (that is, the
functions that actually make up the interface) follow the UUID and version number information. The TIDL
file must describe only functions requiring that information be exchanged using the RPC mechanism. Of
the functions described in the TIDL file, those that are run within the scope of a transaction are prefixed by
the transaction attribute.

In the sample merchandise interface, the first parameter for each of these functions is a TRPC handle.
Because this example uses explicit binding, the client must obtain a binding handle to the server and use
the handle when it calls these functions. Following the TRPC handle parameter are the parameters each
function in the interface requires.

A TACF file can control the way binding occurs and the way errors and exceptions are reported. TACF
files name the target interface and the operations in the interface that use modified binding and error
handling. Figure 4 shows the TACF file associated with the merchandise TIDL file. The merchandise
example uses explicit binding, so the TACF file need not specify the type of binding. The TACF file
specifies no operations, which means that neither binding nor error handling is changed for any of the
operations defined in the corresponding TIDL file.

interface merchandise
{
}

Figure 4. merchandise.tacf

The TACF files that tidl uses have the same syntax as attribute configuration files (ACF) used with IDL
files for DCE RPC. For more information about the syntax of ACF files, see z/OS DCE Application
Development Guide: Core Components and z/OS DCE Application Development Reference.

24 Encina Toolkit Executive Guide and Reference  



  
 

TIDL File Format

This section describes details of the format of TIDL interface definition files. TIDL uses the same interface
definition language as the DCE IDL, with some minor differences and restrictions. For a complete
description of DCE RPC and the syntax and format of IDL interface description files, see z/OS DCE
Application Development Guide: Core Components and z/OS DCE Application Development Reference.

Differences between TIDL and IDL

TIDL and IDL, although similar, are not exactly alike. There are several differences between them,
intended primarily to support Encina's transactional semantics.

RPC Handles: When using RPC handles, use transactional handles (type trpc_handle_t) in place of
DCE RPC handles (type handle_t) in the interface definition files.

Transactional Attributes: You can include an extra attribute in an operation attribute list to specify
whether the operation is transactional or nontransactional. To use nontransactional semantics, specify the
nontransactional attribute. To provide transactional semantics, specify the transactional attribute (as
shown in Figure 3 on page 24). By default, an operation is transactional if you specify neither attribute.

You can also use the transactional and nontransactional attributes in an interface attribute list. Unless
a different attribute is specified for an operation in an interface, the interface attribute is used for that
operation by default.

Error Status and DCE RPC Exceptions:  Operations in TIDL files can be defined to return an
error status rather than to use exception handling. If an operation defines an output parameter or return
value of the error_status_t type, the TIDL-generated stubs catch any exceptions that the DCE RPC
runtime raises and pass them to the application as status codes.

Note:  Using type trpc_status_t in TIDL files as the type for returning the status of errors is supported for
backwards compatibility only; use the error_status_t type instead.

For an exception that occurs during a nontransactional operation, TRPC checks whether any status
parameters have been defined for the operation before it raises the exception. If a nontransactional
operation does not return an error status and no fault_status or comm_status attribute is specified for it
in the TACF, then the exception is reraised in the client.

If an exception occurs during a transactional operation, TRPC aborts the transaction automatically. TRPC
always translates a transaction abort at the server into an exception. In applications using Tran-C,
exceptions are caught and control transfers to the abort clause. In applications using other transactional
interfaces (such as TX), exceptions are not caught automatically; the application must catch exceptions (or
check the error status) explicitly.

Named Exceptions: The TIDL compiler automatically adds a set of named exceptions that Encina
defines to the generated IDL and ACF files. If any user-defined, named exceptions are defined in the
TIDL files, they are appended to the Encina system exceptions.

This feature must be disabled if your IDL compiler does not support named exceptions; versions of the
compiler prior to DCE 1.0.3 do not provide this support. Include the -noExceptions option on the tidl
command line to prevent the inclusion of named exceptions.

  Chapter 4. TIDL 25



  
 

DCE-Only RPC Interfaces:  TIDL lets you define an interface attribute for a DCE-only RPC
interface UUID. You can specify the dceOnlyRpcUuid attribute in the interface attribute list of the TIDL
file to supply an interface UUID for a DCE-only RPC interface; the supplied UUID is used in the DCE-only
RPC IDL file that TIDL generates.

The following is an example interface attribute list that defines the dceOnlyRpcUuid attribute:

[uuid(BB3549eB-a1f5-1fla-ba3e-9e62B912aa77),
 dceOnlyRpcUuid(BB224cBa-a1f7-1fla-a4c1-9e62B912aa77),
 version (1)]

See “tidl” on page 684 for more information about supplying an interface UUID for a DCE-only RPC
interface.

Customized Handles: When using customized handles, binding routines that return transactional
handles (type trpc_handle_t) in place of regular RPC handles (type handle_t) must be provided. Such a
binding routine has the following signature:

trpc_handle_t <custom_type> _tranBind (
 <custom_type> custom_handle,
 trpc_tranInfo_t Ginfo,
 trpc_ifSpec_t Gspec)

Unbinding routines that take transactional handles (type trpc_handle_t) in place of the regular handles
(type handle_t) must also be provided. These unbinding routines have the following signature.

void <custom_type> _tranUnBind (
 <custom_type> custom_handle,
 trpc_handle_t handle,
 trpc_tranInfo_t Ginfo,
 trpc_ifSpec_t Gspec)

See the DCE IDL documentation for more information on using the binding and unbinding functions.

Limitations of TIDL

TIDL imposes some restrictions in the way IDL and DCE RPC can be used to build distributed
applications:

� The native manager functions must have the same name as the corresponding operations in the
interface definition file.

� The same interface cannot be multiply registered with different type UUIDs. TIDL allows the shadow
manager functions TIDL produces to call only one set of user-provided manager functions.

� You cannot use declarations of the following format for operation parameters and return values:

struct {
 int a;
 int b;

} G jill_read(
[in] trpc_handle_t handle,
[in] long int index

 );

Instead you must use suitable typedefs as shown in the following example:

26 Encina Toolkit Executive Guide and Reference  



  
 

typedef struct {
long int a;
long int b;

 } struct_a_b_t.
 struct_a_b_t Gjill_read(

[in] trpc_handle_t handle,
[in] long int index

 );

The typedef must be inside the brace following the interface keyword.

Files TIDL Produces

This section describes each of the output files the TIDL compiler produces. An example is used to
describe the output files.

Note:  The names given for each of the example output files reflect the default names TIDL generates on
UNIX-type file systems, such as HFS. If you are using a file system that restricts file names to a
particular format, the generated file names are different. See “TIDL Input and Output Files” on
page 34 for the exact form of file names generated on different file systems.

 Default Files

TIDL generates several files by default when it compiles a .tidl file. The default files TIDL produces
include an IDL file, a header file, and three stub files. You can control which of these default files are
produced by specifying the -stub argument on the tidl command line.

For example, suppose TIDL is presented an input file called jill.tidl that defines an interface called jill
and an operation called jill_read. TIDL produces the following output files:

jill_client.c 
This file contains the shadow client stubs that TIDL produces. It must be compiled and
linked with client programs. It contains code that calls the TRPC runtime and invokes the
modified operations.

jill_cswtch.c 
This file must normally be compiled and linked with the client programs. If an application that
uses TIDL wishes to be both a client and a server of an interface, it must not link with this
file. Such an application must invoke the RPC through the entry point vector initialized in
jill_client.c.

_jill.idl The name of the output interface definition file is _jill.idl. TIDL also prefixes an underscore
(_) to each operation name in the interface definition file. Each operation in this file also has
some additional parameters for transmitting and receiving transaction service data and
callback data.

jill.h This file is described in detail in “Details of TIDL Generated Header Files” on page 29. The
client and server programs must include this file instead of the header file IDL produces. It
includes the header file IDL produces (_jill.h in our example).

jill_manager.c 
This file contains the shadow manager stubs that TIDL produces. It must be compiled and
linked with the server. It contains code that calls TRAN, invokes the callbacks, and calls the
user-provided manager function.

If IDL is then presented the input file called _jill.idl (which the TIDL compiler generated), IDL produces the
following three output files by default:

  Chapter 4. TIDL 27



  
 

_jill_cstub.c  – This file contains the client stubs that marshall the input parameters and unmarshall
the output parameters. It is compiled and linked with the client programs.

_jill.h  – This file is expected to be included in the client and the server programs when using raw
DCE RPC. The header file TIDL produces, jill.h (in one example), automatically includes this file.

_jill_sstub.c  – This file contains the server side stubs that unmarshall the in parameters and
marshall the out parameters. It is compiled and linked with the server programs.

Additional Files for DCE Clients

TIDL can generate several optional files that are used in creating DCE client programs that can issue
RPCs to Encina interfaces exported by Encina Toolkit application servers. These files are generated
automatically when the -dceOnlyRpc option is specified on the tidl command line. The DCE-only RPC
files TIDL produces include an IDL file, a stub file, a manager entry point vector (EPV) file, and an
attribute configuration file (ACF). (A manager entry point vector  is the vector of manager functions. The
server application provides it. The runtime uses it to call the appropriate manager function from within the
server stub.)

For example, if TIDL is being used to create a DCE-only RPC interface, given the input file called jill.tidl,
the -dceOnlyRpc option is used to produce the following output files in addition to the default files
described in “Default Files” on page 27.

jill_dceOnlyRpc.idl
This file contains only the nontransactional operations defined in the TIDL file. The .idl file
must be run through the IDL compiler on the server to generate the DCE RPC server stubs.
The -no_mepv option must be specified on the idl command line (for both
jill_dceOnlyRpc.idl and _jill.idl) to ensure that the IDL compiler does not generate the
manager EPV for this interface automatically; the manager EPV is contained in the
jill_dceOnlyRpc_mepv.c file TIDL produces. To create a DCE-only RPC client, the .idl file
must be run through the IDL compiler on the client machine, and the stub files generated
must be linked with the client application code.

IDL accepts jill_dceOnlyRpc.idl as input and produces the following set of files:

jill_dceOnlyRpc.h – This file contains declarations for the DCE-only RPC interface and
the manager EPV, as well as declarations for routines that return the DCE-only RPC
interface handle and the manager EPV. These routines allow the application writer to
obtain the interface handle and manager EPV required for interface registration at
application server startup; neither the jill.h or jill_dceOnlyRpc.h header files can be
included in the application source file due to declaration conflicts.

jill_dceOnlyRpc_cstub.c – This file contains the client stubs that marshall the input
parameters and unmarshall the output parameters. It is compiled and linked with the
client programs.

jill_dceOnlyRpc_sstub.c  – This file contains the server side stubs that unmarshall the
input parameters and marshall the output parameters. It is compiled and linked with the
server programs.

jill_dceOnlyRpc_manager.c
This file contains all the DCE-only RPC shadow manager routines that correspond to the
operations in the IDL file, jill_dceOnlyRpc.idl. These shadow manager routines are
implemented as calls to the corresponding shadow manager routines TIDL produces (for
example, in jill_manager.c).

28 Encina Toolkit Executive Guide and Reference  



  
 

jill_dceOnlyRpc_mepv.c
This file contains the manager EPV for the DCE-only RPC interface. The EPV is stored in a
separate file to avoid conflicts between the DCE-only RPC interface and the TRPC interface
definitions. The file can be compiled and linked with server programs.

jill_dceOnlyRpc.acf
This file is a placeholder that can be used for specifying operation attributes for the DCE-only
RPC interface. By default, the explicit_handle attribute is set. This attribute can be changed
to match the application's mechanism for obtaining a binding handle to the server. See the
z/OS DCE Application Development Guide: Core Components for more information on
specifying operation attributes in the ACF.

Details of TIDL Generated Header Files

This section uses the example of the jill.tidl file containing the jill_read operation to describe the
contents of the header file TIDL produces. (The example file names referenced throughout this section
reflect the default names on UNIX-type file systems. See “TIDL Input and Output Files” on page 34 for
information on the file names TIDL uses on various file systems.) The header file jill.h contains the
following:

� The _jill.h header file that IDL produces. Application programs need this file to get the type
definitions of the operation parameters and to return values.

� The data type jill_v0_0_epv_t. This type is used to declare the client stub entry point vector initialized
by the shadow client stub file. The name of this data type is consistent with the names of the
corresponding data types IDL produces. Note that the name contains the major and minor numbers of
the interface version. Using these numbers helps to ensure that the client and server stubs were
produced at the same time, from the same TIDL file, and therefore have consistent call and return
syntax. When the interface is changed, the version numbers should also be changed. Changing the
version numbers helps to ensure that the stubs produced from the new interface description file do not
attempt to use the entry point vectors associated with the old stubs. The old stubs continue to support
the interface as it was defined when the stubs were generated, through the old entry point vector.

If the interface uses explicit RPC handles, the client stub entry point vector is defined as follows:

typedef struct jill_vB_B_epv_t {
 void (Gjill_read)(
 #ifdef __STDC_

/G IN G/ trpc_handle_t handle,
/G IN G/ unsigned long int index,
/G OUT G/ unsigned long int Gvalue

 #endif
 );
 } jill_vB_B_epv_t.

� The extern declaration of the shadow client stub entry point vector. This vector is initialized in the
shadow client stub file (in this case jill_client.c). The file jill_cswtch.c includes jill.h and
uses this entry point vector to invoke the shadow client stubs in jill_client.c. If certain applications
need to be both clients and servers of the same interface, they need to invoke the remote procedure
through the shadow client entry point vector and therefore also need this declaration.

extern jill_vB_B_epv_t jill_vB_B_client_epv;

The naming strategy used to name the client stub entry point vector is consistent with the one that IDL
uses.

  Chapter 4. TIDL 29



  
 

� The extern declaration of the manager entry point vector. This vector is initialized in the shadow
manager stub file (in this case, jill_manager.c). This declaration is needed to register the manager
entry point vector with the DCE RPC run-time library function rpc_register_if. For more information,
see the z/OS DCE Application Development Guide: Core Components.

extern _jill_vB_B_epv_t jill_vB_B_manager_epv;

� The extern declaration of a surrogate manager entry point vector. This vector is also initialized in the
shadow manager stub file (in this case, jill_manager.c). This declaration can be used for the same
reasons as the previous declaration. The difference between the two is that this declaration is
compatible with the type expected by the run-time register function rpc_register_if and therefore does
not need to be cast. The value of jill_vB_B_mgr_epv is initialized to be the address of
jill_vB_B_manager_epv in jill_manager.c.

extern rpc_mgr_proc_t Gjill_vB_B_mgr_epv;

� The extern declaration of the relevant implicit handle variables if the interface uses implicit handles.

 � Preprocessor definitions:

#define jill_vB_B_c_if_spec _jill_vB_B_c_ifspec
#define jill_vB_B_s_if_spec _jill_vB_B_s_ifspec

This allows the application developer to use the interface specification variables whose names are
compliant with the naming rules IDL uses.

� The extern declarations of the DCE-only RPC interface and manager entry point vector if
nontransactional DCE clients are used. The application server must register the DCE-only RPC
interface along with the TRPC interface when the server is started. The EPV is initialized in the
manager EPV file (in this case, jill_dceOnlyRpc_mepv.c). See “Additional Files for DCE Clients” on
page 28 for more information.

extern rpc_if_handle_t jill__d_vB_B_s_ifspecepv;
extern rpc_mgr_epv_t jill__d_vB_B_mgr_epv;

The header file must be included in both the client and server programs.

Building Clients and Servers

This section illustrates the process of building client and server applications using the output files TIDL
produces. These files let you build Encina clients and servers or DCE clients and Encina servers.

For these examples, the name of the TIDL interface definition file is jill.tidl, the client program that
initiates the RPC is called client.c, the server program is called server.c, and the file that contains the
sources implementing the manager functions is called manager.c. The TRPC functions are contained in
the library called ECNDLL.

Note:  The example file names referred to throughout this section reflect the default names used on
UNIX-type file systems. Substitute the actual names of your files for the example names when
running the tidl command. See “TIDL Input and Output Files” on page 34 for information on the
file names TIDL uses on various file systems.

30 Encina Toolkit Executive Guide and Reference  



  
 

Encina Clients and Servers

This section illustrates the process of building client and server applications using the default output files
TIDL produces.

1. The application developer runs tidl and passes the jill.tidl file as a command-line argument. This
process produces the following files (see Step 1 in Figure 5 on page 32):

  jill_client.c

  jill_manager.c

  jill_cswtch.c

  jill.h

  _jill.idl

2. The developer runs IDL and passes it the IDL interface definition file _jill.idl. This produces the
following files (see Step 2 in Figure 5 on page 32):

  _jill_cstub.c

  _jill_sstub.c

  _jill.h

3. The developer builds the client by compiling and linking the following files (see Step 3 in Figure 5 on
page 32):

  client.c

  jill_client.c

  jill_cswtch.c

  _jill_cstub.c

  libEncina.x

4. The developer builds the server by compiling and linking the following files (see Step 4 in Figure 5 on
page 32):

  server.c

  manager.c

  jill_manager.c

  _jill_sstub.c

  libEncina.x

Figure 5 on page 32 illustrates the process of building the client and the server.

When the client initiates the jill_read RPC, control is transferred to the jill_read function in the file
jill_cswtch.c. This function calls the appropriate shadow client stub in jill_client.c through the
shadow client stub entry point vector initialized in jill_client.c. The shadow client stub for jill_read
then invokes the actual RPC by calling the client stub that IDL produces through the client stub entry point
vector initialized in the _jill_cstub.c file.

On the server side, the RPC runtime calls the native server stub IDL produces. This server stub calls the
shadow manager stub through the manager entry point vector registered with the RPC runtime. The
shadow manager stub in jill_manager.c then calls the user-provided manager function. TIDL includes
the declaration of the operations described in the interface definition file in the shadow manager file it
produces.

  Chapter 4. TIDL 31



  
 

When writing a server, you must not create a new manager entry point vector. Instead, you must use the
manager entry point vector initialized by the shadow manager stub to register RPC interfaces. A
declaration of the manager entry point vector is available in the header file that TIDL produces, as
described earlier. See the z/OS DCE Application Development Guide: Core Components for more
information on registering interfaces.

step 1

step 2step 3 step 4IDLCC CC

TIDL

jill.tidl

client.c jill_client.c jill_cswtch.c _jill.idl jill.h jill_manager.c server.c

manager.clibEncina.a

SERVER

_jill.h _jill_sstub.c_jill_cstub.clibEncina.a

CLIENT

Figure 5. Building Encina Clients and Servers

Note that TIDL produces two source code files for the client program (jill_client.c and jill_cswtch.c), but
only one is produced for the server program (jill_manager.c). This is because some programs must act
as both clients and servers, and interface calls for each of these instances must be isolated. One reason
that a server would use its own interface is to allow it to be easily replicated.

To act as both a client and server of an interface, a server calls the client stub code to request operations,
and it also calls the manager stub code to perform those operations. However, the manager and client
stub code contain routines with the same names (to allow the easy flow of information between them). To
avoid problems with multiply defined names when trying to link these modules together, the client switch
source code file (jill_cswtch.c) contains public routines that the client program can call directly. The client
stub source code file (_jill_cstub.c) contains private routines that only the routines in the client switch
code can call. Therefore, the server is compiled with the server stub and client stub routines but not with
the client switch routines.

If the application is both the client and server of the interface jill, then it is built by compiling and linking
the following files:

 server.c

 client.c

 jill_client.c

 jill_client.c

 _jill_cstub.c

 jill_manager.c

 _jill_sstub.c

32 Encina Toolkit Executive Guide and Reference  



  
 

 manager.c

 libEncina.x

DCE Clients and Encina Servers

The following example illustrates the process of building a DCE client and Encina server using the
additional output files TIDL produces when the -dceOnlyRpc option is specified on the command line. In
this case, jill.tidl defines nontransactional interfaces that the DCE client can use to issue RPCs to the
Encina server.

1. The developer runs tidl and passes the jill.tidl file as a command-line argument. In addition to
the default files produced (see Step 1 in Figure 5 on page 32), this process produces the following
files:

  jill_dceOnlyRpc_manager.c

  jill_dceOnlyRpc_mepv.c

  jill_dceOnlyRpc.idl

  jill_dceOnlyRpc.acf

2. The developer runs idl on the IDL files TIDL generated: _jill.idl and jill_dceOnlyRpc.idl. The
-no_mepv option must be specified on the idl command line for both files; this prevents IDL from
generating manager EPVs (already generated by TIDL in the file jill_dceOnlyRpc_mepv.c) for the jill
interface. In addition to the default files produced (see Step 2 in Figure 5 on page 32), IDL produces
the following files:

  jill_dceOnlyRpc_cstub.c

  jill_dceOnlyRpc_sstub.c

  jill_dceOnlyRpc.h

3. The developer builds the server by compiling and linking the following files:

  server.c

  manager.c

  jill_manager.c

  _jill_sstub.c

  jill_dceOnlyRpc_manager.c

  jill_dceOnlyRpc_mepv.c

  jill_dceOnlyRpc_sstub.c

  libEncina.x

4. The developer copies jill_dceOnlyRpc.idl and jill_dceOnlyRpc.acf to the client machine and
executes idl, using the -server none option, passing IDL the IDL file jill_dceOnlyRpc.idl as an
argument. This produces the following files:

  jill_dceOnlyRpc_cstub.c

  jill_dceOnlyRpc.h

5. The developer builds the client by compiling and linking the following files:

  jill_dceOnlyRpc_cstub.c

  client.c

  Chapter 4. TIDL 33



  
 

When it is started, the application server must register the DCE-only RPC interface along with the TRPC
interface. Declarations for the DCE-only RPC interface specification and manager EPV are contained in
the header file that TIDL generated. The interface name has the format
interface_name_d_v1_B_s_ifspec, and the manager EPV has the format interface_name_d_v1_B_mgr_epv.

An Encina Toolkit server can use the rpc_server_register_if DCE function to register the interface. The
following is an example of registering the jill interface:

 rpc_server_register_if(jill_d_v1_�_s_ifspec,
 (uuid_t G)NULL,
 jill_d_v1_�_mgr_epv,
 &status);

TIDL Input and Output Files

The names of the input and output files TIDL uses depend on the file system. Some file systems restrict
the length and format of file names.

The tables in this section use an example TIDL file called interface to illustrate how the same files are
represented on different file systems. Note that the base file name interface is truncated on FAT or DOS
file systems due to the length restriction on file names. In addition, extensions are truncated to three
characters where necessary.

Input files (Table 1) are passed as arguments to the tidl command. The TIDL interface definition file is
required. The transactional attribute configuration file (TACF) is optional.

Table 1. Input File Names for TIDL on Different File Systems

MVS HFS (UNIX default) FAT Description

interface.tidl interf.tid Transactional Interface Definition File

interface.tacf interf.tac Transactional Attribute Configuration File

Output files (Table 2) are generated by TIDL. The switches used with the tidl command determine the
files that are generated.

Table 2 (Page 1 of 2). Output File Names TIDL Generates on Different File Systems

MVS HFS (UNIX default) FAT Description 

interface_manager.c interf_m.c Shadow Manager Stubs

interface_client.c interf_c.c Shadow Client Stubs

interface_cswtch.c interf_w.c Client Switch File

interface.h interf.h Interface Header File

_interface.idl _interf.idl Interface Definition File

_interface.acf _interf.acf Attribute Configuration File

interface_dceOnlyRpc.idl inter_d.idl DCE-only RPC Interface Definition File

interface_dceOnlyRpc_manager.c inter_dm.c DCE-only RPC Shadow Manager Stubs

interface_dceOnlyRpc_mepv.c inter_dv.c DCE-only RPC Manager EPV File

34 Encina Toolkit Executive Guide and Reference  



  
 

Table 2 (Page 2 of 2). Output File Names TIDL Generates on Different File Systems

MVS HFS (UNIX default) FAT Description 

interface_dceOnlyRpc.acf inter_d.acf DCE-only RPC Attribute Configuration File

IDL generates output files from the Interface Definition File TIDL produces. The files that are generated
are determined by the IDL compiler, the platform, and the switches used with the idl command. See the
documentation for your IDL compiler for more information. See “tidl” on page 684 for information about
the tidl command and its options.

  Chapter 4. TIDL 35



  
 

36 Encina Toolkit Executive Guide and Reference  



  
 

Part 2. User's Guide Information

 Copyright IBM Corp. 1989, 2001  37



  
 

38 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 5. Transactional-C Concepts

Transactional-C has extensions to the C programming language that provide mechanisms for easily
invoking and using the functionality the Encina Toolkit provides. The Tran-C runtime system invokes the
necessary Toolkit functions to support the Tran-C functions used in a program and automatically monitors
the scope and state of transactions and their associated low-level data structures and constructs.

This chapter compares developing transactional applications using Tran-C with developing those same
applications using lower-level functions such as those provided in the Encina Toolkit interfaces. It also
explains the model of computation and program development used in Tran-C and discusses aspects of
program development that are unique to Tran-C.

Introduction to Transactional-C

Encina's Transactional-C (Tran-C) programming language is a C interface to the Encina Toolkit that
simplifies the development of transactional applications by greatly reducing the number of necessary calls
to the underlying Encina Toolkit. Tran-C consists of macros and library functions that embrace the
commonly-used functionality of the Encina Toolkit, eliminating the need for direct access to the Toolkit
module interfaces in most cases. Tran-C does not incorporate seldom-used routines from other Toolkit
modules (for example, Transaction Service routines that return information about the various relationships
of transactions).

Transactional applications are programs that can create, commit, and abort transactions. They can also
issue transactional remote procedure calls (transactional RPCs) to other applications. The basic
properties of transactional applications were discussed previously. In terms of RPCs, transactional
applications generally belong to one of three categories: servers, clients of servers, or stand-alone
applications. When a server application receives a request from a client, the server inherits the
transaction attribute from the calling thread in the client program.

Tran-C users belong to two categories based on the division of the Tran-C services and support (see “The
Tran-C Model of Computation” on page 41). Developers typically either write comprehensive applications
including servers and clients, or they implement only client applications that use server applications written
by others.

Transaction client-server applications use transactional RPCs to communicate and exchange data. A
transactional RPC is a remote procedure call with exactly-once semantics, which means that if the call
completes successfully, it was executed exactly once at the server. An RPC failure results in the abort of
the transaction within whose scope the call was made. Transactional RPCs were introduced previously.

To maximize throughput in transactional applications that typically handle large volumes of client-server
communication, Tran-C provides threads, which are multiple, simultaneous lightweight processes running
within a single C application. Threads enable separate procedures and functions within an application to
execute concurrently, sharing access to the same data. For example, threaded server applications
typically have multiple threads so that multiple incoming RPCs can be processed concurrently. Similarly,
threaded client applications can simultaneously query or update multiple resource servers. Tran-C also
provides constructs which enable programmers to easily create multiple synchronous or concurrent
threads.

To integrate threads into the transactional model of application development, threads carry the identifier of
the transaction (transaction ID) under which they are running as a runtime attribute. If a thread is not
currently running under a transaction, it is referred to as being outside the scope of a transaction. The
scope of the transaction ID attribute is dynamic, meaning that it persists across function calls. Control flow

 Copyright IBM Corp. 1989, 2001  39



  
 

follows the status of the transaction attribute, meaning that if a transaction aborts, program execution
resumes after the scope defined by the transaction.

Using the transaction ID of a thread's parent transaction as a runtime attribute simplifies identifying all of
the threads running on behalf of a single transaction. This simplifies RPC communication between
different systems, as this simplifies supporting the principle of atomicity in transactional applications,
because the transaction ID can be used across machines to identify threads and actions executed by
those threads on behalf of specific transactions.

Note:  The z/OS Encina Toolkit Executive supports all the Tran-C high level APIs except server extension
APIs:

� Lock modes (read, write, intention read, intention write, and upgrade)

� Lock data types (lock_mode_t and lock_space_t)

� Lock functions (lock, tryLock, instantLock, unlock, and deadlockDetect)

� The lazyTran construct and the markTranLazy function.

 Transactional-C Terminology

Throughout this part, specific terms are used to refer to the different types of expressions provided by
Tran-C. Constructs are groups of associated phrases that together make up an entity which affects the
flow of control in a program. Examples of constructs are the Tran-C transaction and cofor constructs.
Constructs consist of multiple, alternate sections to which control can pass—these sections of a construct
are referred to as clauses. Single expressions, functions, or expressions executed inline with program
code, are referred to as statements.

Advantages of Using Tran-C

Tran-C provides a simpler application development environment than that provided by the Toolkit modules
themselves. When directly using the interfaces provided by the Toolkit modules, the programmer must
make all of the necessary calls to each module, and execute those calls in the correct sequence. For
example, most Toolkit modules have their own initialization calls. These must be executed in the correct
sequence, because some modules depend on services provided by others, and must therefore be
initialized after those other services. The Tran-C development environment is slightly more restrictive than
that provided by the Toolkit interfaces, but is much easier to use. It provides transactional extensions at
the level of added language constructs, rather than by adding function libraries. The difference between
writing applications using the Toolkit and Tran-C is analogous to the difference between writing
applications in assembler and a high-level language such as C. C is certainly more restrictive than
assembler, but it is also much easier to work with.

This comparison highlights one of the primary advantages of developing applications in Tran-C, which is
its flexibility. As a consistent set of extensions to a programming language, Tran-C enables you to use its
high-level constructs whenever possible, while still maintaining the ability to directly call lower-level Toolkit
interface functions when necessary.

As mentioned in “Introduction to Transactional-C” on page 39, Transactional-C adds a number of
important constructs to the C programming language. The most important of these is the transaction
construct. Another important advantage of using Tran-C for transactional application development is that it
provides a runtime system that automatically manages and monitors the transaction attributes associated
with any part of that application. This eliminates the need to manually manage and verify transactional
metadata associated with the current thread or execution path (such as the Toolkit internal transaction ID
and application ID identifiers).

40 Encina Toolkit Executive Guide and Reference  



  
 

The Tran-C use of transactional RPCs provides a mechanism for interacting with remote programs that
implicitly supports the stronger guarantees about the atomic execution of remote functions required in a
transaction processing environment. The Tran-C support for transactional RPCs relies on the features
provided by the Encina Transactional Remote Procedure Call (TRPC) component.

Another significant advantage of developing applications using Tran-C is that its integral, high-level support
for constructs such as threading simplifies the development of complex applications, such as servers.
Applications such as servers frequently require multiple, concurrent activities in order to function
effectively. The Tran-C high-level support for traditionally low-level system functions such as threads
simplifies the efficient development and debugging of these types of applications.

The Tran-C Model of Computation

The z/OS Tran-C Executive provides Tran-C support for all of the Encina Toolkit services used when
writing client applications.

The Tran-C Executive supports ephemeral applications, which are applications that do not directly support
recoverable data. Recoverable applications are applications that use logging and recovery services to
directly support recoverable data, which is persistent information that survives across system problems or
failures. Support for some services of these types is required to guarantee the permanence of a
transaction. Applications written using only the Executive can achieve permanence by communicating with
other applications which are themselves recoverable (for example, by contacting a recoverable server), or
by integrating external (non-Encina) logging and recovery services into the Tran-C application
development environment.

As explained in “Introduction to Transactional-C” on page 39, Tran-C supports transactions by adding a
number of extended C language constructs that integrate the low-level services provided by the Encina
Toolkit into standard, scoped language syntax. Tran-C maintains the low-level information required by the
Encina Toolkit, freeing Tran-C developers from the need to manage this low-level information. This
enables developers working in Tran-C to develop applications at a higher, more conceptual, level.

The most important of the constructs provided by Tran-C is the transaction construct. This construct
defines a scope within a program, bounding the normal execution of any number of computations. This
scoping is dynamic, which means the construct affects all computation from the time execution enters the
construct until execution exits the construct. These constructs obey a stack-like discipline following their
nested execution.

When the transaction construct is encountered, a transaction is created, uniquely identified by a
transaction ID. All functions called within the scope of a single transaction share the same transaction
attribute. When the end of the scope bounded by the transaction construct is reached, Transactional-C
automatically commits the transaction. If the transaction is aborted during the execution of the
computations bounded by the transaction construct, Tran-C automatically transfers control to the end of
that scope. Tran-C provides special onAbort and onCommit clauses that enable the developer to
associate program statements with the exit status of the transaction (in other words, whether it committed
or aborted). These clauses are associated with a specific transaction, and are executed when the relevant
event (commit or abort) occurs.

Tran-C also supports nested transactions, which are simply created by declaring a new transaction within
the scope of another transaction. Nested transactions provide successively smaller units of failure
atomicity, and can be used to bound computations that are considered likely to fail. An example is a
transaction that requires a remote resource but fails to access it. This failure destroys the entire
transaction and all computation carried out on its behalf. If the resource is replicated, then accessing it

  Chapter 5. Transactional-C Concepts 41



  
 

from within a nested transaction only causes the subtransaction to abort, protecting the parent transaction
from the failure and allowing it to try a replica in place of the original resource.

The Tran-C runtime system manages the information needed by the underlying transaction service to
begin, commit, or abort a transaction. This information is maintained on behalf of the thread executing
within an application, and follows the flow of control through the application as new functions are called.
Each thread in an application has the ID of the transaction under which it is running as an attribute. The
transaction ID assigned to threads executing outside the scope of a transaction is TRAN_TID_NULL.

In conventional C applications, a single path of execution (thread of control) runs through an application.
z/OS UNIX provides the fork call to enable developers to create new threads of control, but these
"threads" are actually separate processes. Creating a new thread in this manner is relatively expensive
due to system overhead, and does not provide any built-in mechanism for sharing data between
cooperating threads.

Rather than rely on such heavyweight z/OS UNIX processes, Tran-C provides C extensions that simplify
creating and managing lightweight threads of control. As mentioned before, using multiple lightweight
threads within a process is very different from using multiple z/OS UNIX processes within an application.
Multiple threads within a process share the address space of that process. Tran-C provides several ways
of creating lightweight threads. Threads can be created to execute in the following ways:

� Within the scope of the transaction that was current at the time that the thread was created.

� Within the scope of a newly-created nested transaction.

� Independently, outside the scope of the thread that created them.

The Tran-C constructs for supporting nested transactions and multiple threads of control are described in
detail in “Nested and Top-Level Transactions” on page 56 and “Creating Concurrent Transactions or
Synchronous Threads” on page 57.

Considerations for Developers

This section introduces some important considerations for C programmers who are new to developing
threaded, transactional applications. These topics are also discussed when explaining the appropriate
Tran-C constructs in Chapter 6, “Writing Client Applications in Tran-C” on page 47.

Dynamic Scoping of Transactions

As mentioned earlier, each time Tran-C encounters a Tran-C transaction construct, it creates a
transaction that executes the statements bounded by the transaction clause of that statement. Each
transaction is uniquely identified by a transaction ID, which is considered an attribute of that transaction.
The scope of this attribute is dynamic, meaning that it follows the flow of control within a program as
control is passed to other functions and procedures and then returned. It is important to remember that
this attribute persists across all functions and procedures called within the code delimited by the
transaction construct, rather than simply being defined by the inline statements between the beginning and
end of the current transaction construct in the program's source code.

42 Encina Toolkit Executive Guide and Reference  



  
 

Transfer of Control in Transactions

As mentioned earlier, the Tran-C transaction construct supports associated onCommit and onAbort
clauses for each instance of the transaction construct. When a transaction bounded by the transaction
construct aborts, control in the program automatically transfers to the associated onAbort clause. No
subsequent statements within the scope of the transaction construct are executed. Control immediately
passes to the beginning of the associated onAbort statement. This transfer of control has a number of
consequences. The following are some general rules which can help prevent problems related to aborted
transactions:

� Local variables that are used both within the transaction body and outside it (including within the
onAbort clause) should be tagged as volatile. This is an ANSI-C type specifier which guarantees the
consistency of automatic variables in the case of modifications not under control of the C compiler.
Figure 6 shows an example. Without the volatile qualification of the int type for the variable x, an
application in ANSI-C could not guarantee that the value of x would print as 42.

� Transfer of control may mean that cleanup routines occurring in the code bounded by the transaction
construct is not executed, which can result in the creeping consumption of system resources (such as
memory) by long-running applications. If you must allocate memory, use the transactional malloc
functions provided by Tran-C and explained in “Transactional Memory Allocation” on page 78. A way
to guarantee that other allocated resources are correctly returned to the system when a transaction
aborts is to keep a list of all of the system resources used within a transaction. If the transaction
aborts, the onAbort clause associated with that transaction can use that list to deallocate and return
those resources.

� Use Tran-C mutexes whenever possible, instead of mutexes supplied by the underlying thread
package. Mutexes allocated using the Tran-C mutex functions (explained in “Transactional Mutex” on
page 78) are dropped when a transaction commits or aborts.

� When dumping output to some device or interacting with a user and displaying information, do not
modify the data display until a transaction commits. Updates to displayed data can be placed inside
the onCommit clause associated with the transaction construct that is responsible for updating the
data.

volatile int x = B;
transaction {

x = 42;
 abort("Meaningless");
}
onAbort {
 printf("%d", x);
}

Figure 6. Qualifying Automatic Variable's Types as Volatile

 Resource Limitations

The following are some considerations related to resource limitations:

� The necessary overhead of maintaining nested transactions limits the number of nested transactions
that may exist within a transaction family, but the limit is several thousand. Programmers should
reconsider problem solution techniques in applications that require this many nested transactions.

� The Transactional Remote Procedure Call library imposes limitations on the amount of Transaction
Service state that can be transmitted along with client RPCs as out-of-band data. These limitations
exist to increase performance for normal uses of TRPC, but they affect the possible complexity of
transactions; factors contributing to the complexity of transactions include the number of participants in

  Chapter 5. Transactional-C Concepts 43



  
 

a transaction family, the nesting depth of subtransactions, the number of aborted transactions within a
family, and so on. When the amount of Transaction Service out-of-band data exceeds the TRPC limit,
a TRPC fails, and the transaction aborts. The Transactional-C abort reason in this case is “RPC
Failure: during mgrFunction: DCE-rpc-0125: fault invalid bound (dce / rpc)”. User errors also
produce this abort reason; for example, if an application's TRPC takes an array defined to be bounded
by another parameter, and the argument supplied as the size exceeds the array argument, the same
error occurs.

Thread-Safe Functions under UNIX

The biggest advantage in using threads in an application is the ability to share and exchange data
between cooperating threads representing separate paths of execution in the application. However,
sharing data between threads means that threaded applications must avoid using global or static variables
whenever possible. These must be avoided because the location of these variables is the same for all
threads sharing an address space, making it impossible to determine which thread last wrote the value.

Functions that can be safely used in a threaded, multiprocessing environment are known as thread-safe
functions. Before using functions that use static memory locations or affect process execution, determine
if thread-safe versions of these functions are provided. See the z/OS Language Environment
Programming Reference and z/OS Language Environment Concepts Guide. In addition, Encina uses DCE
threading. See the z/OS DCE Application Development Guide: Introduction and Style and z/OS DCE
Application Development Guide: Core Components for information about thread safety.

All UNIX functions that use static memory locations or structures can be used in the main part of a Tran-C
application, as long as they are only called by a single thread, which guarantees that multiple threads do
not overwrite the shared structure or data.

For more information about compatibility issues between Tran-C, ANSI-C and standard UNIX functions,
see Chapter 8, “Advanced Tran-C Programming” on page 89.

Introduction to the Sample Application

This book frequently refers to a sample application, known as Telshop, that demonstrates Tran-C and
various components of the Encina Toolkit. Telshop also uses some DCE components, such as the DCE
Directory Service. Chapter 6, “Writing Client Applications in Tran-C” on page 47, on the client side of
applications, uses the example heavily.

The Telshop application offers an example from the domain of telephone shopping. In this example,
customers use the telephone to place orders for merchandise. The application tracks inventory and allows
queries and sales, but it does not support returns, restocking, or payment. The Telshop client, also known
as telshop, interacts with the users, accepts requests, displays information, and accepts orders.

The Telshop server, also known as merchandise, is divided into two parts. The first part takes care of
communication, such as with the client and the Directory Service, and it implements the merchandise
aspects of the server (for example, what it means when a remote request arrives to buy three of item 17).
The second part manipulates an array that represents items for sale as indexes into the array and
represents the availability of an item as an integer stored in the appropriate array element. The advantage
of this division is that the array module can be compiled into any server needing this data structure, thus
reusing the software.

The Telshop application provides a typical example of an Encina client-server application. It depicts
effective, appropriate use of both the DCE Directory Service and the Encina components. Because

44 Encina Toolkit Executive Guide and Reference  



  
 

Telshop is modular, users can incorporate pieces of it into applications while learning Tran-C or use it as a
template for other client-server applications.

  Chapter 5. Transactional-C Concepts 45



  
 

46 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 6. Writing Client Applications in Tran-C

This chapter describes how to develop client applications in Tran-C, using two sample programs. The first
is a simple version of the standard C language "Hello, world" program; it provides an introduction to the
control flow and general structure of programs written in Tran-C. The second is the client side of the
Telshop example application described at a high level in “Introduction to the Sample Application” on
page 44. These programs help illustrate the necessary sequence of events in Tran-C applications, and
they demonstrate the Tran-C support for transactional programming.

Hello, World: An Introductory Stand-Alone Application

Figure 7 shows a Tran-C implementation of the familiar C language “Hello, World” program. This example
shows some of the fundamental constructs and declarations used in developing a Tran-C program. This
example is more complex than the standard “Hello, world" program only because it is intended to illustrate
fundamental concepts of Tran-C application structure, not because of any additional complexity imposed
by Tran-C. This program shows the minimum set of statements necessary to write a Tran-C program that
uses the transaction construct.

This sample program introduces the fundamental construct provided by Tran-C, the transaction construct.
The transaction construct is a complex C language statement that consists of three clauses—the primary
transaction clause, an optional onCommit clause, and a mandatory onAbort clause. The statements
inside the transaction clause are executed by a transaction created by Tran-C when this construct is
encountered. The onCommit clause enables developers to associate C statements with the successful
commit of the associated statements from a transaction clause. This clause is optional because it is
often unnecessary to take any special action in an application when a transaction completes successfully.
The onAbort clause enables developers to specify actions that are taken if the associated transaction
cannot be committed for some reason and therefore the transaction aborts. This clause is mandatory
because aborted transactions usually require that the user be notified or require that some alternate action
be taken. For more complete information about using the transaction construct, see “Beginning and
Ending Transactions” on page 54.

 #include <tc/tc.h>
 inModule("helloworld");
 void main()
 {
 int i;
 inFunction("main");
 initTC();
 for(i=B;i<1B;i++) {
 transaction {

printf("Hello World - transaction %d\n", getTid());
if (i % 2)

abort("Odd Numbered Transactions are aborted...");
 }
 onCommit
 printf("\t(Transaction committed)\n");
 onAbort

printf("Aborted in module : %s\n\t%s\n", abortModuleName(),
 abortReason());
 }
 }

Figure 7. The “Hello, World” Program in Tran-C

 Copyright IBM Corp. 1989, 2001  47



  
 

The sample program shown in Figure 7 creates ten transactions. When the loop control variable is even,
the program prints the phrase "Hello World," and then indicates whether or not the transaction was
successfully committed. When the loop control variable is odd, the program aborts the current transaction.
This causes the flow of control to immediately transfer to the transaction construct's onAbort clause,
demonstrating the transfer of control in a transaction construct when a transaction is aborted. The core
of this program is the printf statement, enclosed within the Tran-C transaction construct. Because the
transaction construct is executed ten times, each iteration of the printf statement is actually executed by a
different transaction. To illustrate this, the printf statement is written to display the transaction identifier
for the transaction that printed each iteration.

In a transaction processing environment each transaction has a unique name known as a transaction
identifier (TID). The Tran-C run-time system automatically manages passing, generating, and
manipulating the TIDs in Tran-C programs. Ordinarily, these identifiers are transparent to the programmer
because it is seldom necessary to know the identifier for any given transaction. However, in some
circumstances—such as this first introduction to Tran-C—it is useful to actually see the identifiers allocated
to different transactions to insure that they are indeed different. The Tran-C getTid function returns the
transaction identifier associated with the calling transaction (see “Getting Information About a Transaction”
on page 55 for details).

Hello World - transaction 65536
 (Transaction committed)

Hello World - transaction 1
Aborted in module : helloworld

Odd Numbered Transactions are aborted...
Hello World - transaction 2

 (Transaction committed)
Hello World - transaction 3
Aborted in module : helloworld

Odd Numbered Transactions are aborted...
Hello World - transaction 4

 (Transaction committed)
Hello World - transaction 5
Aborted in module : helloworld

Odd Numbered Transactions are aborted...
Hello World - transaction 6

 (Transaction committed)
Hello World - transaction 7
Aborted in module : helloworld

Odd Numbered Transactions are aborted...
Hello World - transaction 8

 (Transaction committed)
Hello World - transaction 9
Aborted in module : helloworld

Odd Numbered Transactions are aborted...

Figure 8. Output from Running the “Hello, World” Program Successfully

After compiling this program running the program produces the output shown in Figure 8.

This sample program illustrates the use of the Tran-C transaction construct in a very simple situation, and
also illustrates some of the transactional heuristics provided by the modules of the Encina Toolkit used by
Tran-C. The sample application did not register a recovery service, meaning that it does not use
recoverable storage, and also made no RPCs, which means that no external services are involved. In
general, before a transaction commits, all of the participants in the transaction must prepare, agreeing that
they are able to commit the transaction. A record of any changes to recoverable data made as a result of
the transaction must be generated by the recovery service and be logged by a log service before the

48 Encina Toolkit Executive Guide and Reference  



  
 

transaction actually commits. In the case of the example "Hello, World" program, since there are no other
participants (for example, no recovery service, and therefore no log service), the application commits all
transactions without waiting on any other participants.

Tran-C is a set of transactional extensions to the standard C language, and was designed to simplify the
development of recoverable, transactional applications. Recoverable applications written in Tran-C that
attempt to commit transactions must subscribe to a recovery service, or must be clients of an application
that subscribes to a recovery service.

Introduction to the Sample Client

This chapter uses many code excerpts from the sample Tran-C application, Telshop, which is discussed in
“Introduction to the Sample Application” on page 44. The client side of the Telshop application is called
the telshop client.

The Telshop application demonstrates transaction concepts with the following scenario: a phone operator
uses the telshop client to query a merchandise server about how many of a particular item remain and to
order some number of a particular item. The merchandise server receives TRPCs from telshop and uses
a non-recoverable array to maintain the availability of each item.

Registering Module and Function Names

The term module is a standard programming term for a collection of functions designed to perform a
specific service. Modules are generally produced by compiling and linking multiple source files, containing
the local functions and procedures used by that module.

Tran-C uses the notion of software modules, composed of functions, to provide specific information about
the source of a transaction abort. All Tran-C applications must use the Tran-C inModule macro to
register a module name in each source file that contains a transaction (or similar) statement, an onAbort
clause, or an abort statement. The inModule macro must be called at the start of each source file that
belongs to a module and outside the scope of any procedures or functions present in the source file.
Figure 7 on page 47 and Figure 75 on page 753 show the inModule declarations made in the sample
applications used in this chapter. When a transaction is aborted, the name of the module that instigated
the abort can be retrieved and displayed. This information can be very useful when debugging
transactional applications written using Tran-C.

To provide more detailed information about the source of an abort, Tran-C also provides the inFunction
function. If you use this routine, it must be called from a function or procedure in a Tran-C source file
before executing any other code in that procedure or function. Unlike the inModule macro, the
inFunction declaration is optional. If inFunction is not called, the function name defaults to the string
TC_UNKNOWN_FUNCTION. Figure 12 on page 55 shows the call in the telshop sample client.

The syntax of the inModule and inFunction calls are identical:

 inModule(char GmoduleName);
 inFunction(char GfunctionName);

The argument to these functions is a pointer to a null-terminated string of characters that uniquely
identifies the module or function in which the abort occurred.

The information registered using the inModule and inFunction declarations is retrieved using the
currentModuleName and currentFunctionName functions. Retrieving this information is discussed in
“Determining Where a Transaction Aborted” on page 72.

  Chapter 6. Writing Client Applications in Tran-C 49



  
 

The module and function names registered using the inModule macro and the inFunction function are
stored in the Tran-C run-time environment. These strings must not be deallocated.

Initializing a Tran-C Application

This section discusses the functions that initialize the Tran-C run-time system, and also discusses the
functions used to initialize specific Toolkit services that may be used in a Tran-C application.

Before any Tran-C statements can be executed, the Tran-C run-time system and the mechanism used to
communicate between Tran-C client and server applications must be initialized. To provide a flexible
initialization mechanism that makes it easy to integrate external modules with Tran-C applications, Tran-C
provides several different ways of initializing the modules and services required for Tran-C applications.
Using these initialization alternatives is discussed in the next few sections. The following is a quick
summary of these alternatives:

� If you are using no external services call the initTC function to initialize only Tran-C.

� If you require external services that must be initialized between the time when the Encina Transaction
Service is initialized (the tran_Init function) and the time when it is fully ready for use (the tran_Ready
function), you must initialize Tran-C in stages. You do not actually call these functions directly, but
instead you will use the preInitTC and postInitTC functions as explained later in this section. For
more information on initializing the Transaction Service, see “tran_Init” on page 424.

� If you are using remote servers and require an RPC mechanism, you must initialize the RPC
mechanism before the final stage of Tran-C initialization. This does not mean you must initialize
Tran-C in stages, as mentioned in the previous item, because you may not require any Encina
Transaction Service initialization to initialize the RPC mechanism. You can explicitly initialize only the
callbacks required by TRPC by calling the registerTRPCCallbacks function. You can also initialize
TRPC by calling the tc_InitTRPC function followed by the initTC function. Other RPC mechanisms
may require the flexibility of multiple stage Tran-C initialization. If you are using well-known endpoints,
you must call trpc_InitWithTrdce.

� If you are just using Tran-C and TRPC, you can initialize these with one call provided by
Transactional-C, initTCWithTRPC.

These alternative initialization paths simplify integrating other software and services that use callbacks with
Tran-C. Callbacks are executed in the sequence that is the reverse of the order in which they are
registered. Callbacks for specific applications must usually be registered in a specific order, to insure that
Tran-C and the application each receive the appropriate callbacks. Registering and using callbacks is
explained in “Registering and Using Callbacks” on page 75.

Initializing Tran-C Using initTC

The initTC function only initializes the Tran-C run-time system. Any initialization functions required by the
modules used to communicate between Tran-C client and server applications, such an RPC mechanism,
must be separately initialized. The use of initTC is shown in Figure 7 on page 47. It has the following
syntax:

 void initTC();

The initTC function requires no arguments and returns no value. This function initializes the other Toolkit
modules used by Tran-C and the Tran-C run-time system.

Initializing an RPC mechanism must occur before finalizing the initialization of Tran-C. Depending on the
RPC mechanism your application uses, you can either use the initTC function, or you will have to initialize
Tran-C in stages.

50 Encina Toolkit Executive Guide and Reference  



  
 

Two-Stage Initialization of Tran-C

Transactional-C provides application initialization and termination callbacks for initializing and terminating
any external components used by a Tran-C application. To provide a flexible initialization mechanism that
simplifies integrating these external components within a Tran-C application, Tran-C provides a two-stage
initialization mechanism. The first step is to call the preInitTC function to initialize the low-level services
used internally by Tran-C, and to initialize the Transaction Service. Once this function has been called,
the routines required to initialize external components, or register callbacks for them, can be called. For
example, you could call the Tran-C function tc_InitTRPC at this time to initialize TRPC, or directly call the
TRPC function trpc_Init. Once such external initialization is complete, your application then calls
postInitTC which executes any application callbacks that were registered and notifies the Transaction
Service that the application's initialization is complete.

The preInitTC and postInitTC functions have the following syntax:

 int preInitTC(void);
 void postInitTC(void);

The preInitTC function is essentially a Boolean function that returns TRUE (1) the first time it is called, and
FALSE (0) thereafter. Using this function enables you to isolate a block of code that you only want to be
performed when an application is first initialized, using something like the following:

if (preInitTC()) {
 statements
 }
 postInitTC();

If this initialization mechanism is used, the application must explicitly terminate these external services
before calling the Tran-C exitTC function. Since these services were manually initialized within the
application, they must be manually terminated before exiting Tran-C applications. Tran-C has no way of
telling what services were initialized or what the termination and cleanup requirements of these services
are.

Initializing an RPC Mechanism

If you are using an RPC mechanism—which is how clients and servers communicate—you must initialize
it before the final stage of initializing Transactional-C. Depending on the RPC mechanism's initialization
requirements, you may or may not need to initialize Tran-C in stages. If you do not need to initialize
Tran-C in stages, you can simply initialize Tran-C (using the initTC function) after initializing the RPC
mechanism. The tc_InitTRPC function can be used to initialize the Transactional Remote Procedure Call
(TRPC) service. No Tran-C initialization is required before calling this function. This function has the
following syntax:

 void tc_InitTRPC(void);

The sample Telshop application calls trpc_InitWithTrdce before calling tc_InitTRPC (see “Sample Client
Initialization” on page 52). The trpc_InitWithTrdce function informs TRPC that TRDCE functions have
been used for server registration and requests that TRPC use any protocol sequences and well-known
endpoints described by those TRDCE calls.

If you only use Tran-C and TRPC, and you do not use one of the Tran-C routines to initialize TRPC (that
is, tc_InitTRPC or initTCWithTRPC), you may want to initialize just the TRPC callbacks for your
application. You do this by calling the registerTRPCCallbacks function. This function has the following
syntax:

 void registerTRPCCallbacks(void)

  Chapter 6. Writing Client Applications in Tran-C 51



  
 

If you use this function to directly register the callbacks required by TRPC, you must explicitly terminate
TRPC by calling the TRPC trpc_Terminate function.

Single-Step Initialization of Tran-C and TRPC

If you are only using Tran-C and TRPC, you can use a single function which explicitly initializes both the
Tran-C run-time system and the TRPC communication mechanism. This is the initTCWithTRPC function.
This function has the following syntax:

 void initTCWithTRPC(void);

This function takes no arguments and returns no value. It is not necessary to separately call either initTC
or tc_InitTRPC after using this function.

Sample Client Initialization

The sample telshop client uses the two-stage method (see “Two-Stage Initialization of Tran-C” on
page 51). After calling preInitTC, the sample client sets the environment for TRPC, initializes TRPC, and
then calls postInitTC. It then registers a function to convert local abort codes to strings (see “Defining
Abort Reasons Using Abort Codes” on page 65). Figure 9 shows the Initialize function from the sample
client application.

/G Initialize -- prepare the telshop application for taking orders G/
static void Initialize(argc, argv)

 int argc;
 char Gargv[].
 {

unsigned long status;
 char GserverName;

/G Parse command line G/
if (argc != 2)

FATAL(("Usage: %s <serverName>\n", argv[B])).
 else

serverName = argv[1].
/G Begin Tran-C initialization G/

 preInitTC();
/G Initialize TRPC G/
status = trpc_InitWithTrdce();

 CHECK_STATUS(status);
 tc_InitTRPC();

/G Finish Tran-C initialization G/
 postInitTC();

/G Initialize merchandise module G/
 merchandise_Initialize();

/G register function to convert local abort codes to strings G/
 REGISTER_ABORT_FORMATTER(ABORT_FORMAT, AbortFormatter);

merchandiseHandle = LookupServer(serverName);
 }

Figure 9. Sample Client Initialization Routine

After the TRPC and Tran-C environments are initialized, the telshop client calls the LookupServer
function (see Figure 10 on page 53) to use the Directory Service to find the server and create a TRPC
handle for communicating with it.

52 Encina Toolkit Executive Guide and Reference  



  
 

Locating Server Programs

Client programs written in Tran-C that use TRPC as a communication mechanism locate and bind to
server applications using a TRPC binding handle. A client application must obtain a TRPC binding handle
for each server it calls.

Applications locate a server (via the DCE Directory Service or well-known endpoints) and obtain a DCE
binding handle with the trdce_BindingImport function using a name the server registers, which is either a
DCE Directory Service address or a DCE string binding. Then the application can call the
trpc_ConsBinding function to transform the DCE binding handle into a TRPC binding handle that can be
used to make transactional RPCs.

The handles used by TRPC differ from other handles, for example, those used by the DCE RPC
mechanism. A TRPC handle (type trpc_handle_t) contains a DCE RPC handle, as well as specific
transactional information (such as transaction identifiers) for the client and server applications.
Applications are not permitted to directly reference or modify the fields in a TRPC handle. The
relationship between a TRPC handle and the low-level routines that the run-time system uses to locate
and maintain connections to other applications is analogous to the relationship between C's FILE type
and C's standard I/O library.

Once an application creates a DCE RPC or TRPC handle, the application cannot modify it. If an RPC
fails due to losing contact with the server, the application can attempt to rebind its handle to the server. If
rebinding is unsuccessful, the application must destroy the handle and create a new one.

The sample Telshop application uses the Encina TRPC module for communication between the telshop
client and the merchandise server. Figure 10 shows the telshop client's LookupServer function which
returns a TRPC handle. “trdce_BindingImport” on page 546 and “trpc_ConsBinding” on page 616
describe the trdce_BindingImport and trpc_ConsBinding functions in detail.

/G LookupServer -- construct and return a transactional handle for a
G server with the given name. If a handle is found it is returned;
G if no handle is found, the program exits. G/
static trpc_handle_t LookupServer(serverName)
unsigned char GserverName;

 {
 rpc_binding_handle_t rpcHandle;
 trpc_handle_t trpcHandle;
 unsigned32 status;

/G Get an RPC handle from the directory service G/
trdce_BindingImport((unsigned_char_t G) serverName, &rpcHandle,

 &status);
 CHECK_STATUS(status);

/G Found a valid handle -- use it to construct a TRPC handle G/
status = trpc_ConsBinding(rpcHandle, TRAN_APPL_ID_NULL,

TRAN_ADDRESS_NULL, TRUE, &trpcHandle);
 CHECK_STATUS(status);
 return(trpcHandle);
 }

Figure 10. Sample Client LookupServer Routine

  Chapter 6. Writing Client Applications in Tran-C 53



  
 

Beginning and Ending Transactions

The most important C language extension provided by Tran-C is the transaction construct and its
associated onAbort and onCommit clauses. The syntax of the Tran-C transaction construct is shown in
Figure 11.

 transaction
 statement
 onCommit
 statement
 onAbort
 statement

Figure 11. Syntax of the transaction Construct

The transaction construct consists of a transaction clause, an onCommit clause, and an onAbort
clause. Each clause starts with the relevant keyword and is followed by a statement, which may be a
compound C statement. Multiple statements in the onAbort or onCommit clauses, or in the primary
transaction clause itself, must be enclosed within braces like those in any other complex C language
construct. Each transaction construct must contain an onAbort clause. The onCommit clause is optional
and if specified, must precede the onAbort clause. The transaction statement and its associated clauses
comprise a compound C statement, and must therefore be enclosed within brackets whenever it is used in
place of a simple C statement, such as when it makes up either clause of a C if statement.

When a transaction statement is executed, a transaction is created and all of the statements in the
transaction clause statement are executed within the scope of that transaction. This scoping is
dynamic—any functions called from within the transaction statement are executed within the scope of that
transaction. If the transaction is not aborted before the end of the transaction clause is reached, the
Transaction Service attempts to commit the transaction. Any statements specified in the onCommit
clause are only executed after the transaction is successfully committed, and these statement execute
outside the scope of any transaction.

Within the scope of a transaction construct, you must be careful if you use C language statements that
transfer control unconditionally. Examples of these statements are goto, return, break, and continue.
Because Tran-C creates a transaction scope in which code executes, transferring control out of this scope
(including any transaction constructs discussed in this document) prevents Tran-C from disestablishing the
scope of the transaction.

If a transaction is aborted before the end of the transaction clause, or the transaction cannot be
committed, the statements in the onAbort clause execute. These statements execute outside the scope
of any transaction. When a transaction is aborted, the flow of control in the thread controlling that
transaction automatically transfers to the abort clause. This transfer of control actually occurs when the
next Tran-C statement is executed, since the Tran-C run-time system verifies the status of all active
threads and transactions each time a Tran-C statement is executed.

To avoid potentially long delays in the transfer of control in applications which infrequently use Tran-C
constructs, Tran-C provides the abortCheck function. This function simply probes the status of the
current transaction, in order to force the transfer of control if the transaction has aborted. See “Aborting
Transactions” on page 64 and “Monitoring Transaction Status” on page 70 for more information about
monitoring abort status and detecting transaction aborts.

Statements in the onCommit and onAbort clauses are only executed after the outcome of the associated
transaction is known. For this reason, any statements in these clauses execute outside the scope of the
transaction created by the associated transaction clause. Furthermore, these statements execute outside

54 Encina Toolkit Executive Guide and Reference  



  
 

the scope of any transaction whatsoever. If the transaction aborted, the Tran-C functions
abortModuleName and abortReason can be used to retrieve information about the reason for an abort
from within an onAbort clause. Similarly, the getCompletedTid function can be used from within an
onCommit or onAbort clause to get the transaction identifier of the last completed transaction. These
functions are discussed in the next section.

Figure 12 shows the transaction construct used in the sample telshop client. The telshop client has a
first level command loop that calls the TakeOrder routine when a customer is ready to place an order.
Each call to TakeOrder generates a new transaction.

/G TakeOrder -- interactively construct and process an order
G (a transaction that uses the merchandise server). G/
static void TakeOrder()

 {
 char command;
 inFunction("TakeOrder");
 transaction {
 do {

command = GetCommand(" Command: ").
 switch(command) {

case 'Q': /G Ask about item availability G/
 QueryItem();
 break;

case 'O': /G Order some amt. of an item. G/
 OrderItem();
 break;

case 'S': /G Submit order G/
 break;

case 'C': /G Cancel this transaction G/
 abortWithCode(CANCELLED_BY_USER);

case '?': /G Print commands, etc. G/
 InnerLoopHelp();
 break;

default: /G Invalid command G/
 PrintCmdError(command);
 }

} while (command != 's' && command != 'S');
 }
 onCommit
 printf("Order processed.\n");
 onAbort

printf("Order aborted: %s (%s)\n", abortReason(),
 abortModuleName());
 }

Figure 12. Transaction Loop in the Sample Telshop Application

Getting Information About a Transaction

Tran-C provides several functions for obtaining information about current, committed, and aborted
transactions. As mentioned earlier, transactions are named using TIDs that are managed and maintained
internally by the Tran-C runtime system. Transaction identifiers are instances of the tran_tid_t type,
which is a type exported by the Encina Transaction Service (for more information on the tran_tid_t data
type, see “tran_tid_t” on page 544). The Tran-C getTid function returns the TID of the current
transaction. This function must be called from within a transaction to get the identifier of that transaction.

  Chapter 6. Writing Client Applications in Tran-C 55



  
 

The getTid function returns the value constant TRAN_TID_NULL when the thread that called getTid is not
executing within the scope of a transaction.

You can determine whether the calling thread is executing within the scope of a transaction by calling the
inTransaction function. This function returns a nonzero (TRUE) value if the calling thread has a valid
transaction identifier associated with it.

The Tran-C currentModuleName and currentFunctionName functions retrieve the names of the module
(as registered with the inModule macro) and function (as registered with inFunction) that are currently
executing. Tran-C provides two similar functions, abortModuleName and abortFunctionName to retrieve
information about the module and function in which a transaction aborted. These functions are described
in “Determining Where a Transaction Aborted” on page 72.

Tran-C also provides functions that retrieve information about a transaction that has just committed or
aborted. Because the expected outcome of most transactions is successful completion, it is not ordinarily
necessary to take any special action when this is the case. (This is a primary reason why the onCommit
clause of the Tran-C transaction construct is optional.) The getCompletedTid function determines the
identifier of the transaction that just completed. Tran-C provides the getContainingTid function to obtain
information about the parent of a nested transaction. While both of these can be called from within either
the onAbort or onCommit clauses of a transaction, they are most frequently used in the context of an
onAbort clause. For complete information about these functions, see “Determining Transaction
Identifiers” on page 72.

Nested and Top-Level Transactions

Subtransactions are transactions begun within the scope of another transaction, and are automatically
nested.

Note:  Nesting works only if the server and resource managers used support nesting.

Subtransactions can be nested to any depth. A series of nested transactions is viewed as a hierarchy of
transactions. A transaction which spawns another transaction using a nested transaction construct,
creating a nested subtransaction, is referred to as the parent of that subtransaction. When transactions
are nested to an arbitrary depth, the transaction that is the parent of the entire tree (family) of transactions
is referred to as the top-level transaction.

By default, subtransactions are executed sequentially within the scope of their parent transaction. The
Tran-C concurrent and cofor statements can be used to create new threads of control and
subtransactions that execute concurrently with each other on behalf of their parent transaction. For more
information about concurrent transactions, see “Creating Concurrent Transactions or Synchronous
Threads” on page 57.

Nested subtransactions commit with respect to their parent transaction. The statement enclosed in the
onCommit clause or the onAbort clause of a nested subtransaction executes when that subtransaction
completes. Even though statements in these clauses execute when the subtransaction completes, the
permanence of their effects depends on the parent transaction committing. For this reason, any statement
displayed by the onCommit clauses of nested subtransactions should be seen as a suggestion of the
eventual outcome of that transaction family, and not as proof that the family will commit.

Under some circumstances, a transaction may need to create another transaction, but have that
transaction execute independently, with no hierarchical relationship between the two. This is done using
the Tran-C topLevel construct. The syntax of this construct, shown in Figure 13 on page 57, is identical
to that of the transaction construct, except that the topLevel keyword is used instead of the transaction
construct's transaction keyword. Each clause's statement may be a compound C statement.

56 Encina Toolkit Executive Guide and Reference  



  
 

 topLevel
 statement
 onCommit
 statement
 onAbort
 statement

Figure 13. Syntax of the topLevel Construct

When a top-level transaction is created within the scope of another transaction, a new transaction is
created, referred to as a nested top-level transaction. This transaction is referred to as a nested top-level
transaction because the execution of the parent transaction is suspended until the newly-created top-level
transaction completes (either commits or aborts). The top-level transaction still executes outside the
scope of the transaction from which it was created.

A nested transaction created using the topLevel construct commits or aborts independently of the
transaction that created it. This enables a transaction created using the topLevel construct to do work
which is not undone if the transaction that created it aborts. This differs from nested transactions created
using the standard transaction construct, which only commit or abort with respect to their parent
transaction. Though the execution of the parent transaction waits for the new top-level transaction to
complete, the statements within the topLevel construct execute under the scope of the new transaction
and have no hierarchical relationship to the transaction that created the top-level transaction.

Using a topLevel construct outside the dynamic scope of a transaction construct is equivalent to using
the transaction construct.

Creating Concurrent Transactions or Synchronous Threads

There are basically two reasons to nest transactions: for failure containment and for concurrency. The
transaction and topLevel constructs only execute a single nested transaction at a time. To take
advantage of the multiprocessing capabilities provided by the use of threads, Tran-C provides two
constructs that enable applications to create multiple concurrent threads. These are the concurrent and
cofor constructs. Both of these constructs create multiple concurrent threads that can either run as
subtransactions or as concurrent threads within the scope of the current transaction. During the lifetime of
these concurrent threads the thread executing the concurrent or cofor construct waits for all threads
created by the construct to terminate.

The concurrent construct enables an application to concurrently execute a predetermined number of
threads, each performing an arbitrary function. The cofor construct enables an application to concurrently
execute a variable number of threads, all performing the same function. These threads can execute in the
context of subtransactions or in the context of the transaction that is current when the concurrent or
cofor construct executes. The context in which these threads start depends on the constructs used inside
the concurrent or cofor statements (see “The subTran and subThread Constructs” on page 58).

The cofor construct takes an argument that determines the number of concurrent subtransactions to be
created; therefore the number of concurrent transactions to be created is determined at run time. The
concurrent construct simply contains a number of statements for which new threads will be created.
When either of these constructs is executed outside the scope of a transaction, the appropriate number of
concurrent top-level transactions are created.

Using the concurrent construct is described in greater detail in “Using the Concurrent Construct” on
page 59. Using the cofor construct is described in greater detail in “Using the Cofor Construct” on
page 60.

  Chapter 6. Writing Client Applications in Tran-C 57



  
 

Note:  Do not use Tran-C constructs in threads that can be cancelled. If a thread is cancelled during the
execution of a Tran-C construct or function, then the state of the transaction on whose behalf the call was
made is undefined.

The subTran and subThread Constructs:  Each thread created by either the concurrent or
cofor construct is specified by either a subTran or subThread construct. Both of these create concurrent
threads to execute specified functions. Threads created by the subTran construct are executed as
subtransactions, while threads created by the subThread construct execute within the scope of the current
transaction. Whenever a concurrent or cofor construct executes, the thread executing them waits until
all the created threads terminate.

Since threads created by the subTran construct are created as subtransactions, they are assigned their
own TIDs, can have an optional onCommit clause, and must have an associated onAbort clause.
Threads created using the subThread construct do not have onAbort or onCommit clauses because
they execute within the context of the current transaction, not as subtransactions.

Figure 14 shows the format of a subTran construct. A subTran clause consists of the subTran keyword,
followed by a pointer to a function and a pointer to the arguments that function requires. The specified
function cannot return a value. When a subTran clause is executed, both a new thread and new
transaction are created. Like any other transaction construct, it must have an associated onAbort clause,
and can have an optional onCommit clause.

 subTran
(void (GfuncPtr)(void G), void G)

 onCommit
 statement
 onAbort
 statement

Figure 14. Syntax of the subTran Construct

A statement in the onAbort or onCommit clause only executes after all concurrent subtransactions
(created by a single concurrent or cofor construct) have completed. Each onAbort or onCommit clause
executes in the order in which it appears in the concurrent or cofor statement, and which clause
executes depends on whether the relevant subtransaction committed or aborted. Like the onCommit and
onAbort clauses of other Tran-C constructs, the statements in these clauses of the subTran construct
execute outside the scope of any transaction, see “Beginning and Ending Transactions” on page 54.

As mentioned before, the concurrent statement can contain subTran statements or subThread
statements. Threads created using the subThread clause execute concurrently with each other, directly
within the scope of the parent transaction. The syntax of the subThread clause is shown in Figure 15.

subThread(void (GfuncPtr)(void G), void G);

Figure 15. Syntax of the subThread Construct

Threads created using the subThread clause differ from those created using the subTran clause because
they do not create new transactions, and therefore do not have associated onCommit or onAbort
clauses. All threads created using subThread clauses execute within the scope of the transaction that
executed the concurrent statement.

58 Encina Toolkit Executive Guide and Reference  



  
 

Using the Concurrent Construct:  The concurrent construct uses the threading capabilities of
Tran-C to create a predetermined number of transactions that execute concurrently. The number of
threads or subtransactions created is determined by the number of subTran or subThread statements
enclosed by the concurrent clause. Using the concurrent statement within the scope of a transaction
creates a predetermined number of concurrent threads, running either within the scope of the current
transaction (if the subThread statement was used), or as subtransactions (if the subTran keyword was
used). If the concurrent construct is used outside the scope of a transaction, the threads created by that
statement execute as concurrent top-level transactions.

A concurrent construct's onCommit and onAbort clauses provide a way to determine the outcome of the
entire concurrent construct. The onCommit clause only executes if all subtransactions created by the
concurrent construct commit. The onAbort clause executes if any of those subtransactions abort, and
the abort code is set to CONC_STMT_ABORT_CODE. Calling the Tran-C getCompletedTid function from either
the onAbort or onCommit clauses of a concurrent statement always returns the transaction identifier
TRAN_TID_NULL.

 concurrent {
subTran or subThread clause 1

...
subTran or subThread clause N

 } coEnd.

Figure 16. Syntax of the concurrent Construct Terminated by the coEnd Statement

The syntax of the concurrent statement is shown in Figure 16 and Figure 17. The concurrent construct
begins with the concurrent keyword, followed by multiple subtransaction or subthread clauses which may
be mixed freely. The construct may end with the coEnd keyword (shown in Figure 16). Otherwise, the
construct ends with an optional onCommit clause followed by an onAbort clause (as shown in
Figure 17). Use the coEnd keyword when it is unnecessary to determine whether the concurrent
construct, as a whole, committed or aborted. Also, use this when all of the statements inside the
concurrent clause were subThread statements because the concurrent construct will have no
transactional outcome status in this situation.

 concurrent {
subTran or subThread clause 1

...
subTran or subThread clause N

 }
 onCommit
 statement
 onAbort
 statement

Figure 17. Syntax of the concurrent Construct with onCommit and onAbort Clauses

  Chapter 6. Writing Client Applications in Tran-C 59



  
 

Using the Cofor Construct:  The cofor construct also creates a number of concurrent
subtransactions or threads. A cofor construct consists of the cofor keyword and two associated
arguments, enclosed within parentheses, and a single subTran or subThread clause. The syntax of
these clauses is explained in “The subTran and subThread Constructs” on page 58. Like the concurrent
construct, the cofor construct can either be terminated by a coEnd statement (as shown in Figure 19), or
by standard onCommit and onAbort clauses (as shown in Figure 18). The coEnd keyword is used
when it is not necessary to know whether the cofor construct, as a whole, committed or aborted. It is also
used when the statement inside the cofor clause was a subThread statement, and therefore had no
transactional status outcome to report.

cofor(int, integer expression) {
subTran or subThread clause

 }
 onCommit
 statement
 onAbort
 statement

Figure 18. Syntax of the cofor Construct with onCommit and onAbort Clauses

The cofor construct is a threaded analog of a standard C for loop, where each iteration spawns a
separate concurrent subtransaction or thread. The arguments to the cofor keyword determine the number
of times the subTran or subThread clause is executed. The first argument is a previously-declared
integer variable that is used as a loop control variable for the cofor construct. The second argument is an
expression that must yield an integer result. The result of the expression determines the number of times
the subTran or subThread clause in the cofor statement is executed. The value of the loop variable
ranges from zero to the result of the expression minus one. The expression itself is only evaluated when
the cofor construct is first encountered, before the specified subTran or subThread statement is
executed for the first time. When execution continues past the cofor statement, the loop variable has the
value which is the expression's result.

Each execution of the loop creates a new subtransaction or synchronous thread. Typically, the arguments
to the function specified in the subTran or subThread clause use the loop variable as an index for
referencing some other data structure. This enables each iteration of the subTran or subThread
statement to use different data, and to generate and store unique results, for example, in different array
locations.

cofor(int, integer expression) {
subTran or subThread clause

 } coEnd.

Figure 19. Syntax of the cofor Construct Terminated by the coEnd Statement

Figure 20 on page 61 shows an example of the use of a cofor construct to update three replicas of a
transactional server in parallel. Because the server itself is transactional, all three updates must occur
successfully in order for the update to commit as a whole. For this reason, the subTran statement's
onAbort clause is empty, because no additional information is gained by explicitly reacting to any single
abort. If any of the updates fails, the entire cofor construct must be aborted to undo any successful
updates.

60 Encina Toolkit Executive Guide and Reference  



  
 

void Garguments[3]. /G contains information to access
replica and its arguments G/

extern void update(voidG); /G update function G/
int loopVar; /G loop variable for cofor statement G/

cofor(loopVar, 3) {
 subTran(update, arguments[loopVar]).

onAbort; /G only interested in over-all outcome,
not that of specific subTrans G/

 }
 onCommit
 printf("Update successful\n");
 onAbort

abort("One or more updates failed\n");

Figure 20. Example of Using the cofor Construct

Exceeding Thread Limits:  Many systems have a limit on the number of threads they can manage.
On z/OS, the limit on threads per user is in the BPXPARM proclib member. The concurrent and cofor
constructs are failure atomic with respect to these limits. These constructs create all threads, create all
transactions when appropriate, and execute all functions, or they do nothing. If the system runs into the
thread limit before all threads required have been created, these constructs terminate all newly created
threads and report the problem in one of two ways:

1. If the concurrent or cofor construct contains an onAbort clause, then the onAbort clause executes,
and the abort code is CONC_STMT_INSUFF_THREADS_CODE.

2. If the concurrent or cofor construct ends with coEnd, then the construct outputs a warning message.

 Suspending Transactions

Applications that need to access resources transactionally to properly interact with other applications or to
maintain recoverable data may interact with nontransactional applications, servicing requests just as they
do when interacting with transactional applications. Since requests from nontransactional applications
arrive outside the context of any transaction, the servicing application is burdened with the costs of
creating and completing a transaction for every request the nontransactional application makes. One way
of optimizing the transactional costs of accessing the necessary resources when the requests come from a
nontransactional application is to create one transaction for the application and suspend it after handling
each request. Since the transaction can easily resume, this saves completing the transaction and creating
a new one each time a request arrives.

When an application accepts a nontransactional RPC, it creates a transaction, performs the requested
work, and suspends the transaction pending further requests from the nontransactional client. Subsequent
requests can then resume the suspended transaction, perform additional work, and finally either suspend
or commit it. Good examples of this sort of interaction are transactional servers that use information from
a time service to keep their internal clocks synchronized, or servers that must simply acknowledge
requests from a network process monitor to show that they are still active.

The Suspend Clause:  The suspend clause is an optional transaction clause that can replace the
onCommit clause in any non-nested transaction construct. The suspend clause causes that transaction
to suspend execution rather than commit. Like the onCommit clause, the suspend clause must be
before the onAbort clause. The suspend clause can only be used in transaction statements that result in
top-level transactions, such as non-nested uses of the transaction construct, or with topLevel constructs.
It is illegal to attempt to suspend the execution of any nested transaction.

  Chapter 6. Writing Client Applications in Tran-C 61



  
 

 transaction
 statement
 suspend(tran_tid_t G)
 statement
 onAbort
 statement

Figure 21. Syntax of the Suspend Clause within a transaction Construct

Figure 21 shows the syntax of the suspend clause, used within a transaction construct. A suspend
clause consists of the suspend keyword, an argument to that keyword, and a single statement that is
processed if the transaction is suspended. The argument to the suspend keyword is a pointer to a TID,
which is a variable of type tran_tid_t. Suspending the transaction sets this pointer to the TID that would
be returned by a call to getTid within the body of the transaction construct. Any statement can be
associated with a successful suspension of the transaction. Because the transaction can be aborted
before execution reaches the suspend clause, there are no guarantees with respect to whether the
statement in the suspend clause executes. It is illegal to call the getCompletedTid function in a suspend
clause because the transaction has not completed (that is, neither committed nor aborted).

If a suspended transaction is aborted while it is suspended, the onAbort clause executes when the
transaction resumes.

The resumeTran Construct:  The Tran-C resumeTran construct resumes a suspended
transaction. Because only non-nested or top-level transactions can be suspended, suspended
transactions can only be resumed at the same (top) level. If a suspended transaction is resumed within
the scope of another transaction, the resumed transaction behaves as a nested top-level transaction.

 resumeTran(tran_tid_t)
 statement
 onCommit
 statement
 onAbort
 statement

Figure 22. Syntax of the resumeTran Construct

Figure 22 shows the syntax of the resumeTran construct. The resumeTran keyword requires one
argument, which is the transaction identifier of a suspended transaction. Like any other top-level
transaction construct, the resumeTran construct may have either an onCommit or suspend clause. If
the resumeTran construct does not have a suspend clause, and completes successfully, the transaction
will be committed. When a resumeTran construct has a suspend clause, the transaction is suspended
again when that clause is reached.

If a suspended transaction is aborted while it is suspended, the onAbort clause executes when the
transaction resumes.

Creating Server-Side Transactions

Transactional-C supports a mechanism for creating server-side transactions. A server-side transaction is
a transaction that is initiated by the client but created and ended at the server. Server-side transactions
execute entirely at the server as top-level transactions; transactions executing at the client do not depend
on the outcome of server-side transactions, so the client and server do not need to share transactional
information. Eliminating the transactional information normally sent with transactional RPCs can improve
the performance of the client application, but because the client and server do not share this information,
only client applications that do not rely on transactional guarantees should use server-side transactions.

62 Encina Toolkit Executive Guide and Reference  



  
 

The wrapEachTrpc Construct:  A client application can use the wrapEachTrpc construct to
define an execution scope; each transactional RPC made from within this scope is “wrapped” in a
separate top-level server-side transaction. Nontransactional RPCs called within the wrapping scope are
not executed as server-side transactions. The syntax of the wrapEachTrpc construct is shown in
Figure 23.

 wrapEachTrpc
 statement
 onCommit
 statement
 onAbort
 statement

Figure 23. Syntax of the wrapEachTrpc Construct

The wrapEachTrpc construct consists of a wrapEachTrpc clause, an onCommit clause, and an onAbort
clause. As in similar constructs, the onAbort clause is required, and the onCommit clause is optional; if
specified, the onCommit clause must precede the onAbort clause. A wrapEachTrpc construct can be
nested within transaction constructs, and transaction constructs can be nested within a wrapEachTrpc
construct.

Transactional RPCs made within the wrapEachTrpc clause result in server-side transactions that last for
the duration of the RPC. If the server-side transaction aborts, the onAbort clause is executed. If a
communication failure causes the abort, UNKNOWN_ABORT_REASON is returned as the abort code. If the
server-side transaction completes successfully, the onCommit clause is executed (if it exists).

Multiple transactional RPCs can be called within the same wrapEachTrpc construct; they are executed
sequentially, and each RPC creates a separate server-side transaction. If one of the server-side
transactions is aborted by the server, control jumps to the onAbort clause of the wrapEachTrpc
construct, and any remaining transactional RPCs are not executed.

Care must be taken when concurrent threads are nested within a wrapEachTrpc construct. All
transactional RPCs made by the functions executed by subThread constructs create server-side
transactions. Therefore, the flow of control may be different from what is expected.

Getting Information About Server-Side Transactions:  Because server-side transactions
are executed entirely at the server, the functions used to determine transaction identity at the client do not
return the identifier for the server-side transaction. In the wrapEachTrpc clause, calling the getTid
function returns TRAN_TID_NULL, and calling the getContainingTid function returns the transaction identifier
for the transaction that encloses the wrapEachTrpc construct. Similarly, in the onAbort and onCommit
clauses, calling the getCompletedTid function returns TRAN_TID_NULL, and calling the getContainingTid
function returns the transaction identifier for the transaction that encloses the wrapEachTrpc construct.

A client application can determine whether the current thread is executing within a scope used for creating
server-side transactions. The inWrapEachTrpc function determines whether the calling thread is
executing within a wrapEachTrpc construct. If the function returns a nonzero (TRUE) value, the thread is
executing within a “wrapping” scope, and each transactional RPC made in this scope begins and ends a
transaction at the server. The trpcPermitted function can be used to determine whether the current
execution context is one in which a transactional RPC can be made. If the calling thread is executing
either within a transaction or within a wrapEachTrpc construct, the function returns a nonzero (TRUE)
value.

  Chapter 6. Writing Client Applications in Tran-C 63



  
 

 Aborting Transactions

The most common reason that a transaction is aborted by the Tran-C run-time system is as a result of a
communication or data access failure. These types of aborts are automatically detected by the run-time
system when the next Tran-C statement is executed. Transactions can also be explicitly aborted from
within applications using Tran-C functions.

The flow of control immediately jumps to the onAbort clause associated with the transaction construct (or
similar construct) within which the code is executing when the run-time system detects an abort. The
Tran-C run-time system will only detect an abort in a Tran-C construct when the next Tran-C construct or
statement is executed, but all transaction constructs implicitly check for aborts at the end of their bodies.
When an abort is detected by a remote application that is performing work on behalf of a transaction, that
application immediately stops performing work on behalf of the aborted transaction. The RPC then returns
to the calling application, and that application transfers control to the associated onAbort clause since all
TRPCs check the status of the transaction upon return.

All participants are eventually notified of a transaction's termination. When a transaction is explicitly
aborted (by calling the abort function, for example), the call may return before the Transaction Service
notifies any participants, including the application issuing the call. TRAN does not guarantee notification
within any given time, except for the application that explicitly aborts a transaction. An application (or any
of its communication or recovery services) is responsible for performing timeouts for other transactions as
necessary. This can affect an application in the following way: a client may begin a transaction, make a
call to a server involving a significantly large amount of data, and abort the transaction when the call
returns. Then the client begins another transaction and makes a call to the same server to access some
of the same data with conflicting locks. There is a possibility that the second transaction might wait or
timeout due to the first transaction's retaining locks during its recovery procedures.

The next few sections describe how to define abort reasons, explain the Tran-C functions provided to
explicitly abort transactions, describe how to obtain information about the aborted transaction, and
describe the messages returned by the run-time system when a transaction is aborted by the system.

Defining Abort Reasons

Tran-C uses the Encina Abort Facility (see Chapter 27, “The Encina Abort Facility” on page 183) to
assign and retrieve information about an aborted transaction. This information, referred to as an abort
reason, includes an abort code or string or both, a module and function name, and a format identifier for
the abort reason. The application specifies the reason for aborting a transaction (typically as an abort
code); any participant in the transaction can then determine the abort reason for the aborted transaction.
The information contained in an abort reason is covered in greater detail in “Using Abort Data” on
page 67.

In Tran-C, abort reasons can be defined using either abort codes or abort strings. Abort codes allow abort
reasons to be compared easily and can be encoded in such a way that they can be converted to an
NLS-compliant string for printing. Abort strings are variable-length strings that may have been generated
in a different NLS locale; therefore, abort strings cannot be compared as easily as codes.

The following sections cover defining abort codes, abort strings, and other abort data, and briefly describe
the mechanisms underlying the management of abort reasons in Tran-C.

64 Encina Toolkit Executive Guide and Reference  



  
 

Defining Abort Reasons Using Abort Codes:  An abort code is a signed-integer constant that
describes the reason why a transaction aborted. In a Tran-C application an abort code should be defined
for each different condition under which the application aborts transactions. The Telshop example only
defines one abort code called CANCELLED_BY_USER for the client application program as shown in
Figure 24.

Using abort codes requires that a means for translating codes to a format appropriate for the application,
such as an NLS-compliant string, must be provided. Tran-C supplies a mechanism and defines
conventions for doing this. In addition to defining abort codes, you must also take the following steps:

1. Define an abort format identifier and specify its scope.

2. Define a formatting function that formats the abort code and/or data for abort reasons with a specific
format identifier.

3. Register the format identifier and its associated formatting function with the application.

An abort format identifier must be defined so that Tran-C can associate a formatting function with the abort
reason generated by an aborted transaction. The format identifier is a DCE UUID (universal unique
identifier) that uniquely identifies the format for abort reasons. This UUID can be created with the
uuidgen utility provided by the DCE; the format identifier is referred to as the format UUID.

The useAbortFormat function can be used to specify the scope of the format UUID. If this function is
called at the beginning of a source file (before any functions), the scope of the format UUID is the file. If
called at the beginning of a function within a source file, the scope is limited to that function. By specifying
different scopes, different abort formatting functions can be used based on the scope in which a
transaction aborted.

The syntax of the useAbortFormat function is the following:

void useAbortFormat(char GformatUuidString);

This function takes one argument, which is an abort format UUID in string form. In the Telshop example,
the useAbortFormat function is called at the beginning of the telshop.c file. This makes the abort format
global to the file. The definition of this format UUID and its scope are shown in Figure 24.

/G Abort Codes and Format G/
typedef enum {
CANCELLED_BY_USER = 1

 } abortCode_t.
static char ABORT_FORMAT[] = "BB14ad2B-e154-1d68-85bB-9e62B92caa77".

 inModule("Telshop");
 useAbortFormat(ABORT_FORMAT);

Figure 24. Defining the Abort Code, Format, and Scope for an Abort Reason

Next, a formatting function must be defined for abort reasons. The purpose of the formatting function is to
take the information in an abort reason and use it to generate output appropriate to the application. When
invoked, the formatting function is automatically passed two arguments: a pointer to an abort reason for
the aborted transaction and a pointer to a buffer. By default, the buffer has a maximum size of
ENCINA_MAX_STATUS_STRING_SIZE bytes.

In the Telshop example the function AbortFormatter is defined as the formatting function (see Figure 25
on page 66). The example function checks the abort code set for the abort reason, and based on the
value of the abort code, the function returns a string describing the reason for the abort in the bufferP
parameter. Note that this example generates a printable string that is not NLS-compliant.

  Chapter 6. Writing Client Applications in Tran-C 65



  
 

/G AbortFormatter - converts integer abort code contained in
G abortReasonP to a string. At most ENCINA_MAX_STATUS_STRING_SIZE
G may be written into bufferP. Also, this routine returns only
G English strings; if this module were national language (NLS)
G compliant, this routine would consult a language catalog. G/

static void AbortFormatter(abortReasonP, bufferP)
 encina_abortReason_t GabortReasonP;
 char GbufferP;
 {
 char GabortString;
 switch(abortReasonP->code) {
 case CANCELLED_BY_USER:

abortString = "User cancelled the order.";
 break;
 default:

abortString = "Unknown abort code.";
 }
 strcpy(bufferP, abortString);
 }

Figure 25. Example Function for Formatting an Abort Reason

After the formatting function is defined, it must be associated with a format UUID and registered with an
application using the encina_RegisterAbortFormatter function. This function takes two arguments: a
pointer to a format UUID and the name of a function. The format UUID must be of type uuid_t (the
uuid_from_string DCE function can be used to convert a string to this type, if necessary).

In the Telshop example, the AbortFormatter formatting function is registered via the
REGISTER_ABORT_FORMATTER macro, which is called in the Initialize function of the Telshop
application (see Figure 75 on page 753). The macro takes the abort format UUID in string form and the
name of the formatting function as its arguments; it converts the string UUID, and then passes a pointer to
the UUID and the name of the formatting function to the encina_RegisterAbortFormatter function. (See
“encina_RegisterAbortFormatter” on page 585 for more information.)

Once the function is registered, calling the Tran-C function to retrieve an abort reason string for an aborted
transaction automatically invokes the formatting function to return the abort reason string.

Defining Abort Reasons Using Strings:  The Tran-C abort or abortNamedTran functions can
be used to define an abort reason. The string you pass as the argument to either of these functions is
returned as the abort reason for the transaction in which the call was made (see “Using Abort Reason
Strings” on page 69).

When the abort or abortNamedTran function is used to define an abort reason for a transaction, the
ENCINA_STRING_FORMAT_UUID variable is set as the format UUID for the abort reason, the abort code is set
to zero by default, and Tran-C automatically registers a formatting function for that abort reason. Calling
the abortReason function invokes this formatting function, which simply returns the abort string as a
null-terminated character string. See “Exported Variables and Constants” on page  184 for more
information on the ENCINA_STRING_FORMAT_UUID variable.

Though it is easier to define abort reasons with strings than it is with codes, the usefulness of abort strings
is limited and less flexible. For example, the use of strings makes the direct comparison of abort reasons
difficult.

66 Encina Toolkit Executive Guide and Reference  



  
 

Using Abort Data:  An Encina abort reason is a structure of type encina_abortReason_t that
contains information about an aborted transaction when defined by a Tran-C generated abort; some of the
information in an abort reason is only supplied by Tran-C (such as the name of the module in which the
transaction aborted). An abort reason structure consists of the following:

� A format identifier – a DCE UUID (universal unique identifier) uniquely identifying the abort reason.

� An abort code – a signed, 32-bit integer defining the reason for aborting a transaction.

� Abort data – a structure consisting of the module name, the function name, and possibly a string
describing the reason for an aborted transaction (all null-terminated strings). Abort data can also
contain additional information that further qualifies an abort reason.

See “encina_abortReason_t” on page 590 for more information.

Additional abort-specific data can be added to an abort reason for a transaction with the setAbortData
function. This function must be called in the thread currently executing on behalf of the transaction, and it
must be called immediately before calling a function to explicitly abort the transaction, such as the
abortWithCode or abort functions. The Tran-C setAbortData function has the following syntax:

void setAbortData(void GdataP, unsigned long length);

The setAbortData function takes two arguments: a pointer to the abort-specific data and the length of the
abort-specific data. The abort-specific data can be of any form, though the caller must ensure that data
which is platform-specific is correctly marshalled, since the data is copied exactly.

Note that Tran-C limits the maximum size of all the abort data for an abort reason to
ENCINA_MAX_STATUS_STRING_SIZE bytes. If the size of the entire abort data exceeds this limit, the
abort-specific data (set with the setAbortData function) will be truncated.

Using Abort Reasons with Other Encina Components:  For Tran-C applications that use
other Encina Toolkit products, Tran-C provides a way for those applications to share abort reasons. When
a transaction is explicitly aborted in a Tran-C application (for example, by the Tran-C abort or
abortWithCode functions), the reason for the abort is automatically associated with the transaction
through the Encina Abort Facility.

The Encina Abort Facility is a library of interface functions designed to provide generalized support for
abort reasons. This facility is used by all the Encina components that use abort reasons so that abort
reasons are always handled in a consistent way. The Encina Abort Facility is documented in Chapter 27,
“The Encina Abort Facility” on page 183.

Aborting Transactions from within an Application

Tran-C provides four functions that explicitly abort transactions. The abort and abortWithCode functions
abort the current transaction. The abortNamedTran and abortNamedTranWithCode functions abort a
specified transaction.

Using Abort Codes:  Tran-C provides two functions to explicitly abort transactions using an abort
code. The abortWithCode function enables an application to abort the current transaction, and the
abortNamedTranWithCode function enables a Tran-C application to abort a specified transaction. A
transaction can only be aborted by a thread executing within a named Tran-C module. See “Registering
Module and Function Names” on page 49 for information about declaring Tran-C modules.

The Tran-C abortWithCode function has the following syntax:

void abortWithCode(long abortCode);

  Chapter 6. Writing Client Applications in Tran-C 67



  
 

This function enables a program to abort the transaction from which the function was called. It is illegal to
call this function in a process operating outside of the scope of a transaction. The abortWithCode
function requires one argument, an integer abort code that describes the reason for the abort. The Tran-C
abortCode function (explained in “Retrieving General Abort Information” on page 70) can be used in the
associated onAbort clause to retrieve this code. Remember that the reason for an abort can only be
determined in the onAbort clause of the transaction statement that created the aborted transaction.

The Tran-C abortNamedTranWithCode function has the following syntax:

void abortNamedTranWithCode(tran_tid_t tid, long abortCode);

The first argument to this function is the TID of the transaction to be aborted. The second argument is an
integer abort code that describes the reason for aborting the transaction. This function provides a
powerful mechanism for explicitly aborting transactions, because the thread calling this function does not
have to be within the scope of the transaction being aborted.

In the sample Telshop application, the abortWithCode function is called to abort the transaction with the
CANCELLED_BY_USER abort reason code as its argument (see Figure 26). Note that in the associated
onAbort clause, the abortReason function is used to return the abort reason string to the user.

/G TakeOrder -- interactively construct and process an order
G (a transaction that uses the merchandise server). G/
static void TakeOrder()

 {
 char command;
 inFunction("TakeOrder");
 transaction {
 do {

command = GetCommand(" Command: ").
 switch(command) {

case 'Q': /G Ask about item availability G/
 QueryItem();
 break;

case 'O': /G Order some amt. of an item. G/
 OrderItem();
 break;

case 'S': /G Submit order G/
 break;

case 'C': /G Cancel this transaction G/
 abortWithCode(CANCELLED_BY_USER);

case '?': /G Print commands, etc. G/
 InnerLoopHelp();
 break;

default: /G Invalid command G/
 PrintCmdError(command);
 }

} while (command != 's' && command != 'S');
 }
 onCommit
 printf("Order processed.\n");
 onAbort

printf("Order aborted: %s (%s)\n", abortReason(),
 abortModuleName());
 }

Figure 26. Example of Aborting a Transaction with an Abort Code

68 Encina Toolkit Executive Guide and Reference  



  
 

Using Abort Reason Strings:  Tran-C also provides two functions to explicitly abort transactions
using abort reason strings. The abort function enables an application to abort the current transaction, and
the abortNamedTran function enables a Tran-C application to abort a specified transaction. A transaction
can only be aborted by a thread executing within a named Tran-C module. See “Registering Module and
Function Names” on page 49 for information about declaring Tran-C modules.

The Tran-C abort function has the following syntax:

void abort(char G abortString);

This function enables a program to abort the transaction from which the function was called. It is illegal to
attempt to initiate an abort when the initiating process is operating outside of the scope of a transaction.
The abort function requires one argument: a character pointer to a string describing the reason for the
abort. The Tran-C abortReason function (explained in “Retrieving General Abort Information” on
page 70) can be used in the associated onAbort clause to retrieve this string. Remember that the reason
for an abort can only be determined in the onAbort clause of the transaction statement that created the
aborted transaction.

The syntax of the abortNamedTran function is the following:

void abortNamedTran(tran_tid_t tid, char G abortString);

The first argument to this function is the TID of the transaction to be aborted. The second argument is a
pointer to a null-terminated string that describes the reason for aborting the transaction. This function
provides a powerful mechanism for explicitly aborting transactions, because the thread calling this function
does not have to be within the scope of the transaction being aborted.

Executing Statements Before Transferring Control on Abort

The Tran-C catchAbort construct provides a way for an application to intercept an abort and do some
mandatory processing before transferring control to the onAbort clause of the current transaction. At this
point, the transaction itself has already aborted, but some processing may still be required before jumping
to the onAbort clause. The catchAbort clause can be used inside any Tran-C application, and can be
used with routines called from the transaction, topLevel, and resumeTran constructs. The primary
function of the catchAbort construct is to provide a way to ensure that locally-allocated resources get
deallocated. “Using Exceptions in Tran-C Applications” on page 74 provides further information on the
dynamic flow of control and catching aborts. The syntax of the catchAbort function is shown in
Figure 27.

 catchAbort {
 statement
 }
 onAbort {
 statement
 }

Figure 27. Syntax of the catchAbort Clause

The catchAbort construct can enclose any number of C-language statements that comprise a single
compound statement. When a catchAbort construct executes, the statements in the catchAbort clause
execute as if they appeared in the text of the program without any catchAbort construct surrounding
them. If the current transaction aborts while the statements are executing, control passes immediately to
the statements inside the onAbort clause. At the end of this clause the system transfers control to the
next dynamically containing abort context, eventually executing the aborted transaction statement's
onAbort clause. However, if the current transaction progresses without aborting until flow of control exits

  Chapter 6. Writing Client Applications in Tran-C 69



  
 

the dynamic scope of the catchAbort construct, the statements within the onAbort clause are ignored.
Flow of control transfers to the statement immediately following the onAbort clause.

The statements in the onAbort clause execute outside the scope of any transaction. When functions
containing the catchAbort construct are called from outside a transaction, the catchAbort clause is
essentially invisible, and the statements inside the onAbort clause are ignored.

Monitoring Transaction Status

If a transaction aborts, control transfers from the main clause of a transaction construct to its associated
onAbort clause. Because the Tran-C run-time system checks the status of all active threads and
transactions each time a Tran-C statement is executed, the actual transfer of control does not occur until
the next Tran-C statement is executed. This means that the transfer might be delayed if the transaction is
long-running and uses Tran-C constructs infrequently.

To avoid any delays in the transfer of control, the abortCheck function can be called periodically within
the scope of a transaction. Executing the abortCheck function causes Tran-C to check the status of the
transaction; control is transferred to the onAbort clause if the transaction has aborted.

The syntax of the abortCheck function is the following:

 void abortCheck(void);

This function takes no arguments and returns no value. Its sole purpose is to provide a means for the
Tran-C run-time system to signal a long-running application that its parent transaction has aborted.

Getting Information About Aborted Transactions

Tran-C provides several different types of functions that retrieve information about an aborted transaction.
These functions are described in the next few sections.

Retrieving General Abort Information:  When a transaction aborts, there are four Tran-C
functions that can be called to retrieve some general information about the abort. These functions can
only be called from within the onAbort clause of a transaction or from an abort callback, and the value
returned by these functions is valid only within the onAbort clause from which it was called. See
“Registering and Using Callbacks” on page  75 for more information on callbacks.

Tran-C provides two functions that can be called to retrieve some indication of why the transaction
aborted: the abortReason function and the abortCode function. These functions are commonly used with
the abortModuleName and abortFunctionName functions (see “Determining Where a Transaction
Aborted” on page 72) to identify both the reason that the transaction aborted and the location at which the
associated transaction aborted.

The syntax of the abortReason function is the following:

 charG abortReason(void);

The abortReason function returns a string describing the reason that the current transaction aborted.
Typically, this string is either the string passed to the abort function or a string returned by a formatting
function if the abortWithCode function was used to abort the transaction. Note that if the reason was
defined as an abort code, but no formatting function was registered for the code's format, the
abortReason function returns an error string. See “Defining Abort Reasons Using Abort Codes” on
page 65 for more information on abort codes and formatting functions.

70 Encina Toolkit Executive Guide and Reference  



  
 

If a module that is not a Transactional-C module (and not an Encina component that supports
Transactional-C) aborts a transaction, the abortReason function returns a string indicating that the reason
is unknown.

The syntax of the abortCode function is the following:

 long abortCode(void);

The abortCode function returns an integer code giving the reason that the current transaction aborted.
This code is the value passed to the Tran-C abortWithCode function when it is used to abort a
transaction. The abortFormat function should be called before the abortCode function to ensure that the
abort reason for the aborted transaction is a properly formatted abort code.

Tran-C provides the abortFormat function to retrieve information about the format of the abort reason for
an aborted transaction. This function can be used to determine if the abort reason for the transaction is
an abort reason code and is properly formatted. If the abortFormat function returns a NULL pointer, then
the abort reason is not formatted as an abort reason code and, therefore, calling the abortCode function
to obtain an abort reason code is invalid.

The syntax of the abortFormat function is the following:

 uuid_tG abortFormat(void);

The abortFormat function returns the abort format UUID associated with the aborted transaction. This
UUID is the identifier of the formatting function passed to the Tran-C useAbortFormat function. The
UUID returned by the abortFormat function remains valid for the duration of the onAbort clause and must
not be deallocated. See “Defining Abort Reasons Using Abort Codes” on page 65 for more information.

Tran-C provides the getAbortData function to retrieve abort-specific data stored with an abort reason.
The returned data is not guaranteed to be aligned on a word boundary.

The syntax of the getAbortData function is the following:

void getAbortData(void GGdataPP, unsigned long GlengthP);

The getAbortData function returns a pointer to the length of the abort data and a pointer to a pointer to
the abort-specific data in dataPP. The setAbortData function can be used to set the abort-specific data
for an abort reason as described in “Using Abort Data” on page 67.

Note:  In rare situations, the abort reason used to abort a transaction may be different from the abort
reason retrieved in the onAbort clause of that transaction. The following are two examples of this
occurring:

� When users abort committed subtransactions, the Transaction Service must abort the first
uncommitted ancestor to recover the subtransaction's work. When this occurs, the abort reason used
for the subtransaction is obscured by an alternative abort reason supplied by the Transaction Service
to indicate it had to abort an ancestor of a committed subtransaction.

� When a server aborts a transaction, and there are communication delays between the client and
server, the client may retrieve a different abort reason from the one used at the server.

Users should not design applications whose correctness requires accurate retrieval of abort reasons. The
relaxed functionality of abort reasons is important for ensuring efficient performance and the ability to
autonomously abort transactions.

  Chapter 6. Writing Client Applications in Tran-C 71



  
 

Determining Transaction Identifiers:  The statements in the onAbort (and onCommit) clauses
of a transaction construct execute outside the scope of the aborted or committed transaction. The getTid
function cannot be used successfully in these clauses, because the transaction that transferred control to
those clauses is no longer active. Using the getTid function in these cases would return misleading
information.

Tran-C provides the getCompletedTid function to determine the identifier of the transaction that just
completed. This function's only valid use is in onCommit or onAbort clauses. The getCompletedTid
function returns the identifier of the transaction that just completed and transferred control to the clauses in
which getCompletedTid is called. If called from outside a transaction's onAbort or onCommit clauses,
the getCompletedTid function generates a fatal Tran-C run-time error. The syntax of the
getCompletedTid function is the following:

 tran_tid_t getCompletedTid(void);

Tran-C provides a similar function, getContainingTid, to retrieve the identifier of the parent of a nested
transaction. The syntax of the getContainingTid function is the following:

 tran_tid_t getContainingTid(void);

Unlike the getCompletedTid function, the getContainingTid function can be called anywhere in an
application. However, when called from within a completion clause of a transaction construct, this returns
the identifier of the transaction that is the parent of the completed transaction. If the completed
transaction was a top-level one, then this returns TRAN_TID_NULL, as it would when called from any
top-level transaction.

Determining Where a Transaction Aborted:  When an abort occurs, the module and function
names set using the Tran-C inModule and inFunction calls can be retrieved to accurately identify the
source module and specific function where an abort was initiated. Using these functions to register the
module and function names is described in “Registering Module and Function Names” on page 49.
Tran-C provides the abortModuleName and abortFunctionName functions to retrieve the current module
and function name from within an onAbort clause.

The abortModuleName function takes no arguments and returns the string value set using the inModule
macro in the module in which the transaction aborted. The syntax of the abortModuleName function is
the following:

 charG abortModuleName(void);

The abortFunctionName function takes no arguments and returns the string value set using inFunction
in the function that was executing when the transaction aborted. The syntax of the abortFunctionName
function is the following:

 charG abortFunctionName(void);

The strings returned by the abortFunctionName and abortModuleName functions remain valid for the
duration of the onAbort clause and must not be deallocated.

Determining the Cause of an RPC Failure:  Tran-C returns the RPC_FAILURE_CODE abort code
to indicate that an RPC failure caused the transaction to abort. When this abort code is returned, you can
retrieve the DCE status code associated with the RPC failure by calling the commError function.

The commError function takes no arguments and returns an integer status code. A value of 0 is returned
if no DCE status code is found. The syntax of the commError function is the following:

 long commError(void);

72 Encina Toolkit Executive Guide and Reference  



  
 

The commError function must be called within an onAbort clause or from an abort callback. The DCE
status code returned by the commError function is valid only within the onAbort clause or abort callback
from which the function was called. Figure 28 on page 73 provides an example of how to check for an
RPC failure and return the DCE status code as a string.

if (abortCode() == RPC_FAILURE_CODE)
 {
 char dceErrorString[ENCINA_MAX_STATUS_STRING_SIZE].
 (void) encina_StatusToString(commError(),
 ENCINA_MAX_STATUS_STRING_SIZE,
 dceErrorString);

printf("RPC failure: %s\n", dceErrorString).
 }

Figure 28. Retrieving an RPC Status Code

Tran-C Abort Reasons

Tran-C defines several abort reasons that it uses when internally aborting a transaction. This permits an
application to recognize system aborts in addition to aborts the application itself initiates. The following
Tran-C abort codes are defined for system aborts:

� APPL_EXIT_CODE: The exitTC function was called while the transaction was still active.

� CAUGHT_ABORT_EXCEPTION_CODE: An abort exception was raised inside a transaction construct.
Typically, applications call a Tran-C function, such as abortWithCode, to abort transactions, and this
function then raises the ABORT_EXCEPTION exception. If, however, an application raises the
ABORT_EXCEPTION exception directly (see “Using Exceptions in Tran-C Applications” on page 74), then
the abort reason code in the current transaction's onAbort clause is CAUGHT_ABORT_EXCEPTION_CODE.

� CAUGHT_ADDRESS_EXCEPTION_CODE - An exception was raised inside a transaction construct, causing the
transaction to abort. This is the default type of DCE exception.

� CAUGHT_STATUS_EXCEPTION_CODE - An exception was raised inside a transaction construct, causing the
transaction to abort, and a status value was associated with that exception using the DCE Exception
packages's exc_set_status function.

� CONC_STMT_ABORT_CODE - A concurrent or cofor statement aborted because one or more of the
subtransactions aborted. This is always the abort reason returned in the onAbort clause of a
concurrent or cofor construct.

� CONC_STMT_INSUFF_THREADS_CODE - When a concurrent or cofor construct cannot create all the threads
designated in the construct, it immediately terminates any threads it could create and executes the
onAbort clause. This code is the abort reason returned in the onAbort clause.

� DEADLOCK_DETECTED_CODE - Resources different transactions required could not be allocated in the
correct sequence to satisfy the requirements of all those transactions, so the transaction was aborted.

� MEMORY_EXHAUSED_CODE - Additional memory required by a call to the Tran-C tranMemAlloc function
could not be allocated, so the transaction was aborted.

� RPC_FAILURE_CODE - An RPC failed. The codes this abort condition returns are specific to the various
RPC mechanisms supported by the Tran-C. For an example of such a failure, see “Transfer of
Control in Transactions” on page 43. For an example of how to retrieve the DCE status code
associated with an RPC failure, see Figure 28.

� SERVER_SHUTDOWN_CODE - The server was stopped from servicing requests from new transactions
because the quiesceTC or exitTC function was called.

� UNKNOWN_ABORT_REASON_CODE - Tran-C was unable to determine why the transaction aborted.

  Chapter 6. Writing Client Applications in Tran-C 73



  
 

See “Tran-C Abort Codes” on page 716 for a list of abort codes.

Using Exceptions in Tran-C Applications

Tran-C provides integral support for raising, catching, and propagating exceptions as implemented by the
DCE Exception package. Exceptions provide a way of returning error information about exceptional
conditions back through multiple levels of procedure or function calls, propagating this information until a
function or procedure is reached that can take appropriate action. When an exceptional condition occurs,
the exception related to that condition is raised. That exception then propagates back through the
procedures or function calls which lead to the routine in which the exception was raised, and it stops when
one of those procedures or functions catches the exception. Once an exception has been caught, it can
be re-raised and propagated to calling functions or procedures. This enables multiple functions to respond
differently to a single exception, performing intermediate cleanup or processing related to that particular
exception condition.

In order to correctly handle such exceptions and propagate that information back through multiple levels of
function calls, exceptions must occur within previously-defined exception scopes. An exception scope is a
delimited portion of application code within which a particular exception has special significance. The DCE
exception package provides macros for defining an exception scope within which exceptions can be raised
and caught. Exceptions are declared as variables of type EXCEPTION. A scope is declared using the TRY,
CATCH, and ENDTRY macros. An exception is raised using the RAISE macro. If an exception is not
caught within an exception scope, and therefore is raised within the default scope of the current thread,
that thread will terminate. Threads created by Tran-C constructs, such as the cofor construct, will also
terminate under these circumstances. If a thread was executing on behalf of a transaction, that
transaction will be aborted, as described later in this section. If a thread was executing outside the scope
of a transaction, Tran-C will generate a warning message describing the type and value of the uncaught
exception that caused the thread to terminate.

For more detailed information about exceptions or about the macros provided in the DCE Exceptions
package, see the z/OS DCE Application Development Guide: Core Components.

The Tran-C transaction construct creates a dynamic scope that is equivalent to a DCE exception scope.
Within the scope implicitly defined by a transaction construct, you can declare additional exception
scopes using the DCE exception macros, and raise exceptions. If an exception is raised, and there is no
intervening exception scope before the implicit scope of a transaction statement, then the transaction
statement will catch the exception and abort the transaction. It will use one of two abort reasons, either
CAUGHT_ADDRESS_EXCEPTION_CODE for address exceptions or CAUGHT_STATUS_EXCEPTION_CODE for status
exceptions. Address exceptions are the standard type of DCE exception. Status exceptions differ from
address exceptions in that they also return a status value, which must have been set by the DCE
exception package's exc_set_status function. This status value can be returned by that package's
exc_get_status function.

Tran-C also enables you to use the exception mechanism to transfer control on abort. Tran-C uses the
ABORT_EXCEPTION exception to abort transactions. By default, this exception immediately transfers control
to the onAbort clause of the transaction statement within whose scope the ABORT_EXCEPTION exception
was raised. Once caught by an onAbort clause, this exception is not re-raised, unlike other exceptions.

If you abort a transaction by raising the ABORT_EXCEPTION exception, the transaction will appear to have
aborted in the function that initiated the transaction construct, regardless of where the transaction actually
aborted. The abort reason code will be CAUGHT_ABORT_EXCEPTION_CODE. This description assumes there
were no intervening exception scopes that may have caught the exception and taken some action on it,
such as calling abortWithCode. It is better to use one of the Tran-C functions that explicitly abort
transactions instead of raising the ABORT_EXCEPTION exception, since this provides accurate function and
module names for uses of the abortFunctionName and abortModuleName functions in onAbort clauses.

74 Encina Toolkit Executive Guide and Reference  



  
 

 TRY {
 statement

...
 statement
 }
 CATCH(ABORT_EXCEPTION) {

... /G onAbort clause code G/
RERAISE; /G re-raise the abort exception G/

 }
 ENDTRY

Figure 29. Using Exceptions to Simulate the catchAbort Statement

Even though raising the ABORT_EXCEPTION transfers control to the onAbort clause of the transaction
construct within whose scope the abort occurred, you can also declare additional, explicit exception
scopes that catch the abort exception and perform some processing before actually transferring control to
the onAbort clause. However, if you explicitly catch this exception, the exception must be re-raised at the
end of the CATCH clause. For example, the code fragment shown in Figure 29 is the equivalent of the
use of the catchAbort clause shown in Figure 27 on page 69. The statements inside the CATCH clause
are executed once the exception has been caught, and the exception is re-raised as the last statement of
this clause. If the ABORT_EXCEPTION exception is not re-raised, the application might erroneously perform
work on behalf of a transaction until an abortCheck or other Tran-C construct is executed, at which point
the Tran-C run-time system would re-raise the abort exception.

Registering and Using Callbacks

A callback is a function that an application registers with the system. The system then invokes the
function when certain events occur. These events may be relative to the life cycle of an application, or
may be relative to the life cycle of a transaction. Various services to which the client subscribes may also
offer callback registration to allow a client to provide special actions for special events in those services.
When one of these events occurs, and the callback is invoked, this is known as delivering the callback.
This section discusses application and transaction callbacks.

 Application Callbacks

The Tran-C function registerApplCallback is used to register callbacks for the initialization or termination
phases of a Tran-C application. For example, this function is used when registering a recovery service for
a Tran-C application as part of the initialization of that application. Functions registered for these phases
of a Tran-C application must be registered before that phase occurs. For example, if an application uses
one of the single-stage initialization methods (see “Initializing a Tran-C Application” on page 50), it may
need to register initialization callbacks to initialize a particular service the application uses at the correct
time during Tran-C initialization. The application in this situation would need to register the callback before
calling initTC. The syntax of the registerApplCallback function is the following:

void registerApplCallback(applCallback_t callbackType,
unsigned int (Gcallback) (void G),

 void GcallbackArg);

The registerApplCallback function takes several parameters. The callbackType parameter, of type
applCallback_t, is either APPL_INIT_CALLBACK, indicating that this callback is being set for application
initialization, or APPL_TERM_CALLBACK, indicating that the callback is being registered for application
termination. The next two arguments are the callback itself and a pointer to any arguments required by

  Chapter 6. Writing Client Applications in Tran-C 75



  
 

the callback. This can be a pointer to a block of arguments if multiple arguments are required. Note that
the callback functions must themselves return an integer value and take a void* argument.

To indicate an error, the callback can return the value FALSE (0). Returning any other value is taken to
mean that the callback was successfully executed. Errors in callback execution result in generating a
run-time error.

The initialization callbacks are invoked during calls to initialize the Transaction Service, effectively between
calls to the tran_Init and tran_Ready functions (see “Initializing a Tran-C Application” on page 50 and
“tran_Ready” on page 463). The first function initializes the Transaction Service, and the second function
finalizes initialization after executing any registered initialization callbacks.

Termination callbacks (callbacks registered with the APPL_TERM_CALLBACK callback type) are provided to
allow components to perform cleanup tasks before an application terminates (such as unregistering a
server from the Directory Service). Termination callbacks are invoked by the exitTC function before doing
anything else.

 Transaction Callbacks

Both client and server applications may want to explicitly associate certain events with changes in the
commit or abort status of a transaction. These programs may want to associate nontransactional activity
with requests from transactional clients. A common example of this is when a server must allocate
resources to enable it to respond to a specific transactional request. Associating callbacks with
transaction resolution provides an easy mechanism to insure that those resources are deallocated when
they are no longer needed.

The Tran-C registerTranCallback function enables client or server applications to explicitly register
commit and abort callbacks for specific transactions. The syntax of the registerTranCallback function is
the following:

void registerTranCallback(tranCallback_t callbackType,
 void (Gcallback)(voidG),
 void GcallbackArg);

This function takes three arguments. The first is the type of callback being registered, and has one of the
predefined values TRAN_ABORT_CALLBACK, TRAN_COMMIT_CALLBACK, or TRAN_PREPARE_CALLBACK. The second
is the name of the function associated with the specified transaction state. The third is a pointer to any
arguments that will be passed to the callback function.

The registerTranCallback function can only be called from within the scope of a currently executing
transaction, and can only be associated with a non-nested or top-level transaction. When this function is
called, the Tran-C run-time system first checks to insure that a valid transaction identifier is present with
which to associate the specified callback. Prepare callbacks cannot be registered for nested transactions
because TRAN does not use a prepare/commit protocol for nested subtransactions. TRAN does this to
expedite resolving subtransactions on whose outcome other transactions depend.

The prepare callback is the only one of these three types of callbacks that executes within the scope of a
transaction. Reaching the prepare phase of the commit process indicates that a transaction's coordinator
has requested that all participants indicate if they can commit the transaction. The prepare callback is
executed while still within the scope of the transaction, and therefore is the only callback whose execution
can actually affect the outcome of the transaction associated with its execution. Statements in a function
registered as a prepare callback can perform additional processing on behalf of that transaction, and can
even abort the transaction, if necessary.

76 Encina Toolkit Executive Guide and Reference  



  
 

In the same way the statements placed inside the Tran-C onAbort and onCommit clauses can only
execute after the outcome of a transaction is known, functions registered as commit and abort callbacks
can only execute at this time. The callbacks also execute outside the scope of any transaction. Callback
functions can use the Tran-C getCompletedTid function to determine the identifier of the transaction on
whose behalf they are executing.

As mentioned earlier, a nested transaction's onCommit clause is executed when that transaction commits,
even though that transaction may later abort because an ancestor of that transaction aborts. Callbacks
associated with nested transactions are executed when the entire transaction family, of which that
transaction is a part, completes. Table 3 illustrates the interaction between the onCommit clause,
onAbort clause, commit callbacks, and abort callbacks for nested transactions.

Transactional Resource Allocation

When a Tran-C transaction aborts, the thread under which that transaction was running immediately
transfers control to that transaction's onAbort clause. If the transaction is aborted by its parent thread,
then this transfer of control occurs immediately. If the transaction is aborted by another thread, then
control is transferred to the onAbort clause the next time a Tran-C construct is executed by a thread
under which the transaction was executing.

This uncertainty in exactly when the transfer of control to a transaction statement's onAbort clause occurs
can cause problems if the transaction has allocated resources. These resources cannot be freed until
control transfers to the onAbort, presuming that this clause contains the correct statements to deallocate
a variety of different resources.

To automate the deallocation of resources acquired during a transaction, Tran-C provides the
tranMemAlloc and tranMemFree functions, and a number of different functions that initialize, lock, unlock,
and discard mutexes. A primary reason to use these functions is that they automatically deallocate
resources if the transaction in which they were allocated aborts. The memory allocation and mutex
functions are explained in the next two sections.

Table 3. Transaction Clause and Callback Interactions in Nested Transactions

Action

Clauses and Callbacks Executed

onCommit
Clause

onAbort
Clause

Commit
Callback

Abort
Callback

Nested transaction aborts When that
transaction

aborts.
Immediately

Nested transaction commits, but
some ancestor aborts.

When
transaction
commits.

Never.
When that
ancestor
aborts.

Nested transaction commits, and
transaction family commits.

When
transaction
commits.

When
top-level
ancestor
commits.

  Chapter 6. Writing Client Applications in Tran-C 77



  
 

Transactional Memory Allocation

The Tran-C tranMemAlloc and tranMemFree functions associate allocated memory with the current
transaction. When the tranMemAlloc function is used to allocate memory inside a transaction, this
memory is automatically freed if the transaction within which it was allocated aborts. Memory allocated
using the tranMemAlloc function must be deallocated using the tranMemFree function, and Tran-C does
not automatically do this when a transaction commits; the application must free the transaction memory
explicitly.

The syntax of these functions is the following:

void GtranMemAlloc(unsigned long size);
 void tranMemFree(void Gaddr);

When a nested transaction allocates memory and then commits with respect to its parent, the parent
inherits any memory allocated during the nested transaction. If the parent aborts, the memory is freed. If
the amount of memory requested using tranMemAlloc is not available, the containing transaction will
abort with the abort reason MEMORY_EXHAUSTED_CODE.

The tranMemAlloc function stores information about the memory allocated to different transactions in the
Tran-C run-time environment. Such memory must not be freed using system functions that free memory,
such as the standard UNIX free function. Similarly, memory allocated using the standard z/OS UNIX
malloc function must not be freed using tranMemFree, because the run-time environment will not be able
to locate the internal information required to manage such memory. The results of attempting to mix
Tran-C and system allocation and deallocation functions are unpredictable. Since tranMemAlloc affects
memory associated with the current transaction, it is illegal to call it outside the scope of a transaction, but
an application can call tranMemFree anytime.

 Transactional Mutex

Tran-C provides a number of functions that allow you to initialize, obtain, lock, unlock, and terminate
mutexes. A mutex is a data type which represents sections of code or allocated memory that only one
thread may access, restricting all others. A mutex locked within a transaction using one of the Tran-C
mutex functions explained in this section will automatically be unlocked when the transaction ends
(commits or aborts).

Mutexes are intended for short-term mutual exclusion of internal data structures (as opposed to
recoverable data) within an application. Mutexes are thread-dependent, but they are associated with the
transaction within whose context the mutex was locked. This allows Tran-C to unlock the mutex when
execution exits the transaction's scope. When using a mutex within one thread, a nested transaction may
interfere with an ancestor because mutexes are not transaction dependent.

The functions provided to create and manipulate mutexes are the following:

void tranMutexInit(tranMutex_t GmutexP);
void tranMutexInitOnce(tranMutex_t GmutexP);
void tranMutexLock(tranMutex_t GmutexP);

 int tranMutexTryLock(tranMutex_t GmutexP);
void tranMutexUnlock(tranMutex_t GmutexP);
void tranMutexTerminate(tranMutex_t GmutexP);

A given mutex variable should be initialized with tranMutexInit when the application is guaranteed to
execute the initialization call only once. If the application might try to initialize a mutex variable more than
once due to the placement of the initialization call, then the application should use the Tran-C mutex
function tranMutexInitOnce. It will only initialize the mutex variable once regardless of how many times it
is called. This prevents an already locked mutex from being reinitialized which would allow two threads to

78 Encina Toolkit Executive Guide and Reference  



  
 

interfere with each other by modifying the same data simultaneously or executing a critical section of code
at the same time. When using tranMutexInitOnce, assign the mutex variable to the constant
TRAN_MUTEX_INITIALIZER before calling this function. When an application no longer needs a mutex, it
should terminate the mutex with tranMutexTerminate because mutexes consume system resources.

The Tran-C mutex functions associate mutexes with the current transaction. It is illegal to call any
transactional mutex functions (other than the transactional mutex initialization functions) outside the scope
of a transaction. Like other Tran-C constructs associated with a specific transaction, transactional
mutexes allocated within any kind of transaction construct cannot be used within the onAbort or
onCommit clauses, or within upcalls, because these execute outside the scope of any transaction.

The tranMutexLock function locks a mutex for a particular thread. This prevents other threads that try to
lock the mutex from interfering with the locked data. If the mutex is already locked when this function is
called, the function blocks until the mutex is available for locking. Since blocking could be inappropriate
for the application, Tran-C provides the tranMutexTryLock function. If the mutex is not locked, then this
function locks the mutex and returns immediately with a return value of TRUE. If it cannot lock the mutex,
it does not block, but it returns immediately with a return value of FALSE.

The tranMutexUnlock function releases a locked mutex, allowing another thread to lock the mutex if
necessary. Mutexes are automatically deallocated when the transaction that acquired them either commits
or aborts.

Transactional mutexes are fairly expensive to create and maintain, in terms of both the time and required
resources, and should only be used when absolutely necessary. An application should use the system's
underlying mutexes unless the guarantees provided by transactional mutexes are necessary for the
application's correct operation.

Using Standard Mutexes Within Tran-C Applications:  Standard mutexes, such as those
provided by the DCE Threads package, should not be used when the mutexes are held across Tran-C
function calls or control constructs. In Tran-C applications, the transfer of control on transaction abort can
occur whenever a Tran-C function or construct is executed. If an abort has occurred within a Tran-C
application, any standard mutexes held by the application will not be released if this transfer of control
occurs before they are explicitly released. The transactional mutex functions described in the previous
section should be used if mutexes must be held across Tran-C function calls or control statements, since
they associate mutexes with the current transaction, and automatically release those mutexes if the
transaction aborts.

Standard mutexes can be used to isolate regions of memory within any standard C language code in a
Tran-C application, as long as they are explicitly released before any Tran-C functions or constructs are
encountered.

Creating Asynchronous Threads

The Tran-C concThread function creates an autonomous thread and is the threaded analogue to the
fork/exec combination used at the process level in z/OS UNIX systems. Unlike the concurrency
constructs, using concThread leaves the current thread of execution running instead of the current thread
waiting for the spawned thread to terminate. The syntax of this function is the following:

concThread(void (GfuncPtr)(void G), void G);

The concThread function takes two arguments. The first is the name of the function to execute as a
separate thread. Because it is executed as an asynchronous, autonomous thread outside the scope of
any calling transaction, this function cannot return a value. The second is a pointer to any arguments that
function requires. The value that the concThread function returns specifies whether the system could

  Chapter 6. Writing Client Applications in Tran-C 79



  
 

successfully create the thread, TRUE if successful and FALSE if not. When returning FALSE, Tran-C
guarantees the function referenced by the argument did not execute.

The new thread that a concThread function creates executes concurrently with the calling thread and
vanishes when the function returns. Threads created using the concThread function execute outside the
scope of a transaction, but may themselves begin transactions.

Tran-C does not support using Tran-C constructs in threads that can be cancelled. If a thread is cancelled
during the execution of a Tran-C construct or function, then the state of the transaction on whose behalf
the call was made is undefined.

Maintenance and Monitoring Functions

Transactions that remain unprepared for long periods of time can consume resources that could otherwise
be allocated to active transactions. To minimize the number of such transactions, Tran-C provides two
watchdog functions. These functions provide a mechanism for associating a time limit and an expiration
callback with transactions. If the specified time limit is exceeded before the transaction commits or aborts,
the callback is invoked.

Tran-C provides two different implementations of this mechanism: one to associate a time limit with the
current transaction and one to associate a time limit with any named transaction, identified by a
transaction ID.

Tran-C provides the watchTran function to register a time limit and callback for the current transaction.
This function has the following syntax:

unsigned int watchTran(void (Gcallback) (tran_tid_t, void G),
 void GcallbackArg,

unsigned int timeperiod,
 int disallowreset,
 int familyWatch)

The timeperiod parameter is the number of seconds the transaction can remain active before invoking the
callback. Supplying zero cancels the watch. The first time this function is called to set a watch, it returns
zero. Upon future invocations, this function returns an integer representing the number of seconds
remaining on the current watch. If the disallowreset parameter is supplied as TRUE when initially setting a
watch, subsequent attempts to reset the watch return zero, indicating the watch cannot be reset (or
cancelled).

The watchTran function takes a number of arguments. The first is the callback to associate with the
current transaction. The second argument is an argument to that callback, and if the callback requires
multiple pieces of data, the second argument should be a pointer to a block of memory containing the
necessary information. The time limit and callback can be cancelled by calling watchTran with the same
callback and argument, and a time period of zero. Resetting the timeout period resets the timeout counter
to 0; for example, if the current timeout period is 10 seconds with five seconds having passed, and you
reset the timeout period to 20 seconds, then the callback will not be delivered until 20 more seconds have
elapsed.

The last parameter determines how the watchTran behaves for a transaction that is part of a transaction
family in which other transactions have had the same callback and argument registered. If TRUE, the
expiration of the timeout set for the current transaction will not cause the callback to be delivered if there
are other transactions in the same family for which the same callback has been registered.

80 Encina Toolkit Executive Guide and Reference  



  
 

The watchTran function associates a time limit and callback with the current transaction. Tran-C also
provides the watchNamedTran function, which enables the application to register a time limit and
expiration callback for any transaction, identified by TID. This function has the following syntax:

unsigned int watchNamedTran( tran_tid_t tid,
void (Gcallback) (tran_tid_t, void G),

 void GcallbackArg,
unsigned int timePeriod,

 int disallowreset,
 int familyWatch)

Like the watchTran function, the watchNamedTran function returns an integer which is the number of
seconds remaining from a previous setting when the watch on a transaction is reset. The first time it is
called to set a particular watch, it returns zero. If the disallowreset parameter is set to TRUE when a watch
is initially set, subsequent attempts to reset or cancel that watch will return zero, indicating the watch
cannot be changed.

The arguments to this function are the same as those to the watchTran function, except that the first
parameter to the watchNamedTran is the TID of the transaction for which the time limit and callback are
being registered.

If the callbacks registered using the watchTran or watchNamedTran are delivered, they execute outside
the scope of any transaction. Once these callbacks have been delivered, they are automatically
cancelled—they will not be delivered again unless explicitly reset.

Exiting a Tran-C Application

Tran-C applications exit by calling the exitTC function. The exitTC function quickly and cleanly terminates
an application. It aborts all unprepared transactions; if there are prepared transactions (see “Two-phase
Commit Protocol” on page 8) outstanding for the application, the exitTC function waits until they complete
before terminating the application. If any prepared transaction cannot be resolved, the function times out
and terminates the application. The syntax of the exitTC function follows:

 exitTC(int status);

The exitTC function takes an integer value as its argument; the value specified is the status returned by
the application program when it is terminated with the exitTC function. The exitTC function never returns.

Before an application terminates, it may be desirable to allow all outstanding transactions to complete.
The quiesceTC function waits for all outstanding transactions to complete before returning. If any
outstanding transaction does not commit or abort, the function times out and returns automatically,
allowing the application to terminate. The syntax of the quiesceTC function follows:

 quiesceTC(void);

The quiesceTC function takes no arguments. It must be called before the exitTC function. Calling the
quiesceTC function before exiting is not required, but if the quiesceTC function is not called, the exitTC
function can abort some transactions before terminating the application.

For some applications, such as interactive client programs, it is useful to exit in response to program
interrupts. Program interrupts are system-specific signals; for example, on the z/OS UNIX platform, the
SIGHUP, SIGINT, and SIGTERM signals are considered interrupts. Interrupts, however, may not terminate an
application gracefully. The exitTConInterrupt function can be used to ensure that the application
terminates gracefully when a program interrupt occurs. The syntax of the exitTConInterrupt function
follows:

  Chapter 6. Writing Client Applications in Tran-C 81



  
 

 exitTConInterrupt(int status);

The exitTConInterrupt function takes an integer value as its argument; the value specified is the status
returned by the application program when it is terminated by an interrupt. You should call the
exitTConInterrupt function after Tran-C is initialized and before any transactional work is done, but you
can call it at any point during program execution. After an application has called the exitTConInterrupt
function, the application automatically exits (via the exitTC function) whenever the program is interrupted.

82 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 7. RPC Communications in Toolkit Executive
Applications

This chapter discusses how to integrate RPC and other inter-program communication mechanisms into
Toolkit Executive applications. The open system design of the Encina Toolkit makes it easy to integrate a
variety of low-level communication packages with Toolkit and Tran-C applications. This chapter discusses
developing applications using TRPC, Encina's Transactional Remote Procedure Call module, which uses
DCE RPC.

General Information About TRPC

The Transactional Remote Procedure Call (TRPC) module provides the underlying communications
mechanisms used by the entire system, synchronizing the interaction of transactions that may be
submitted from multiple locations on a network, and allowing transactions to be distributed to other
programs and nodes. This section provides background information about TRPC that may be useful when
writing Toolkit Executive applications that use TRPC for communication between clients and servers.

This section also introduces the terminology specific to DCE RPCs, and provides a detailed description of
the contents and format of the interface description files you must create in the Transactional Interface
Description Language ( TIDL) prior to using TRPC. TIDL interface description files are enhanced DCE
RPC Interface Description Language (IDL) files that include provisions for transactional RPC
communications. TIDL syntax is a superset of DCE RPC IDL syntax. The remainder of this chapter uses
the TIDL interface description file for the sample server program to provide examples of creating a TIDL
interface description file for TRPC.

For a complete description of DCE RPC and the syntax and format of IDL interface description files, see
the DCE RPC information in the z/OS DCE Application Development Guide: Core Components and z/OS
DCE Application Development Reference.

The DCE RPC Interface Description Language (IDL)

Constructing and transmitting the functions and messages required for RPC communications between
clients and servers can be extremely complex. To simplify the development of code using DCE RPCs, the
DCE development environment includes a compiler (referred to as a stub generator) that takes as its
input the general descriptions of how a program will use RPCs, and automatically generates the low-level
RPC code. For programs communicating using TRPC, these general descriptions of how a program
interfaces with the RPC mechanism must be written in TIDL.

Compiling an interface description with the IDL compiler produces the stubs for both the client and server,
and an include (.h) file containing variable declarations. Stubs are the portions of programs that actually
interact with the RPC library. Stubs help mask the complexity of the RPC by making them appear to be
local procedure calls. The stubs simplify the code the programmer must write to use DCE RPCs,
automatically handling the packing and unpacking of data into the RPCs.

 Copyright IBM Corp. 1989, 2001  83



  
 

The Transactional Interface Description Language (TIDL)

To generate the code necessary to support the data required by transactional RPCs used in Encina's
OLTP environment, the enhanced IDL interface descriptions must first be processed by Encina's tidl
program. This program automatically produces source modules that produce the piggybacked RPC code
used to make the RPCs transactional, by simultaneously transferring transactional and RPC data.

For a complete description of the syntax and format of TIDL interface description files, see Chapter 4,
“TIDL” on page 23.

 Using TRPC

This section provides specific information required to create Toolkit Executive applications that use the
RPC mechanism provided as part of DCE. The information in this section is only relevant to developers
working on Toolkit Executive applications that communicate using this module.

Note:  By default, TIDL accepts input files and generates output files with names that are valid on the file
system in use. The example file names referenced throughout this section reflect the default names on
UNIX-type file systems, such as the MVS Hierarchical File System (HFS). See Chapter 4, “TIDL” on
page  23 for information on the file names TIDL uses on other file systems.

Preprocessing with TIDL for DCE RPC

In order to generate the correct C-language TRPC code for use with DCE RPC, the tidl program requires
the following two input files:

 � program-name.tidl

A file containing the TIDL description to be processed by Encina's tidl program.

 � program-name.tacf

This is a transactional attribute configuration file (TACF). This file specifies which of the
operations defined in the associated TIDL file should be exported. Using an attribute configuration file
enables the same TIDL file to contain multiple operation definitions. Operations can then be
selectively exported for different applications by modifying the TACF file.

Figure 84 on page 781 shows the TIDL interface description for the sample merchandise server. The first
few lines are comment—TIDL supports the standard C language syntax for comments. The next
non-empty line provides a unique universal identifier (UUID) for this interface that is generated using the
DCE RPC uuidgen utility. This utility generates an empty TIDL/IDL template file which can be used as the
basis for your specialized TIDL file. Following the UUID is the version number of this interface. The
version number is used in some of the internal data structure names produced by TIDL and IDL, uniquely
identifying the client and server stubs produced from a certain version of the TIDL input file. The version
number should be of the form major-version-number.minor-version-number. If an integer version number
is supplied, TIDL will interpret that as the major number and automatically supply a minor number of 0.
After the UUID and version number information, a name (in this case, “merchandise”) is provided for the
interface definition. The name definition is followed by the actual interface definition.

The TACF files used by TIDL have the same syntax as the ACF files used with IDL files for DCE RPC.
For more information about the syntax of ACF files, see the z/OS DCE Application Development Guide:
Core Components and z/OS DCE Application Development Reference.

TRPC does not support distinct, coexisting versions of the same interface. When you change the version
number, you must change both the interface name and function names. For more information about using

84 Encina Toolkit Executive Guide and Reference  



  
 

multiple versions of a single functional interface, see Chapter 25, “TRPC Application Interface” on
page 177.

Following the interface name, the functions that actually make up the interface are enclosed in braces ({
and }). Only those functions requiring that information be exchanged using the RPC mechanism, must be
described. In the telshop client and the merchandise server programs, the first parameter for each of
these functions is a TRPC handle. Next, the parameters required by each function in the interface are
listed. In TIDL files, these functions are prefixed by the declarations "[in]" or "[out]." These declarations
define whether the associated parameter is simply passed as input to the transactional RPC ("[in]"), or
whether it is expected to return a value ("[out]").

The TACF file associated with the TIDL file is shown in Figure 85 on page 782. As mentioned earlier, the
TACF file names the target interface and lists the operations to be exported from the associated TIDL
interface description. In this case, no operations are specified in the TACF file, meaning that all
operations defined in the corresponding TIDL file should be exported.

Files Produced by the TIDL Preprocessor for DCE RPC

TIDL provides a number of command-line options that enable you to specify the names of the output files
it produces. For more information, see “DCE Clients and Encina Servers” on page 33. The make file for
the Telshop sample application invokes the tidl utility with only one argument, the merchandise.tidl file,
and this produces the following default files:

 � _program-name.idl

A file containing the generic Interface Description Language (IDL) description to be processed by the
standard DCE RPC IDL compiler.

 � _program-name.acf

A file containing the generic attribute configuration file definitions for use by the standard DCE RPC
IDL compiler.

 � program-name.h

A header file containing the definitions required by transactional RPC communications. This file
contains definitions of critical data types such as merchandise_v1_B_epv_t, which is the structure
holding the entry point vector (EPV) used in all RPC communications for the defined interface. The
TIDL preprocessor generates the name of this entry point vector by combining the interface name, the
interface version number, and some predefined name segments. For more information on entry point
vectors, see the z/OS DCE Application Development Guide: Introduction and Style and z/OS DCE
Application Development Reference. This file also defines particular instances of this data type,
merchandise_v1_0_client_epv and merchandise_v1_0_manager_epv, used by the respective parts of
the interface. Note that the names of all of these communication vectors contain the major and minor
numbers of the interface version. Using these numbers help insure that the client and server stubs
were produced at the same time, from the same TIDL file, and therefore have consistent call and
return syntax. When the interface is changed, the version numbers should also be changed. This will
help ensure that the stubs produced from the new interface description file will not attempt to use the
entry point vectors associated with the old stubs. The old stubs will still support the interface as it was
defined when they were generated, through the old entry point vector. This header file must be
included (using the C language #include statement) in both client and server programs.

 � program-name_client.c

Source code for the routines that automatically piggyback Distributed Transaction Service and
Transactional RPC data on top of the DCE RPC stub routines used by the client program. This file
must be compiled and linked with client programs.

 � program-name_manager.c

  Chapter 7. RPC Communications in Toolkit Executive Applications 85



  
 

Source code for the routines that accept piggybacked Distributed Transaction Service and
Transactional RPC data on top of the DCE RPC stub routines used by the manager (server) program.
This file must be compiled and linked with server programs.

 � program-name_cswtch.c

Source code for the stub routines used in the client program. These are the routines that are visible
to other programs. This file must be compiled and linked with client programs. Client programs which
must function as both clients and servers must not link with this file.

Note that two source code files are produced for the client program, while only one is produced for the
server program. This is because some programs must act as both clients and servers, and interface calls
for each of these instances must be isolated. One reason that a server would use its own interface is to
allow it to be easily replicated. Programs that provide access to replicated objects (that is, copies are
available at multiple locations) on the network are known as replicated servers. Replicating objects helps
insure their continued availability even in the case of hardware or network problems. A good example of a
replicated object is the database used by a name service, which should be replicated to protect it from
hardware failures on a single host machine. Programs like a name service not only have to provide
access to the replicated object, but also have to negotiate among themselves to keep all copies of the
replicated object up to date.

A replicated server acts as both a client and server of an interface. It must call the client stub code to
request operations, and also call the manager stub code to execute those operations. However, the
manager and client stub code both contain routines with the same names (to allow the easy flow of
information between them). To avoid problems with multiply-defined names when attempting to link these
modules together, the client switch source code file (program-name_cswtch.c) contains public routines
which can be called by the client program directly. The client stub source code file
(program-name_cstub.c) contains private routines that are only called by the routines in the client switch
code. Therefore, a replicated server is compiled using the server stub and client stub routines, but not
with the client switch routines.

It may be interesting to examine the IDL file _merchandise.idl (produced by processing the file shown in
Figure 84 on page 781 with Encina's tidl program). This exposes the extra transactional information
piggybacked on the DCE RPC mechanism. Similarly, examining the IDL ACF file _merchandise.acf,
produced by the TIDL preprocessor, may be interesting. Because the clause following the interface name
in the TACF file was empty, specifying that all interfaces defined in the TIDL file should be exported, this
IDL ACF file will contain no special information; that is, it will be empty aside from the mandatory interface
specification.

Setting the TRPC Environment

To coordinate transactions, the Transaction Service requires the underlying communication mechanism to
provide a way for TRAN at one application (for example, a client) to exchange information with TRAN at
other applications (for example, servers) involved in the same transaction. TRPC passes some
Transaction Service information when executing remote procedure calls, but sometimes TRAN needs to
send data when TRPC is not sending any RPCs for the application. These auxiliary TRAN messages are
referred to as out-of-band data.

Part of initializing TRPC potentially involves customizing its run-time environment for sending out-of-band
data. Applications rarely need to do this because TRPC provides a reasonable default environment, but
when they need to alter the environment, they call the trpc_SetEnvironment function:

86 Encina Toolkit Executive Guide and Reference  



  
 

trpc_status_t trpc_SetEnvironment(
IN rpcauth_name_t principalId,
IN rpcauth_level_t secLevel,
IN char GnsPathP,
IN unsigned32 nameSyntax,
OUT int useNameService)

The parameters to this function are the following:

principalId
DCE principal name identifying the user under whom the application (and TRPC) run.

secLevel
DCE protection level used when exchanging out-of-band data on behalf of the Transaction Service.

nsPathP
path name specifying a DCE Directory Service entry in which TRPC can store information. This entry
must exist when this function executes, and the application must have full access to this directory.

nameSyntax
syntax of the name provided in nsPathP.

useNameService
determines whether the TRPC run-time library can internally perform Directory Service lookups. This
parameter has no impact on whether the application calling this function uses the Directory Service
directly.

Users of the trpc_SetEnvironment function can specify arguments that cause it to look in a series of
possible locations for default values. This is true for every parameter except the last one, and the default
values typically come from environment variables. Some default values come from DCE constants.

The value supplied for principalId is used when authenticating the out-of-band data, and it must be a
completely specified principal name, including the DCE cell name. An application may pass NULL instead
to indicate that this function should get a value from the run-time environment. This function first looks at
the ENCINA_TRPC_PRINCIPAL environment variable, and if it is undefined, then this function looks at the
ENCINA_PRINCIPAL environment variable.

The value supplied for secLevel determines the protection level for out-of-band data sent on behalf of the
Transaction Service. For a complete list of the protection levels DCE supports, see the z/OS DCE
Application Development Reference. If this argument is the rpc_c_protect_level_default constant, this
function first looks at the ENCINA_TRPC_AUTHN environment variable. If this environment variable is
undefined, rpc_c_protect_level_none is used as the protection level.

The final default protection level chosen by TRPC may be different than the DCE's default. If an
application needs to guarantee that it uses the DCE default protection level, it should call the DCE
rpc_mgmt_inq_dflt_protect_level function to get the DCE default protection level and explicitly pass this
value to trpc_SetEnvironment.

The value supplied for nsPathP names a Directory Service entry in which TRPC can store information.
The path name specified must exist before the call to trpc_SetEnvironment. If NULL is supplied, this
function first looks at the ENCINA_TRPC_DS_PATH environment variable. If it is undefined, then this
function looks at the ENCINA_CDS_ROOT environment variable. If ENCINA_CDS_ROOT is used, TRPC
appends the string "/trpc" to the retrieved value.

The TRPC name registration is independent of any registration that the application performs. For
example, an application server called foo_server may export its binding information in the directory

  Chapter 7. RPC Communications in Toolkit Executive Applications 87



  
 

/com/acme/servers/foo_server and may provide the directory /com/acme/servers/trpc for TRPC to use
for names.

The value supplied for nameSyntax describes the syntax of the name provided in nsPathP. The valid
values are the same as those that DCE RPC defines (see the z/OS DCE Application Development
Reference for a complete list). If rpc_c_ns_syntax_default is supplied, this function looks at the
ENCINA_TRPC_NS_SYNTAX environment variable. If it is undefined, TRPC uses rpc_c_ns_syntax_dce.

The value supplied for useNameService determines whether TRPC is able to perform DCE Directory
Service lookups on behalf of the application. TRPC may use the Directory Service to locate applications
in order to deliver out–of–band data on behalf of the Transaction Service. A nonzero value indicates that
Directory Service lookups are permitted. The default value for this parameter is TRUE. Whether TRPC can
perform Directory Service lookups is independent of whether the application itself uses the DCE Directory
Service. An application should enable TRPC to perform Directory Service lookups unless there is a very
good reason to prohibit it; for example, executing in an environment without a directory service, or using
well-known endpoints for providing or finding services, is a good reason.

88 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 8. Advanced Tran-C Programming

This chapter discusses more advanced issues of transactional application development using Tran-C, such
as integrating Tran-C applications with external, nontransactional applications and with external,
non-threaded function libraries.

Saving and Restoring Tran-C Context

It is frequently useful to execute a callback or upcall outside the scope of the current transaction.
Applications may save the current Tran-C context, generate a short-lived Tran-C environment, execute the
desired functions, and then restore the saved context and continue execution. The short-lived Tran-C
environment is not a new transaction or subtransaction, and it is outside the scope of any transaction.
Execution in the new environment is completely unaffected by transaction aborts, and it never does work
on behalf of a transaction with which it should not be involved. The new environment is a newly initialized
Tran-C environment that supports the executions of Tran-C constructs.

To save an existing context, Tran-C provides the tc_SaveTranContext function. The syntax of this
function is the following:

void tc_SaveTranContext(OUT void GGcontextPP);

The tc_SaveTranContext function saves the current context of the thread that executes it, generates a
new Tran-C context for that thread, and returns the saved context. After this call returns, the calling
thread can use any Tran-C construct, which will execute outside the scope of any transactions within
which the calling thread was operating.

To subsequently restore the context saved by a call to the tc_SaveTranContext function, Tran-C provides
the tc_RestoreTranContext function. The syntax of this function is the following:

void tc_RestoreTranContext(IN void GcontextP);

The tc_RestoreTranContext function must be passed the context returned by a matching
tc_SaveTranContext function in order to end the current transaction-independent context, and restore the
previous transaction scope. Once the context is restored by executing this function, the thread again
executes within the transactional scope supplied.

There are a few rules the application must adhere to when using these routines:

1. Calling tc_SaveTranContext repeatedly works, but the application must call tc_RestoreTranContext
with the saved contexts in the opposite order from which they were obtained. That is, contexts must
be saved and restored in a stack discipline. If the application does not follow this discipline, the
results are undefined.

2. The application must never restore a context more than once.

3. When restoring a context, there must be no pending transactions in the executing thread (that is, the
context ending, not the context being restored).

 Copyright IBM Corp. 1989, 2001  89



  
 

Overview of External Function Compatibility

Transactional applications written using Tran-C operate in the threaded environment used with the Encina
Toolkit. The z/OS Encina Toolkit Executive uses DCE threads. For a discussion of thread safety, see
z/OS DCE Application Development Guide: Core Components and z/OS DCE Application Development
Guide: Introduction and Style. Some operating system functions may not provide native support for
threads, and therefore many standard C and System functions have potential side-effects when called
from within Tran-C applications. Two primary concerns are involved when using these types of functions
in the Tran-C threaded environment:

� Do the functions use static data structures which could therefore be written simultaneously by multiple
threads?

� Do the functions operate at the process-level—do they provide control of or access to system internals
that affect the execution of entire processes?

Functions that use internal, static data structures pose serialization problems if called from multiple
threads. Since functions of this type either read or write a static area, it is impossible to determine
whether the data in that location is still accurate with respect to a single process since you cannot know
when various processes are swapped in and out. For more information, see z/OS Language Environment
Programming Reference and z/OS Language Environment Concepts Guide.

Functions that operate at the process level introduce several potential problems:

� Many C and UNIX I/O functions block further activity of the issuing process until that I/O is completed.
This is incorrect for the threaded model of execution provided by Tran-C, because other threads
should be able to continue execution while the thread that issued the read or write call should be
blocked until its requested I/O can complete.

� Functions that cause the calling process to exit if the function does not succeed do not work correctly
in a threaded environment. As with process-oriented I/O functions, only a specified thread should be
forced to exit under most conditions — not the entire process (and therefore all threads running within
that process).

� Functions that affect the priority of processes should be used with caution. Using these functions to
change the priority of a process may indirectly affect the priorities of all threads running within that
process. Some systems provide special functions to change the scheduling priority of a single thread
within a process.

The DCE Threads package provides thread-safe versions of many UNIX and ANSI-C functions that can
then be used in a threaded environment.

Calling Toolkit Functions from Tran-C

Most of the functions provided by the Toolkit modules can be called at any time from within Tran-C.
However, this can be counterproductive when directly calling Toolkit functions involving resources that are
ordinarily managed by the Tran-C run-time system. An example of these resources are the transaction
management functions provided by the Transaction Service (TRAN). When using these functions within a
Tran-C application, you should take the following issues into consideration:

� Tran-C internally handles the creation and scheduling of the threads necessary for most program
activity. The Tran-C concurrent, cofor, subThread, and concThread constructs prevent the user
from having to issue the low-level thread creation and management calls associated with concurrent
activities. Tran-C also automatically tracks the threads associated with a given transaction,
terminating them as necessary if the encompassing transaction aborts. Using external thread calls,
such as DCE thread calls, from within a Tran-C application requires that the application devote some
of its time to managing and tracking the activity of concurrent threads associated with each

90 Encina Toolkit Executive Guide and Reference  



  
 

transaction. When Tran-C creates a thread, it automatically allocates the data structures used
internally to hold information about that thread. These underlying structures are not created or
maintained by the external (non–Tran-C) threading functions.

� Control constructs such as the Tran-C transaction construct and its associated onAbort and
onCommit clauses reduce the complexity of transactional application development by removing the
need to associate callbacks with the general outcome of specific transactions. Instead, the statements
inside those clauses serve the function of the callbacks for the completion of associated transactions.
Similarly, the Tran-C run-time environment automatically manages much of the low-level data
necessary for communication with remote processes, by automatically providing mandatory RPC
parameters such as transaction identifiers. Other Tran-C constructs, such as the subTran construct,
automatically handle the creation of nested transactions and their associated data structures.

� Internally, Tran-C uses the Thread-to-Tid (ThreadTid) component of the Encina Toolkit. Because of
this, do not call the threadTid_End function when it will affect the current thread that Tran-C created.
If the application explicitly begins its own threads using the ThreadTid component, then it can use
threadTid_End to end those threads, but the application must not affect a Tran-C maintained thread.
It is, however, legal at any time to query the transaction associated with the current thread using the
threadTid_Lookup function.

� Encina Toolkit Transaction Service functions that request information about the outcome of a
transaction are not meaningful when called within a Tran-C transaction construct. For example, the
tran_ForcePartialOutcome function is not meaningful within a Tran-C transaction construct because
at that point it is still within the scope of the transaction, and therefore the outcome of the transaction
is not yet known.

In general, most of the functions provided by any module of the Encina Toolkit can be called from within a
Tran-C application, but should not be used when Tran-C provides a construct that accomplishes the same
thing. The Tran-C run-time environment automatically manages a large amount of lower-level information
that must be explicitly maintained by each application if equivalent Tran-C functions are not used. This
rule does not apply to lower-level functions that provide thread-safe versions of standard ANSI C and
UNIX functions, as discussed in the next two sections.

Another way of determining the Tran-C and Encina Toolkit functions that can safely interoperate is to
consider what Tran-C does to establish transaction contexts (see the example transaction construct in
box 1 in Figure 30). At the beginning of a transaction (or similar) construct, Tran-C begins exception,
transaction, and ThreadTid scopes. These are all terminated at the end of the construct's main body. In
Figure 30, box 2 shows the pseudo-code expansion of the example transaction construct shown in box 1
of the same figure. If the application calls functions such as tran_End or threadTid_End within the scope
of a transaction managed by Tran-C, the application will undermine the ability of Tran-C to keep track of
these entities. However, the application can explicitly establish and terminate nested exception,
transaction, and threadTid scopes within a Tran-C scope.

transaction {

onAbort} {

<transaction code>

<onAbort code>

}

TRY

} CATCH (TC_ABORT_EXCEPTION)  {

{

ENDTRY

tran_Begin
thread_Begin

thread_End
tran_End

<transaction code>

<onAbort code>

}

(. . .);
(. . .);

();
();

Box 1: Example Transaction Construct Box 2: Transaction Construct Pseudo-Expansion

Figure 30. Example Transaction Construct and Its Pseudo-Code Expansion

  Chapter 8. Advanced Tran-C Programming 91



  
 

Figure 31 on page 92 shows an example of explicitly established and terminated transaction and
ThreadTid scopes nested within a Tran-C scope.

 transaction {
 ...
 tran_Begin(...);
 threadTid_Begin(...);
 ...
 threadTid_End();
 tran_End();
 ...

} onAbort {
 <onAbort code>
 }

Figure 31. Explicit Transaction and threadTid Scopes

Tran-C and TX Interaction

The X/Open TX interface is a proposed standard that enables application programs to call a transaction
manager in order to open and close resource managers and resolve transactions. The Encina TX
Interface implements the preliminary specification from X/Open as specified in Distributed Transaction
Processing: The TX (Transaction Demarcation) Specification. (See Chapter 10, “X/Open TX Interface for
Encina” on page 103.)

Because of possible interaction problems, TX functions and Tran-C constructs should not be used in the
same application process. It is safe, however, to use both Tran-C and TX in a single transaction when
more than one application process is involved. That is, a client written in Tran-C can make a transactional
RPC to a server written in TX, or a client written in TX can make a transactional RPC to a server written in
Tran-C. These situations are likely to occur when modules from different sources are used in an
application.

For example, Figure 32 shows a C client using TX interacting with a Tran-C server. The C client initiates
the transaction and calls the merchandise_QueryItem function remotely. The Tran-C server can
participate in the transaction by aborting the transaction.

...
tx_status= tx_open();

tx_status= tx_commit();

tx_status= tx_close();

tx_status= tx_rollback();

tx_status= tx_begin();

...

...

...

if success

else

...

C Client

...

merchandise_QueryItem(stockNum, quantityP)

merchandise_QueryItem(stockNum,quantityP);

long stockNum, *quantityP;
{

...
if (stockNum <= 0 || stockNum >= MAX_NUMBER)

abortWithCode(BAD_STOCK_NUM);
...

}

Tran-C Server

Figure 32. Pseudo-code Using TX and Tran-C

92 Encina Toolkit Executive Guide and Reference  



  
 

Debugging Tran-C Applications

Tran-C supports the standard tracing mechanism used by all Encina Toolkit components, and it also
provides the tc_DumpState function. See “Tran-C Diagnostics” on page 715 for error messages Tran-C
outputs. See “Transfer of Control in Transactions” on page 43 for a list of general warnings and some
failure conditions for Encina components.

Dumping Application State

The tc_DumpState function dumps the state of Tran-C in an application.

Calling this function generates the following output for each pending transaction that was created using
Tran-C:

 � transaction identifier

� whether it is nested or top-level

� transaction state (running, aborted, or committed)

 Tracing Applications

The tracing facility lets you follow the execution path of the application as it makes calls into Tran-C.
Applications can enable and disable tracing, set the tracing level, and direct the tracing output for
applications. For details see Chapter 34, “Tracing and Debugging Encina Toolkit Applications” on
page 229.

The exported global variable, tc_traceMask, permits applications to turn tracing on and off and set the
desired tracing level. There are no special events traced for Tran-C.

  Chapter 8. Advanced Tran-C Programming 93



  
 

94 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 9. Compiling Encina Toolkit Applications

This chapter explains how to compile Encina Toolkit applications. This information is oriented towards
developers who are using the standard UNIX make program, and may require slight modifications if
compiling Encina Toolkit applications using other, similar, programs. Standard make conventions are
used in the explanations of the Makefile variables discussed in this section. For an explanation of these
conventions, see the documentation for the make utility.

This chapter explains the environment variable settings, include files, and libraries that must be used with
Encina Toolkit applications. All of the Toolkit modules use data structures and status codes that must be
declared by including the appropriate include file(s). Also, remember that in z/OS the DCE and Encina
libraries are implemented as DLLs.

Referring to the Installation Directory

As with many UNIX applications, the actual directory where the Encina Toolkit is installed can be defined
during installation. To produce flexible applications which can easily be compiled even if the Transarc
software is subsequently moved to another directory, it is a good idea to define the Toolkit installation
directory as a variable in the Makefiles for Toolkit applications. Subsequent recompilations will only
require changing the definition of this variable if the Transarc software is moved to another location. A
sample Makefile statement defining the installation directory for the Toolkit and Tran-C is the following:

INSTALL_DIR = /usr/lpp/encina

Sites that use distributed file system software, such as the DCE Distributed File System (DFS) may store
software for different operating systems on single file server machines using a naming scheme that
includes the name of the system for which a particular set of Encina or DCE binaries is compiled. See
your system administrator if you cannot locate the directories in which Encina or the DCE have been
installed.

Referring to the DCE Installation Directory

The Encina Toolkit uses the base distributed computing services that DCE provides, such as DCE RPC.
When compiling Toolkit applications, you must specify the directory in which this software is located, so
that the compiler can find the libraries required by applications that use these services. Throughout this
chapter, the location of the DCE software is referred to using the variable DCE_DIR. You should substitute
the actual name of the directory in which the DCE software is installed on your machine for this variable in
any compilation directives that include this variable. A sample Makefile statement defining the z/OS
installation directory for the DCE is the following:

DCE_DIR = /usr/lpp/dce

Sites that use distributed file system software, such as the DCE Distributed File System (DFS), can store
software for different operating systems on single file server machines using a naming scheme that
includes the name of the system for which a particular set of Encina or DCE binaries is compiled. See
your system administrator if you cannot locate the directories in which Encina or the DCE have been
installed.

 Copyright IBM Corp. 1989, 2001  95



  
 

Setting Environment Variables

All software from Transarc provides National Language Support (NLS) for error messages, warnings, and
status messages. When executing applications, users must have defined in their environments certain
variables that identify the message catalogs and languages to use for presenting these messages. When
compiling, these same environment variables may be necessary if the make facility determines IDL files
must be processed; this is because the idl utility requires these environment variables during its run time.

 Executing Applications

When executing Toolkit Executive applications, the NLSPATH and LANG environment variables must be
set correctly to enable the application to produce the correct national language messages. The examples
in this section select English as the language choice for the LANG variable.

The examples use the variables <install-dir> and <dce-dir>. The <install-dir> variable refers to the
directory in which you installed the Toolkit software (the same directory to which you set the Makefile
variable INSTALL_DIR). The <dce-dir> variable refers to the directory in which you installed the DCE
software (the same directory to which you set the Makefile variable DCE_DIR).

All of the environment variables discussed in this section should have values that reflect the directory in
which your national language catalogs are located, and the language which you want to use. z/OS Encina
supports both English and Japanese messages. For example, the z/OS statements for Encina messages
might be the following:

 NLSPATH=/usr/lpp/encina/lib/nls/msg/%L/%N
 LANG=en_US

 Compiling Applications

When compiling a Toolkit application that uses the DCE RPC mechanism or other DCE services, the
NLSPATH environment variable must include the directories that contain the DCE messages. These
directories must be included when the make facility generates the interface description from an IDL or TIDL
file. In z/OS, you can append the values for the DCE messages to the values set in the previous example
using the following statement:

 NLSPATH=/usr/lib/nls/msg/%L/%N:$NLSPATH

The idl utility does not require that the LANG environment variable be set.

Specifying Toolkit and DCE Include Files

Include files are text files specifying structure, variable, and macro definitions used in applications written
in the C programming language. The include files for the Encina Toolkit are organized hierarchically under
the include subdirectory of the Transarc software installation directory. In order to easily find and use the
include files required by the various Toolkit modules, Makefiles for Toolkit applications must specify that
this directory be searched for include files.

The C compiler's -I option specifies additional directories to be searched for include files. This option must
be followed by the name of the additional directory to search.

For example, to add the directory /usr/lpp/encina/include to the list of standard directories searched for
include files, the following line should be added to the Makefile or command line compilation statement:

 -I/usr/lpp/encina/include

96 Encina Toolkit Executive Guide and Reference  



  
 

This include directory definition can be made more flexible in the make program environment by
referencing the previously defined INSTALL_DIR variable, as in the following statement:

 -I$(INSTALL_DIR)/include

The encina install program also creates a symbolic link from /usr/include/encina to
/usr/lpp/encina/include. This link may be used for convenience and keeps with the standard
conventions for the location of headers used on open systems. As before, this symbolic link may be used
with the -I compiler directive as:

 -I/usr/include/encina

Include Files for DCE Services

Toolkit Executive applications that use any of the services that the DCE modules provide (such as DCE
RPCs, the DCE Directory Service, and the DCE Time Service) must search additional directories to find all
of the include files required for these modules. For example, applications using DCE RPCs require
additional include files for that module when compiling the source files produced by IDL and Transarc's
tidl programs.

The include files for z/OS DCE applications are located in the /usr/lpp/dce/share/include directory. A
sample Makefile statement for adding the z/OS DCE directory to the standard list of directories searched
for include files during compilation using a defined symbolic link is the following:

 -I/usr/include/dce

Specifying Toolkit and DCE Libraries

Libraries are binary files containing precompiled routines and functions that C applications use. Unlike
most UNIX libraries, the z/OS Encina library is implemented as the ECNDLL DLL, instead of as libEncina.a.
The linkage to the DLL is the libEncina.x exports file, which is located in the /usr/lpp/encina/lib
directory. To easily find and include the library functions the various Toolkit modules require, Makefiles for
Toolkit applications must specify searching this directory.

Unlike include files, whose names are explicitly referenced in your C source code, compilation using
libraries requires that two items of information be specified:

� the name of any additional directories to search for libraries
� the names of the libraries to search for specified functions

The C compiler's -L option specifies additional directories to be searched for libraries. This option must be
followed by the name of the additional directory to search. The z/OS -L option does not find exports (.x)
files, and so they must be explicitly linked with the application.

For example, to add the directory /usr/lpp/dce/lib to the list of standard directories searched for
libraries, the following should be added to the Makefile:

 -L/usr/lpp/dce/lib

As with include directory definitions, this library directory definition can be made more flexible in the make
program environment by referencing the previously defined INSTALL_DIR variable, as in the following
statement:

 -L$(DCE_DIR)/lib

An important feature of the z/OS Encina product is that the libraries are packaged using the concept of the
Dynamic Link Library (DLL). Building an application that accesses APIs from a DLL involves adding the

  Chapter 9. Compiling Encina Toolkit Applications 97



  
 

DLL compiler directive to the c89 command that does the compile and link. For Encina, the libEncina.x
file in the /usr/lpp/encina/lib directory that contains the symbols in the Encina DLL needs to be linked
into the application. Encina applications typically require the services of DCE, so the EUVPDLL.x file that
contains the DCE DLL symbols should also be linked in as well. The -ldce directive needs to be added to
the command, as well as the following, which performs steps to enable the DCE DLL to initialize:

 -u//CEESGBB8

You can automate these build steps by using the c89_encina utility script shipped in the
/usr/lpp/encina/etc directory to perform compilations. The utility converts a traditional UNIX compile
command statement to a z/OS format. When using the utility, make sure the script internal variables
dce_dir, dce_header_dir, dce_library_dir, and dce_exports_dir are set correctly for your installation.

The utility preserves the intent of the linkage commands used to build z/OS Encina applications while
using existing UNIX Encina application Makefiles:

c89_encina -o encina_app file1.o file2.o -L/usr/lpp/dce/lib \
-L/usr/lpp/encina/lib -lEncina -ldce

Generates a z/OS c89 command of the form:

c89 -WB,DLL -o encina_app file1.o file2.o -L/usr/lpp/dce/lib \
 -L/usr/lpp/encina/lib /usr/lpp/encina/lib/libEncina.x \
 /usr/lpp/dce/lib/EUVPDLL.x -ldce \
 -u//CEESGBB8

This utility mapping may be important to those porting UNIX Encina applications. The only requirement to
begin the porting effort is a change in the ported Makefile; change:

cc=xlc_r4

to

cc=/usr/lpp/encina/etc/c89_encina

Note that on z/OS the libEncina.a is not used so the -lEncina directive is not generated.

To use /bin/c89 directly without c89_encina, the following directives are needed for Encina applications:

 � -u//CEESG008
 � -ldce
 � -L/usr/lpp/dce/lib
 � -L/usr/lpp/encina/lib
 � /usr/lpp/dce/lib/EUVPDLL.x
 � /usr/lpp/encina/lib/libEncina.x
 � -W0,DLL

Note that you list the .x files just as you would regular .o files.

The Encina DLL (ECNDLL) needs to be accessed at runtime and is automatically installed into lpalib.

98 Encina Toolkit Executive Guide and Reference  



  
 

Libraries for DCE Services

Toolkit applications that use any of the services that the DCE modules provide, such as DCE RPCs, the
DCE Directory Service, and the DCE Time Service must search an additional directory to find the DCE
library when compiling. For example, applications using DCE RPCs must be linked with the DCE library to
compile the source files produced by IDL and Encina's tidl programs.

The DCE library is located in the /usr/lpp/dce/lib directory. The following is a sample statement for
adding the DCE lib directory to the standard list of directories searched using a Makefile:

 -L/usr/lpp/dce/lib

Specifying Library Names

When compiling a C program, functions referenced in the source code, but for which the source is not
actually present, are looked for in function libraries. The format of the names of these libraries is
libname.a, where name is considered the name of the library.

Specify the names of libraries to search for functions that are referenced but are not actually present in an
application's C source code using the C compiler's -l option. The name of the library follows this option.
This document specifies libraries using the standard syntax for C compilers. For example, -ldce refers to
the library libdce.a.

The functions various Toolkit modules require or provide are contained in the ECNDLL DLL and an
application references them through the libEncina.x file in /usr/lpp/encina/lib. All z/OS Encina Toolkit
applications are required to link with this file.

Compiling Clients with Server Interfaces

Compiling Toolkit client applications involves additional issues beyond just including and linking with
Encina Toolkit (and Tran-C, if Tran-C is being used) include files and libraries. The TRPC interfaces
defined for the server that a client will be contacting must also be included in the compilation process.

With respect to TIDL and TRPC, clients fall into one of three categories:

� The server provider supplies libraries that contain all the TRPC definitions.

� The server provider supplies the include files and client stubs for the interface.

� The server provider supplies the .tidl file.

In the first category, to compile the application, the user links with the library, and nothing else is required
to use the server's interfaces. This method of providing a server interface has the advantage of simplicity
for the client developer, and also allows the server vendor to build the client-side interfaces into the library.
This allows the server vendor to provide a very high-level, abstract interface to the server that hides
complexities of the lower-level TRPC interfaces exported by the server. If the lower-level TRPC interfaces
need to change with new server releases, the higher-level interfaces in the library can stay the same,
relieving client developers of the need to change their code. They can simply re-link with the new library
or simply install the new library if shared libraries are being used.

In the second category, the client developer must use the server interface definition files that the server
vendor supplies. These files should have names of the form explained in “Files TIDL Produces” on
page 27. The developer must include the .h files in the client's source code and compile the .c files for
linking with the client application. If these files are changed with subsequent releases of the server, the
client application needs to be recompiled with the new interface files, or it will not be able to contact the

  Chapter 9. Compiling Encina Toolkit Applications 99



  
 

server that exports the new version of the interface. Servers exporting the old interface may still be
available, at the discretion of the server vendor.

In the third category, client developers must perform an extra step to get the interfaces for their
applications. They must first execute tidl to generate the include files and client interface stub files. The
must then explicitly include the newly generated include files in the source for the client application,
compile the stubs, and link with the results.

Considerations for Threaded Applications

DCE applications must use the DCE thread package, not the z/OS package. This is because z/OS
supplies POSIX draft 7 thread support while DCE requires draft 4. To use DCE threads, a threaded
application must be compiled with the following options:

 � DMVS
 � D_DCE_THREADS
 � D_OPEN_SYS
 � char_is_unsigned_char

See the z/OS DCE Application Development Guide: Core Components for more information about
threaded DCE applications.

Header Files for Tran-C Applications

All Tran-C applications must include a header file to define the data types and internal structures used in
Tran-C applications and by the Tran-C runtime environment. The Telshop example program is a Tran-C
application.

� Your application must include the file <tc/tc.h>.

� If your application uses the Tran-C TRPC communication functions, it must include the file
<tc/rpc/tc_trpc.h>.

Resolving Tran-C Compilation Problems

This section provides information on resolving problems that may occur when compiling Tran-C
applications. Compilation problems specific to Tran-C are name collisions and incorrect macro expansion.

Resolving Name Collisions During Compilation

Both Tran-C and the Toolkit are designed to support the development of other systems and applications
using the technology that those systems and applications provide. This type of design requires a means
for resolving name collisions that occur during compilation. Name collisions occur when a function defined
in the application has the same name as a function provided in the libraries of an enabling technology.
Functions that have common names are the most likely to cause name collisions.

To allow users to resolve name collisions, the Tran-C function names used in this document are actually
suggested names that are mapped in Tran-C to functions with names of the form tc_function-name.
Internally, all of the actual Tran-C functions begin with the tc_ prefix to indicate that the function is a part
of Tran-C—the remainder of the name preserves the purpose of the function.

100 Encina Toolkit Executive Guide and Reference  



  
 

C preprocessor #define statements do the mapping between suggested and internal names. The #define
statements that declare the suggested names for all of the functions used in Tran-C are defined in the
header file tc/tc.h.

Name collisions are detected during compilation. You can resolve collisions between function names by
undefining the suggested name of the Tran-C function that caused the collision. You can remove the
defined mapping between the suggested name and the internal name by using the C preprocessor's
#undef statement. The #undef statement should appear immediately after the #include <tc/tc.h>
statement in the application program.

Resolving Macro Expansion Problems

Many Tran-C constructs are implemented as macros. As a result, diagnostic messages may not pinpoint
the cause of problems precisely. When debugging a Tran-C application that does not compile, check for
the following items:

� Non-terminated or incorrectly terminated C constructs within an application can cause a correctly
defined Tran-C construct to be expanded incorrectly. Check the syntax of your C code to make sure
that it is correct when the compilation of a Tran-C application fails.

� Incorrectly terminated Tran-C constructs can cause the Tran-C construct to be expanded incorrectly.
An example of this is a transaction construct with no onAbort clause.

Other syntax errors in Tran-C constructs can cause a construct to be expanded differently from what is
expected, resulting in execution or logic errors rather than compilation failure. For example, a transaction
construct in which the onAbort clause contains multiple statements that are not enclosed within braces or
not terminated by a trailing semicolon compiles, but only the first statement is interpreted as being
associated with the onAbort clause; the others are interpreted as standard C statements outside the
transaction construct.

  Chapter 9. Compiling Encina Toolkit Applications 101



  
 

102 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 10. X/Open TX Interface for Encina

This chapter introduces the Encina TX interface and describes several important issues concerning the
implementation of the TX interface. This chapter also describes Encina's extensions to the standard to
the interface. See “TX Diagnostics” on page 730 for information about the diagnostic support provided for
TX.

 Introduction

The X/Open TX interface is a standard, well-known API that an application program uses to open and
close resource managers, start and end global transactions, direct the completion of transactions, and
obtain information about the status of transactions. The Encina TX Interface implements the preliminary
specification as specified in Distributed Transaction Processing: The TX (Transaction Demarcation)
Specification, published by The Open Group, October, 1992. It is assumed that the reader is familiar with
this specification.

The Encina TX Interface is provided as part of the Encina Toolkit Executive. It is intended as an
alternative to Transactional-C for C programmers.

The Encina TX Interface interoperates with the Transaction Manager-XA Service (TM-XA) but does not
require the application to use TM-XA.

Note:  z/OS does not provide the Transaction Manager-XA Service (TM-XA).

Similarly, the TM-XA Service interoperates with the Encina TX Interface but does not require the
application to use the TX Interface.

As part of the TX implementation in Encina, the Transactional Interface Definition Language (TIDL) that
Encina uses supports the TxRPC specification and its associated attributes (the transaction_mandatory
and transaction_optional attributes). For more information on these attributes, see the X/Open TX and
TxRPC documentation. To process files using these attributes, special switches must be used on the tidl
command-line. See “tidl” on page 684 for more information.

 Implementation Issues

The following sections present several important issues involving the implementation of the Encina TX
Interface.

 Threads

In the X/Open specification, the notion of a thread of control is explicitly stated to be an operating system
process. This conflicts with Encina's use of multiple threads within an application process. Encina maps
the TX specification onto multiple threads within the confines of the X/Open specification and the Encina
environment. The tx_open and tx_close functions affect all threads within the process. All other
functions in the X/Open specification affect a single thread within the process.

Each Encina thread has its own TX commit_return, transaction_control, and transaction_timeout
characteristics. The tx_set_* calls change the characteristics of the invoking thread only. When a thread
is created, the characteristics are initialized to the values the X/Open specification requires:
commit_return is set to TX_COMMIT_COMPLETED, transaction_control is set to TX_UNCHAINED, and
transaction_timeout is set to 0. Note that a new thread does not inherit the transaction characteristics of
its parent thread.

 Copyright IBM Corp. 1989, 2001  103



  
 

 Nested Transactions

The X/Open specification does not allow nested transactions. By default, the Encina TX Interface also
does not allow nested transactions. However, the Encina TX Interface provides the tx_allow_nesting
function to enable the use of nested transactions.

 TX Transactions

Unlike Tran-C, TX uses explicit functions to begin and end transactions.

� The tx_begin function starts a transaction.

� The tx_commit function tries to commit a transaction.

� The tx_rollback function aborts a transaction.

The initiator of a transaction is the only process that can initiate commit processing; no other process can
call the tx_commit function. Another process can indicate that it would like to abort the transaction (for
example, by calling the tx_rollback function or the Tran-C abort function). However, this simply marks
the transaction for subsequent abort. The transaction is not actually resolved until the initiator calls either
the tx_commit function or the tx_rollback function. Remember that, under the rules for the two-phase
commit process, all processes must agree to commit a transaction; if any process in the distributed
transaction wants to abort the transaction, it is aborted. Thus, if another process has marked the
transaction to be aborted and the initiator calls the tx_commit function, the transaction is aborted; the
tx_commit function returns a status code informing the initiator that the transaction aborted.

In TX, the initiator of the transaction is not informed immediately if another process requests that the
transaction be aborted. There is no TX equivalent of the Tran-C onAbort clause; that is, there is no
automatic transfer of control when another process initiates an abort. The initiator finds out about the
requested abort when it tries to commit the transaction. However, in some cases, this can mean that the
process first does a great deal of work that the transaction manager then has to undo. To avoid this, the
initiator can call the tx_info function, which returns information about a transaction. If this function
indicates that an abort has been requested, the process can call the tx_rollback function immediately.

The TX Interface and Transactional-C

The Encina TX Interface is intended as an alternative to Transactional-C (Tran-C). Within a single
application process either Tran-C or TX should be used exclusively. A transaction begun with a TX
function should end with a TX function and should not contain any Tran-C constructs (such as transaction
or abort). Likewise, a transaction begun with Tran-C should end with Tran-C, and TX functions (such as
the tx_info or tx_rollback functions) should not be used within that transaction.

Tran-C and TX can, however, be used in a single transaction when more than one process is involved.
That is, a Tran-C client can make a transactional RPC call to a TX server, or a TX client can make a
transactional RPC to a Tran-C server. Situations in which Tran-C and TX are used in a single transaction
might occur when modules from different sources are used in an application. For example, suppose an
application requires the use of an existing server written in COBOL and new PC-based clients. If the
server is ported to Encina, it would use the TX Interface, while the PC-based clients might be written using
Tran-C.

104 Encina Toolkit Executive Guide and Reference  



  
 

When to Use TX

TX is an alternative to Tran-C. The following cases can dictate the use of TX:

� The application is being ported from another system and already uses TX. In this case, it may be
simpler to continue to use TX under Encina than to modify the application to use Tran-C.

� The transaction must span a lexical scope. For example, the transaction may have to be started in
one function and committed in another. This can happen in event-driven programming.

� The application is written using a tool that automatically uses TX.

X/Open Standard Interface

The following sections describe the TX interface header files and libraries and the TX interface functions.

TX Interface Header Files and Libraries

The file tx/tx.h contains the X/Open TX interface declarations for the C language. This file must be
included in any C file that uses the TX Interface functions.

The TX functions are contained in the ECNDLL DLL. See “Specifying Library Names” on page  99 for more
information on the libraries used during compilation.

TX Interface Functions

The Encina TX interface provides C functions that open and close an application's resource managers,
begin and end transactions, and set transaction characteristics. The following C functions are exported:

 � tx_begin
 � tx_close
 � tx_commit
 � tx_info
 � tx_open
 � tx_rollback
 � tx_set_commit_return
 � tx_set_transaction_timeout

Note:  The Encina TX documentation is intended to describe only the differences between the X/Open
specification and the Encina implementation of the C function descriptions. For more information,
see the X/Open TX specification.

Encina Extensions to the X/Open Interface

The functions and upcalls defined in this section are not part of the X/Open specification. These functions
extend the TX Interface.

� tx_allow_nesting – enables the nesting of transactions in TX.
� tx_get_rollback_code – obtains the abort code from the most recent TX transaction that aborted.
� tx_get_rollback_string – obtains the abort string from the most recent TX transaction that aborted.
� tx_set_rollback_code – sets the abort code for an aborted transaction.
� tx_set_rollback_string – sets the abort string for an aborted transaction.

The tx_RegisterXaUpcalls2 function is intended for use only by the Transaction Manager-XA Service
(TM-XA).3 The upcalls for the tx_RegisterXaUpcalls function are provided as part of the Encina TX

  Chapter 10. X/Open TX Interface for Encina 105



  
 

Interface. They are documented here only for completeness and application programs should not use
them.

 Header Files

The file tx/tx_extensions.h contains structure and data type declarations used by the C functions for the
Encina extensions to the TX Interface. This file must be included in any C file that uses the extended TX
Interface functions.

 Abort Reasons

TX generates an abort reason when the tx_rollback function is called to abort a transaction. Abort
reasons provide information describing the reason a transaction aborted. This information is stored in a
data structure containing an integer code, a character string, or both, as well as other data used in
formatting abort reasons. (See the encina_abortReason_t data type for details of the abort reason data
structure.)

The TX interface defines some default abort reasons that are implemented as abort codes with associated
abort strings. If no abort reason has been set explicitly for a transaction before it aborts, one of the
default abort reasons is generated. Table 4 lists the abort reasons that are defined. For default abort
reasons, the abort code can be retrieved using the tx_get_rollback_code function and the abort string
can be retrieved using the tx_get_rollback_string function.

The Encina TX interface provides functions for setting and retrieving abort reasons as abort codes. The
tx_set_rollback_code function can set an abort code, and the tx_get_rollback_code function can
retrieve it. These functions rely on other functions and data types defined as part of the Encina Abort
Facility. See Chapter 27, “The Encina Abort Facility” on page 183 for more information about the Abort
Facility.

The Encina TX interface also provides functions for setting and retrieving abort reasons as simple text
strings. The tx_set_rollback_string function can set an abort string to be used as the abort reason for a
transaction. The abort string should be set immediately before calling the tx_rollback function to ensure
that the desired abort reason is generated. The abort reason that the tx_rollback function stores depends
on the following circumstances:

Table 4. TX Interface Abort Codes

Abort Code Description

TX_TIMEOUT_ABORT_CODE Transaction timeout expired.
The transaction aborted because the timeout set by the
tx_set_transaction_timeout function expired.

TX_ROLLBACK_ABORT_CODE tx_rollback was called.
The transaction aborted because the application called the tx_rollback
function. If no other abort reason is set, this abort reason is returned by
default.

TX_THREAD_EXIT_ABORT_CODE Thread exited without calling tx_commit.
The transaction aborted because the associated thread ended before the
transaction was committed.

2 z/OS does not support tx_registerXaUpcalls.

3 The Transaction Manager-XA Service (TM-XA) is not included in the z/OS Encina Toolkit Executive.

106 Encina Toolkit Executive Guide and Reference  



  
 

� If no abort reason has been explicitly set before the tx_rollback function is called, the
TX_ROLLBACK_ABORT_CODE abort code is generated as the abort reason.

� If an abort reason has been set using either the tx_set_rollback_string function or the
tx_set_rollback_code function, that abort reason is used.

� If another component has aborted the transaction, any abort reason that component sets is used.

After the abort reason has been stored, either the tx_get_rollback_string or tx_get_rollback_code
function can retrieve it. The tx_get_rollback_code function returns the abort reason in an integer format,
and the tx_get_rollback_string function returns the abort reason in a printable string format. Abort
reasons that Encina components (such as TX) generate are generally available in both formats. Abort
reasons that user programs generate are available only in the format in which they were registered, unless
additional functions (defined by the Encina Abort Facility) are used.

 Diagnostics

See Appendix A, “Messages” on page 711 for diagnostic support information.

Trace and State Dump Information

The trace output generated during the execution of an application can be used to follow the execution path
of the application as it makes TX calls. All TX functions are capable of tracing their entry, parameters,
and exit.

The level of tracing is controlled by the value of a single variable that the TX interface exports:

unsigned long tx_traceMask;

The Encina Trace Facility defines a number of “bit constants” that, when set in the above variable, cause
a specific form of tracing to occur. For example, the TRACE_ENTRY constant enables entry/exit tracing of
TX functions.

The following section describes the levels of tracing the Encina TX interface supports.

Global Trace Levels:  The TX interface supports the global trace levels that the Encina Trace
Facility defines. These levels are as follows:

� TRACE_ENTRY – enables tracing of the entry and exit of functions that make up the TX interface.
� TRACE_PARAM – enables tracing of the parameters passed to the interface functions.
� TRACE_EVENT – enables tracing of all events in TX. This trace class outputs large amounts of

information and, for this reason, is not always recommended.
� TRACE_GLOBAL – enables all trace levels.
� TRACE_NONE – disables all trace levels.

State Dump: The TX interface provides the tx_DumpState function to dump the state of TX in an
application.

  Chapter 10. X/Open TX Interface for Encina 107



  
 

108 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 11. Transactional Programming Using TRAN

The Encina Toolkit is the foundation of Encina's distributed transaction processing system. The Encina
Transaction Service (TRAN), a primary component of the Toolkit, defines the underlying functionality for
creating distributed transactions in Encina applications.

This chapter provides an overview of TRAN and describes situations in which you can use TRAN
functions instead of the higher-level interfaces such as Tran-C. A small example illustrating the use of
common TRAN functions is included. A summary of other functions provided by low-level components of
the Encina Toolkit that can be useful for managing transactions is also included. See Chapter 39, “TRAN
Functions” on page  327 for details.

An Overview of TRAN

TRAN is a module of the Encina Toolkit that consists of a set of low-level interfaces designed for the
definition and management of distributed transactions. TRAN interoperates with Encina's communications
and recovery services to provide distributed, recoverable applications.

The functions that the TRAN interface exports provide a wide range of functionality for managing
distributed transactions. You can use TRAN functions to begin and end transactions, find out when
interesting events occur during a transaction, and optimize processing in a distributed transaction
environment.

Encina's higher-level transactional interfaces (such as Tran-C) are built on top of the TRAN interfaces.
Some of the high-level functions and constructs map directly to TRAN functions; many high-level functions,
however, provide simplified interfaces to TRAN functionality for the tasks that are regularly used in most
applications. For example, Tran-C's transaction construct is a simplified interface to TRAN's functions
to begin and end transactions—one Tran-C construct replaces several TRAN functions.

Some aspects of TRAN functionality do not have analogous functions in the higher-level interfaces.
Although you rarely need to use the majority of TRAN functions directly, you probably want to use a few of
them in certain circumstances. “Reasons to Use TRAN” describes a few of the most useful low-level
functions.

TRAN works in conjunction with other components of the Encina Toolkit such as the Thread-to-Tid
Mapping Service (ThreadTid) and the Transactional Remote Procedure Call Service (TRPC). See
“Related Toolkit Functionality” on page  113 for information on related functionality these Toolkit
components provide.

Reasons to Use TRAN

Encina's high-level transactional interfaces provide facilities for the creation and management of
transactions. These high-level interfaces do not, however, provide functions or constructs that correspond
to every one of the lower-level functions TRAN defines. To perform certain tasks, you must use the TRAN
functions directly.

The remainder of this section describes the following most common reasons for using TRAN functions in
Encina transactional programs:

� Registering callbacks that are processed when certain events occur during the lifetime of a transaction
� Getting information about the relationship between transactions

 Copyright IBM Corp. 1989, 2001  109



  
 

� Controlling the lexical scope of transactions

“A TRAN Example” on page 111 provides an example program that uses several of the TRAN functions
mentioned in this section. “Related Toolkit Functionality” on page 113 lists other low-level features of the
Encina Toolkit that are available for use in managing transactions.

 Registering Callbacks

The TRAN interface provides a number of functions that you can use to register callbacks that are
executed whenever specific transactions enter certain states. Using these functions lets your application
respond to specific changes in the state of a transaction. For example, you want your application to
perform specific logging activity before a particular transaction aborts, or you want to initiate other actions
based on whether the transaction is prepared to commit (but before it attempts to do so). In these cases,
you can use TRAN functions to register the callbacks that perform the appropriate activities.

TRAN defines a different registration function for each change in the state of a transaction. For example,
you can register a callback to be executed before a transaction prepares by calling the
tran_CallBeforePrepare function. The registration functions include the following:

� The tran_CallAfterCWRT function registers a callback that runs after one transaction commits with
respect to another.

� The tran_CallAfterFinished function registers a callback that runs after all communications and
recovery are completed for a transaction.

� The tran_CallAfterResolution function registers a callback that runs after the outcome of a
transaction is determined.

� The tran_CallAfterRestart function registers a callback that runs after a restart.
� The tran_CallBeforeAbort function registers a callback that runs before a transaction aborts.
� The tran_CallBeforePrepare function registers a callback that runs before a transaction prepares.
� The tran_CallDuringRestart function registers a callback that runs during a restart.
� The tran_CallTransactionallyBeforePrepare function registers a callback that runs as part of a

transaction before the transaction prepares.

Each registration function requires you to specify a transaction with which to associate the callback. Note
that you must make sure to register your callback for a transaction before the specific state change occurs
in that transaction. If the state change occurs before the callback is registered, the callback is never run.

Getting Transactional Information

The TRAN interface provides several functions that let you obtain information about the relationships
between various transactions. For example, if your application uses nested transactions, there are
functions you can call to retrieve information about transactions in the same transaction family. A
transaction family consists of all nested transactions that have a common ancestor. You can call the
tran_TidIsRelated function to determine whether two specified transactions belong to the same family.
TRAN also provides the tran_TidParent function to find the parent of a specified transaction and the
tran_TidTopAncestor function to find the top ancestor of the transaction family to which a specified
transaction belongs.

110 Encina Toolkit Executive Guide and Reference  



  
 

Controlling the Lexical Scope of Transactions

The TRAN interface lets you begin a transaction in one function and end it in another; the Tran-C
transaction construct does not. Each transaction construct—and the onCommit and onAbort clauses
associated with it—must appear within the same lexical scope of your application. Similar constructs,
such as the topLevel or resumeTran construct, have the same restriction. These constructs and their
associated clauses are macro-based; therefore, when constructs are expanded during compilation of a
Tran-C program, the code into which they are expanded must begin and end within the same function or
routine.

If your application requires that a transaction begin and end in different functions, you can use TRAN
functions to delimit the transaction. For example, you can call tran_Begin in one function and tran_End
in another.

A TRAN Example

This section provides an example that illustrates the use of TRAN functions that begin, commit, and abort
transactions. The example (shown in Figure 33 on page 112) also shows how to initialize an application
to use TRAN and how to register a TRAN callback.

  Chapter 11. Transactional Programming Using TRAN 111



  
 

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <tran/tran.h>
#include <trpc/trpc.h>

void before_abort(tran_tid_t tid, void Garg);

int main()
{
 int i;
 tran_tid_t tid;

 tran_StandardEnvironment();
 tran_Init(B);
 tran_Ready();

for (i=B;i<5;i++) {
 tran_Begin(TRAN_TID_NULL, &tid);

tran_CallBeforeAbort(tid, before_abort, &i);

printf("Hello World - transaction %d\n", tid);

if (i % 2) {
printf("\tOdd-numbered transactions are aborted...\n");

 tran_Abort(tid);
 printf("\t(Transaction aborted)\n");
 }
 else {
 tran_End(tid);
 printf("\t(Transaction committed)\n");
 }
 }
 tran_Terminate();
}

void before_abort(tran_tid_t tid, void Garg)
{
printf("\tExecuting the before-abort callback for "

"transaction %d...\n", tid);
}

Figure 33. The “Hello, World” Program in TRAN

The example is a simple “Hello, World” program that prints a message for each transaction it creates. The
tran_Begin function creates a transaction and returns an identifier for that transaction. Transactions that
have even-numbered transaction identifiers commit when the tran_End function is called. Transactions
that have odd-numbered transaction identifiers abort when the tran_Abort function is called.

In addition, a before-abort callback is registered for each transaction. The call to the
tran_CallBeforeAbort function registers the before_abort function defined in the example code. If the
transaction aborts, the callback is run before any recovery work is performed for the transaction.

The calls to the tran_StandardEnvironment, tran_Init, and tran_Ready functions initialize the
environment, initialize TRAN, and notify TRAN that the application is ready to begin creating transactions.
The call to the tran_Terminate function terminates TRAN.

112 Encina Toolkit Executive Guide and Reference  



  
 

Figure 34 on page 113 shows some sample output for the example program in Figure 33.

Hello World - transaction 65536
 (Transaction committed)
Hello World - transaction 1

Odd-numbered transactions are aborted...
Executing the before-abort callback for transaction 1...

 (Transaction aborted)
Hello World - transaction 2
 (Transaction committed)
Hello World - transaction 3

Odd-numbered transactions are aborted...
Executing the before-abort callback for transaction 3...

 (Transaction aborted)
Hello World - transaction 4
 (Transaction committed)

Figure 34. Output from the TRAN “Hello, World” Program

Related Toolkit Functionality

Other components of the Encina Toolkit provide functionality that can be used with TRAN. This section
describes the use of ThreadTid with TRAN transactions, and it lists a few additional features of Toolkit
components that are seldom required but are sometimes useful in transactional applications.

Associating Transactions with Threads

Depending on the requirements of your application, consider using ThreadTid functions as part of the
process of beginning and ending transactions. You can use ThreadTid to associate a transaction with the
thread on which it was created. This association makes the identifier of the transaction available in any
procedure called within the scope of the transaction; otherwise, you must pass the transaction identifier
explicitly to procedures that need it. In addition, if your application is using an Encina resource (such as
the Encina Structured File Server or Recoverable Queueing Service4), you must use ThreadTid so that the
resource can determine the transaction on whose behalf it is working.

You can call the threadTid_Begin function after the transaction is begun to make the association. After
this association is made, you can call the threadTid_Lookup function to get the transaction identifier in
any transactional RPC called within the scope of the transaction. To end the association between the
transaction and the thread, you can call the threadTid_End function before ending the transaction with
either the tran_End or tran_Abort function. See Chapter 37, “ThreadTid Functions” on page  311 for
more information on ThreadTid.

4 The z/OS Encina Toolkit Executive does not support the Encina Structured File Server or Recoverable Queueing Service.
Discussion is included for completeness.

  Chapter 11. Transactional Programming Using TRAN 113



  
 

Using Other Features of the Toolkit

In special circumstances, other features of TRAN and other low-level Toolkit components can be useful for
the management of transactions. The following is a list of components and some less commonly used
features of those components:

 � ThreadTid
– Registering callbacks that are run when a transaction identifier is set or unset for a thread
– Certifying and decertifying threads to control when transaction aborts occur

 � TRAN
– Choosing a coordinator for a transaction
– Setting and retrieving transaction properties

 � TRPC
– Registering callbacks that are run when certain events occur during a transactional RPC
– Setting automatic timeouts for inactive transactions

See Chapter 37, “ThreadTid Functions” on page 311, Chapter 39, “TRAN Functions” on page 327, and
Chapter 23, “TRPC Overview” on page 165 for more information.

114 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 12. Transaction Service Overview

The Transarc Distributed Transaction Service (TRAN) is a tool for building reliable distributed applications.

 Transaction Model

The Transaction Service (TRAN) assists application programs in the definition, execution, and commitment
of distributed transactions. A transaction is a set of operations that must be executed together to perform
a consistent transformation of data. This set of operations may be distributed, meaning that the
operations take place in more than one independent application program. TRAN provides functions for
grouping operations into transactions. TRAN supervises other modules to ensure that each transaction is
executed atomically, independently of other transactions, and that once completed, its effects are
permanent. The act of successfully completing a transaction is called commitment, and is the primary
function of TRAN.

For example, a banking system may distribute its account data over several databases, possibly on
different machines. A transaction that transfers funds from one account to another would consist of two
individual updates: one to debit the first account, and one to credit the second account. Both operations
must complete and be successful to transfer funds accurately.

Application Logic Component

The application logic (APPL) is the main program. Each application contains an application logic
component; the remainder of this section uses the term application to refer to either the application logic
component or the entire application program. In a distributed transaction involving several applications,
the application logic component in one of the applications calls TRAN to begin a transaction. TRAN
returns a new transaction identifier that can be used to correlate the work done as part of the transaction,
and to make other Transaction Service calls. The application logic can make calls to communication
services to make requests of other applications. It may make calls to recovery services to transitionally
modify permanent storage maintained by the application.

Once all of the operations that make up a transaction have been completed, the application that began the
transaction calls TRAN to end, asking that it be committed. The application logic may call TRAN to abort
the transaction, if for any reason the operations that make up a transaction cannot be completed correctly.

Communication Service Component

The communication service (COMM) component manages access to other applications. This component
usually contains the run-time support for a remote procedure call (RPC) mechanism that permits an
application to transparently invoke a procedure in another application. Although the remote procedure call
is a common paradigm for performing work in another application, the communication service is free to
use another paradigm.

TRAN cooperates with applications to implement transactional remote procedure calls. Every transactional
RPC is called from within a transaction. If the RPC fails, the transaction is aborted. The remote function
may still have been invoked, but TRAN informs the remote application so that updates can be undone.
The remote function is effectively executed exactly once if the transaction commits and not at all if it
aborts; from the transaction's point of view the function is guaranteed to execute exactly once.

This run-time support collects procedure arguments and sends a message to the remote application where
the procedure is invoked; the run-time support in the remote application invokes the proper procedure,

 Copyright IBM Corp. 1989, 2001  115



  
 

collects results, and sends a message back to the original application. The communication service must
make calls to TRAN to ensure that remote work is done on behalf of the same distributed transaction.
The communication service must also provide an interface that TRAN can call to send other messages to
TRAN in another application. Chapter 16, “TRAN Communication Service Interface” on page 139
describes the communication service interface.

Recovery Service Component

The z/OS Encina Toolkit Executive does not provide the Recovery Service (REC), Lock Service (LOCK),
or Log Service (LOG) that Encina includes on other systems, such as AIX. Because you may choose to
provide these services yourself or need to understand how Encina works on other systems when these
services are provided, the diagram that follows includes recovery, lock, and log services only to provide a
more detailed explanation.

The recovery service (REC in the diagram that follows) component provides access to persistent storage.
The recovery service component is optional. This component usually provides an interface that allows the
application to modify recoverable storage objects. It may use (or include) a lock service (LOCK) to
coordinate shared access to these objects, and a log service (LOG) to make changes to these objects
permanent. The recovery service must also export an interface TRAN can call to access permanent
storage and to direct recovery actions, described in Chapter 17, “TRAN Recovery Service Interface” on
page 143.

COMM

APPL

REC

LOCK

LOG

TRAN

TransportRPC

3

31

2A1*

2A2
3A*

2A*

2B1* 3B*

2B*

2B2*

Figure 35. Application Components: Sample Interactions

Note:  In all of the diagrams in this document, arrows denote the call to and return from a procedure.
The return from a procedure is often labeled by the number of the corresponding call and an apostrophe
(such as, 4') for clarity. Operations that may take place several times are denoted with an asterisk.

1. The application calls tran_Begin to begin a new transaction.

2. The application performs work on behalf of the transaction locally (2A) and remotely (2B). This work
can take place in parallel.

a. The application calls its recovery service to modify recoverable storage. (See 2A* in the diagram.)

Note:  The preceding step and the following sub-steps do not occur for ephemeral clients.

1) A locking service provides synchronization to achieve the serializability property for
transactions. (See 2A1* in the diagram.)

116 Encina Toolkit Executive Guide and Reference  



  
 

2) A log service provides permanent storage to achieve the permanence property for
transactions. (See 2A2* in the diagram.)

b. The application issues requests to other applications through its communication service. (See 2B*
in the diagram.)

1) The communication service calls TRAN to acquire transaction state data to deliver to TRAN in
the remote application. The communication service transmits this data to the remote
application along with the application data. This data permits TRAN to correlate all work done
on behalf of the same transaction. Figure 38 on page 140 shows this process in greater
detail. (See 2B1* in the diagram.)

2) The communication service sends messages to and receives messages from another
application. TRAN places no constraints on the medium or protocol used for these
interactions. (See 2B2* in the diagram.)

3. The application calls tran_End to indicate that work is finished. TRAN uses a commitment protocol to
achieve the atomicity property for transactions – either all participants receive a commit outcome and
the work is done in its entirety, or all participants receive an abort outcome and undo all work done on
behalf of the transaction.

a. TRAN directs the recovery service to write a log record and the communication service to send
and receive messages during the commitment protocol.

Note:  For an ephemeral client, this operation does not take place.

Subsequent figures show these operations in greater detail. (See steps 3A* and 3B* in the
diagram.)

Transaction Service Component

TRAN provides an interface to the application logic for defining transactions, and uses interfaces to the
communication and recovery services to implement the transactional properties. The application interface
contains advanced functions that may be used to achieve the isolation property; some application logic
module is responsible for implementing this property. TRAN within one application uses an interface to
the communication services in that application to exchange information with TRAN in other applications.
This permits TRAN to implement the atomicity property for distributed transactions. TRAN uses an
interface to the recovery service to ensure that work done within an application is atomic and durable.
The following section goes into greater detail on the function of TRAN during the lifetime of a transaction
and the process of committing a transaction.

Transaction Service Functions

TRAN serves two basic purposes: it assists in the execution of a transaction; and, it coordinates the
applications involved in a transaction to achieve the atomicity and durability properties. TRAN provides
functions for beginning, ending, and aborting transactions, and for finding out when interesting events
occur during the lifetime of a transaction. TRAN implements a distributed commitment protocol to achieve
atomicity among all of the applications involved in a transaction. This commitment protocol can be viewed
in two different ways: the global scheme used to achieve atomicity and the local actions that take place
within each application. Figure 36 on page 118 depicts the message exchanges and local actions that
take place between two participants using a standard two-phase commit protocol.

  Chapter 12. Transaction Service Overview 117



  
 

 Transaction Execution

TRAN passively assists the application while the transaction is active. It provides functions to begin, end,
and abort a transaction. It provides functions that allow a communication service to spread a transaction
to another application. It provides functions for finding out when transactions commit and abort; these can
be used to implement isolation policies. TRAN only takes action as the result of calls made by the
applications involved in the transaction.

Applications can only perform work on behalf of a transaction while it is active. A transaction is
considered active in an application when:

� the application began the transaction, but has not ended it;

� the application has accepted a request to do work from another application, and it has not returned
from that request; or,

� the transaction is specifically permitted to do work by TRAN during the commitment of a transaction.

Many of the TRAN interface functions are only valid when a transaction is active.

 Distributed Commitment

TRAN achieves atomicity by ensuring that each application receives the same outcome (commit or abort)
for a given transaction. TRAN gives each application an opportunity to prepare any work it has done.
TRAN then delivers the outcome to each participant. The TRAN at each application involved in a
transaction exchanges information with the TRAN at each other application using the interface to the
communication services. The exact nature of the message exchanges is not exposed from TRAN;
however, some of the interface functions specifically constrains TRAN to using specifically the two-phase
commit protocol.

TRAN must give each application an opportunity to prepare before it can commit the transaction. Until an
application prepares, it is permitted to abort the transaction, even if it is not active. Once an application
prepares, it must abide by the outcome provided by TRAN. Under certain circumstances, TRAN may ask
an application to prepare before all other applications have stopped working on the transaction; if
additional work takes place in an application that has prepared, TRAN will ask it to prepare again.

Active

Prepared

Commited

Finished upcall

Active

Prepared

Commited

Finished upcall

Prepare

Prepare Response

Commit

Commit Response

Messages (delivered
with Comm upcalls)

Coordinator Application Subordinate Application

LOCAL ACTIVITY LOCAL ACTIVITY

Prepare upcall

Prepare upcall
Commit upcall

Commit upcall
Finished upcall

Finished upcall

Figure 36. Two-Phase Commit Message Traffic

The two-phase commit protocol is one possible algorithm for arriving at a distributed outcome. The
participants in the commit protocol are TRAN components in the applications that took part in the

118 Encina Toolkit Executive Guide and Reference  



  
 

transaction. One distinguished participant called the coordinator, begins the protocol by sending a
message to other subordinate participants asking them to prepare. Each subordinate application
prepares, and then sends a response message to the coordinator to indicate that it has done so. Once all
subordinates have prepared, the coordinator sends a message to each participant to indicate that the
transaction has committed. The subordinates record the fact that the transaction has committed, and send
response messages to the coordinator. Once the coordinator has received commit responses from all
subordinates, it forgets about the transaction. In order to use the same communication routes that the
transaction did during its lifetime, the commit protocol may have some participants act both as a
subordinate and as the coordinator for some other participants; a participant does not respond to a
prepare or commit message until it has received prepare or commit responses, respectively, from its
subordinates.

Unless specifically directed to use two-phase commit, TRAN may use other commit protocols. It may do
so to achieve better performance or higher reliability. The only constraint is that all applications must be
given an opportunity to prepare before the transaction can commit.

Local Commitment Sequence

Each application has certain rights and responsibilities in the commitment protocol. The application logic
is given an opportunity to perform additional work on behalf of the transaction before the application can
be considered prepared. Each recovery service in the application is then asked to prepare any work it has
managed, and to store some data for TRAN. Once all recovery services have prepared, the application is
no longer permitted to abort the transaction. TRAN promises to provide the distributed outcome
regardless of intervening failure. If the application logic and the recovery services did not participate
materially in the transaction, and they do not care about the outcome of the transaction, they may permit
TRAN to deliver a local outcome that may not match the distributed outcome delivered to other
applications. After TRAN delivers an outcome and it no longer needs to remember the transaction, it
directs the recovery services to discard the data they wrote when preparing. The local events that take
place during commit processing are reported by calling procedures registered by the recovery service
during initialization, or by the application logic during the lifetime of the transaction.

The application logic is given an opportunity to perform last-minute work on behalf of a transaction before
the transaction is committed. For example, an application may cache information in volatile storage during
the lifetime of an application and only write it to permanent storage (either by calling a recovery service if it
has one, or a communication service to call a server to do so) when the transaction is about to complete.
Any form of work that would be legal during the lifetime of a transaction is legal at this time. This is also
the application logic's last chance to abort the transaction should it so desire. This step consists of calling
each before-prepare callback (callbackBeforePrepare) registered by the application logic.

Each recovery service is asked to prepare its work and to write some data for TRAN. By preparing, the
recovery service promises that it can make the effects of the transaction durable if the transaction
commits, or undo those effects if the transaction aborts, regardless of intervening failure. Typically, this
requires that it force a description of changes made by the transaction to a log file on permanent storage,
along with an indication that the transaction should not be undone after a failure. When it asks a recovery
service to prepare, TRAN provides some data that the recovery service must also write to permanent
storage. After a failure, the recovery service must return this data to TRAN so that TRAN can reconstruct
the state of the transaction. The recovery service usually incorporates TRAN data into its own prepare

  Chapter 12. Transaction Service Overview 119



  
 

indication that it writes to its log. TRAN invokes the recovery-prepare upcall (upcallRecPrepare)5 to ask a
recovery service to prepare.

TRAN becomes responsible for delivering an outcome to the application once it has become prepared. It
actively tries to determine the distributed outcome by exchanging messages with TRAN in other
applications. If the application fails, the recovery service replays to TRAN the data it wrote as part of its
prepare indication, permitting TRAN to resume the protocol. The outcome is delivered by calling the
recovery-commit upcall (upcallRecCommit)6 (or recovery-abort upcall (upcallRecAbort)7) provided by
each recovery service, each after-resolution callback registered by the application logic, and by returning
from tran_End if the application began the transaction. Before calling any recovery-abort upcall
(upcallRecAbort), TRAN invokes any before-abort callback (callbackBeforeAbort) functions registered
by the application logic.

TRAN will deliver the distributed outcome to the application if the application materially participated in the
transaction. A recovery service indicates that it has done work (such as modified permanent storage) by
preparing normally. A recovery service alternatively may indicate that it participated in the transaction
read-only, meaning that there would be no visible difference between committing and aborting. For
example, the recovery service in a database server application might indicate that it was read-only if it
responded to queries but performed no updates on behalf of a transaction. The application can also
inform TRAN that it materially participated in the transaction, even if none of its recovery services did. If
the application or any of its recovery service participated materially, TRAN will deliver to this application
the same outcome that is delivered to other applications that participated.

TRAN will deliver a local outcome if the application did not participate materially in the transaction. The
outcome delivered to the application may be different from that delivered to other applications. The benefit
to accepting a local outcome is that it is more efficient – TRAN may be able to exchange fewer messages
and may not need the recovery services to write data to permanent storage on its behalf. A disadvantage
is that the application cannot truthfully report the outcome.

TRAN makes only limited outcome delivery guarantees to ephemeral applications. First, an ephemeral
application contains no recovery services, so unless the application logic specifically states that it
materially participated, TRAN will deliver a local outcome. Second, TRAN will only promise to deliver the
distributed outcome for a reasonable period of time (as determined by the ephemeral application and
others). After that time, a local outcome will be delivered.

When TRAN has fulfilled all of its commitments, it instructs the recovery services to finish the transaction.
The recovery service must retain in permanent storage the prepare data provided by TRAN until this time.
The instruction to finish requests that the recovery service discard that data. The finished indication will
occur sometime after TRAN has provided an outcome to the application. TRAN invokes the
recovery-finished upcall (upcallRecFinished)8.

5 z/OS does not support recovery-prepare upcalls

6 z/OS does not support recovery-commit upcalls

7 z/OS does not support recovery-abort upcalls

8 z/OS does not support recovery-finished upcalls

120 Encina Toolkit Executive Guide and Reference  



  
 

 Important Abstractions

This section describes the important abstractions exported by TRAN other than the transaction model
itself.

 Transaction Identifier

A transaction identifier is a short temporary identifier for a transaction. It is represented by the exported
type tran_tid_t. The application can obtain valid transaction identifiers only from TRAN. It must not
obtain them directly from other applications, because two applications may be given different transaction
identifiers for the same distributed transaction. Each transaction identifier is unique for a given application
until that application terminates. Any transaction that is prepared when the application terminates is given
the same identifier when the application restarts. Other transaction identifiers may be reused after restart.

 Application Identifier

An application identifier permanently and uniquely names each application. The application can use this
name to identify itself and the Transaction Service can use it to identify each participant in a transaction.
The name must be permanent so that recoverable applications can be contacted after a failure. See
“Naming Policy for Variable-Sized Objects” on page 126 for more information on the format of application
identifiers.

The communication service is responsible for generating the application identifier the first time the
application executes. An ephemeral application program is considered a new application every time it is
run and is called upon to generate an application identifier each time. A recoverable application is called
upon to generate an application identifier exactly once; TRAN reconstructs the application identifier from
its permanent storage when the recovery service for the application initializes.

 Service Identifier

A service identifier is a temporary short name for an application component: the application itself, a
communication service, or recovery service. Each component is assigned its own name when it initializes.
The value 0 (zero) is assigned to the application itself.

 Abort Descriptors

An application that initiates an abort describes its reason for doing so. The convention for describing abort
reasons stipulates that the following information be provided:

� abort data format - A globally, permanently unique identifier to define how the abort reason is to be
interpreted. Typically, this defines the type of application or the module that generates the reason, but
one module may publish more than one format;

� abort data - The reason that the transaction was aborted. The abort data format identifier allows an
application to determine how this data should be interpreted;

� abort source - The identifier of the application that aborted the transaction;

The abort information is stored in properties (see “Transaction and Application Properties” on page 134)
that are propagated to other participants in the transaction; this information can be obtained in a
before-abort callback (see “tran_CallBeforeAbort” on page 369). See “tran_Abort” on page  332 for more
information on establishing and retrieving abort descriptions. See “TRAN Abort Reasons” on page 712 for
a list of abort reasons.

  Chapter 12. Transaction Service Overview 121



  
 

The Encina Abort Facility provides an alternative interface to setting, retrieving, and formatting abort
reasons. See Chapter 27, “The Encina Abort Facility” on page 183 for more information.

Transaction Service Interface

An understanding of the structure of the TRAN interface is necessary to understand the remainder of the
interface. An application is described as three logically independent components: the application logic, a
communication component, and a recovery component. A separate interface section is provided for each
component. TRAN uses three mechanisms to inform application components of interesting events: return
codes from calls to TRAN; upcall procedures that TRAN can invoke for every transaction; and callback
procedures that an application component can ask to be selectively invoked. Each time an application
executes, each of its components must initialize its portion of the interface before new transactions can be
created.

 Return Codes

Most interface functions return a value of type tran_status_t to indicate if they succeed. A function that
completes successfully returns TRAN_SUCCESS. Any other return value indicates that some exceptional
condition occurred and that out parameters are not defined unless the description of the call specifically
indicates otherwise. The description of each interface function includes a list of the status codes that it
can return. “TRAN Status Codes” on page 713 describes all of the status codes.

 Upcalls

The application, the recovery service, and the communication service are each required to supply some
procedures for TRAN to call. These procedures are referred to as upcalls. TRAN invokes upcalls only
during calls into TRAN, from the threads that make those calls; therefore, an upcall procedure should
never perform a non-local goto outside its scope. Only one upcall procedure is registered for a given
purpose; this procedure is invoked on behalf of all transactions.

If an upcall blocks in application code, this may cause calls made into TRAN to block until the upcall
completes. For example, the call into TRAN that ends a transaction typically does not return until an
upcall to the recovery service successfully logs the transaction's commit record. This implies that the
application should never hold a latch during a call to TRAN if it could be needed for completion of an
upcall.

For convenience, this document uses the names of parameters that represent upcalls as names for the
calls themselves. Application designers may use other names for these functions.

 Callbacks

Several Transaction Service functions allow the application to specify procedures to be called when
specific events occur. For example, the application can register a procedure to be called before a
particular transaction prepares. Like upcalls, callback procedures are invoked only during calls into TRAN;
the same cautions about blocking and non-local transfer of control apply. Unlike upcalls, more than one
callback may be registered for a given purpose. Each callback procedure is invoked once for each time it
is registered. If multiple callback procedures are registered for the same event then they are all invoked in
an unspecified order when the event occurs. The application can provide its own additional argument for
each callback.

122 Encina Toolkit Executive Guide and Reference  



  
 

Transaction Service Header Files and Libraries

This section describes the Transaction Service header files and libraries.

 Header Files

Applications that link with TRAN must include the header file tran/tran.h in their C program.

 Libraries

The TRAN functions are contained in the ECNDLL dynamic link library. To resolve these symbols during a
compilation, the libEncina.x export file must be included in the link-edit step. See “Specifying Toolkit and
DCE Libraries” on page 97, “Libraries for DCE Services” on page 99, and “Specifying Library Names” on
page  99 for more information.

  Chapter 12. Transaction Service Overview 123



  
 

124 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 13. TRAN Data Types Overview

The Transaction Service (TRAN) interface defines two basic data types that are used throughout the
interface:tran_tid_t and tran_status_t. Interface functions refer to transactions through identifiers of type
tran_tid_t and typically return a status code of type tran_status_t. TRAN also defines a third type,
tran_abort_t, for representing the reason for an aborted transaction in the form of an abort code.

In addition, a variety of more complex, special-purpose data types are provided to describe
variable-length, application-defined data: applications, messages, log records, and force groups. TRAN
provides functions for creating, manipulating, and interpreting all of these types.

Data Types and Functions for Transaction Identification

The following functions describe, identify, and compare the identifiers associated with specific transactions.

 � tran_TidEqual
 � tran_TidHash
 � tran_TidIsDescendent
 � tran_TidIsRelated
 � tran_TidIsTopLevel
 � tran_TidKnownDescendents
 � tran_TidParent
 � tran_TidTopAncestor
 � tran_TidToString

Special-Purpose Data Types

Special-purpose data types simplify the specification of TRAN interface functions. Several types are
defined to contain data specified by the application:

� the application identifier (tran_applId_t)

� the property key (tran_propertyKey_t)

� the property value (tran_propertyValue_t)

� the address (tran_address_t)

� the address family (tran_addressFamily_t)

� the force-group identifier (tran_forceGroupId_t)

Other types are defined to contain data specified by the transaction service:

� the message (tran_message_t)

� the log record (tran_logRecord_t)

� the security key (tran_securityKey_t)

All of these types have exactly the same form: a variable-length sequence of bytes. TRAN provides
special values and functions for creating, interpreting, and destroying objects of each of these types. All of
these functions and values are usable as soon as the application has completed its call to the tran_Init
function.

 Copyright IBM Corp. 1989, 2001  125



  
 

The application identifier, property key, address family, and force-group identifier are global names that
must be globally unique. See “Naming Policy for Variable-Sized Objects” on page 126 for more
information on naming these four types of objects.

Naming Policy for Variable-Sized Objects

All variable-sized objects defined in an application share a global name space. To prevent naming
conflicts, Encina defines a policy for specifying subspaces within this global name space. The policy is
that the value of the first byte specifies the naming subspace used for an object.

TRAN relies on the use of this naming policy in certain interface objects defined as variable-sized byte
arrays. These objects include application identifiers, communication service address families, recovery
service force groups, and transaction property keys. Applications that define values for these objects
should always follow this naming policy to ensure that conflicts between naming subspaces do not occur.
Table 5 shows the recommended first-byte values to use when naming variable-sized objects.

Any first-byte values beyond 31 are defined by the respective subspace owners.

The TRAN interface defines several other variable-sized objects including addresses, property values,
security keys, log records, and message contents. These objects have an implicit scope that prevents
naming conflicts from occurring.

 Special Values

Only three special types have special values. TRAN defines an abort data format value for its own use.
The identifier for this application is established when the application components are initialized; the
tran_ApplIdLocal function returns the application's own identifier. TRAN defines the TRAN_MESSAGE_NULL
value to indicate that no message should be sent on its behalf (see “tran_CommReceived” on page 387).

In addition, TRAN defines several special values for the property key. The property
TRAN_PROPERTY_KEY_ABORT_FORMAT should be used to store the key for an application's abort data; TRAN
uses the TRAN_PROPERTY_KEY_ABORT_DATA key for the abort data when it aborts a transaction.

Table 5. First-Byte Values for Naming Variable-Sized Objects

First Byte Object

0 Objects defined by the TRAN component itself. This includes TRAN-defined property keys,
application identifiers, communication service address families, and recovery service force
groups.

1 Reserved to Transarc.

2 DCE uuid subspaces. A DCE uuid follows the first byte. The time_low, time_mid,
time_hi_and_version, clock_seq_hi_and_reserved, and clock_seq_low fields are encoded in
that order, in most-significant-byte-first order. Customers may create their own subspaces
using uuids that they generate.

3 Internet host name subspaces. A null-terminated character string follows the first byte.
Customers may create their own subspaces using Internet host names that have been
assigned to them.

4-31 Reserved for subspaces based on other prevalent naming standards.

126 Encina Toolkit Executive Guide and Reference  



  
 

 Creation Functions

Functions are provided to create a new object of each special-purpose data type. The application
component provides a generic pointer and a data length to define the contents of the object. TRAN
copies the data; the application may deallocate its copy of the data as soon as the function completes.
The application component must call the appropriate destruction function (see “Object Destruction
Functions” on page 129) when it no longer needs the object.

 � tran_AddressCreate
 � tran_AddressFamilyCreate
 � tran_ApplIdCreate
 � tran_ForceGroupIdCreate
 � tran_LogRecordCreate
 � tran_MessageCreate
 � tran_PropertyKeyCreate
 � tran_PropertyValueCreate
 � tran_SecurityKeyCreate

 Construction Functions

Construction functions are provided to create a new object of each type from existing data. The
application component provides the data, defined by a generic pointer and a length, to be contained in the
object. The construction functions store a reference to the original data rather than copying the data. The
application component must not deallocate or change the data it uses to construct an object until that
object is destroyed; TRAN also promises not to change the data provided. The application component
can specify that TRAN is responsible for freeing the data by calling a destructor function when it no longer
needs the data; TRAN is permitted to free this memory whenever it deems appropriate.

TRAN defines the following construction functions:

 � tran_AddressCons
 � tran_AddressFamilyCons
 � tran_ApplIdCons
 � tran_ForceGroupIdCons
 � tran_LogRecordCons
 � tran_MessageCons
 � tran_PropertyKeyCons
 � tran_PropertyValueCons
 � tran_SecurityKeyCons

 Copy Functions

Copy functions create a new object of each type from an existing object. The application component
provides an object of the appropriate type to be copied. TRAN copies the data contained in the source
object into a newly created object. The application component must call the appropriate destruction
function (see “Object Destruction Functions” on page 129) when it no longer needs the object.

TRAN defines the following copy functions:

 � tran_AddressCopy
 � tran_AddressFamilyCopy
 � tran_ApplIdCopy

  Chapter 13. TRAN Data Types Overview 127



  
 

 � tran_ForceGroupIdCopy
 � tran_LogRecordCopy
 � tran_MessageCopy
 � tran_PropertyKeyCopy
 � tran_PropertyValueCopy
 � tran_SecurityKeyCopy

Data Access Functions

Functions are provided to retrieve the data contained in an object. One function returns a generic pointer
to the data; another function returns the valid length of that data in bytes. The data pointer only remains
valid as long as the original object; if the data is required, the caller should copy the data before the object
is destroyed.

TRAN defines the following data-access functions:

 � tran_AddressData
 � tran_AddressLength
 � tran_AddressFamilyData
 � tran_AddressFamilyLength
 � tran_ApplIdData
 � tran_ApplIdLength
 � tran_ForceGroupIdData
 � tran_ForceGroupIdLength
 � tran_LogRecordData
 � tran_LogRecordLength
 � tran_MessageData
 � tran_MessageLength
 � tran_PropertyKeyData
 � tran_PropertyKeyLength
 � tran_PropertyValueData
 � tran_PropertyValueLength
 � tran_SecurityKeyCons
 � tran_SecurityKeyLength

 Comparison Functions

TRAN provides functions to determine whether two objects are equal or identical. Functions to compare
objects for equality are provided for those types where the contents are supplied by applications; two
objects are considered equal if they contain the same number of data bytes and those bytes are equal.
The tran_MessageIdentical function is provided to quickly test whether two messages created by TRAN
are identical; two messages that are identical have the same contents. No comparison function is
required or provided for the log record type. Each comparison function returns TRUE if the objects are
equal or identical, and FALSE if the objects differ.

TRAN defines the following comparison functions:

 � tran_AddressEqual
 � tran_AddressFamilyEqual
 � tran_ApplIdEqual
 � tran_ForceGroupIdEqual
 � tran_MessageIdentical
 � tran_PropertyKeyEqual

128 Encina Toolkit Executive Guide and Reference  



  
 

 � tran_PropertyValueEqual
 � tran_SecurityKeyEqual

Object Destruction Functions

Functions are provided to destroy objects when they are no longer needed. Application components must
use these functions for objects that they create or construct, and for objects that TRAN provides in
interface calls, upcalls, and callbacks. TRAN never destroys objects provided by application components
in interface calls. Once an object has been destroyed, it may not be used, nor may any pointers to its
contents acquired using the data access functions.

TRAN defines the following object-destruction functions:

 � tran_AddressDestroy
 � tran_AddressFamilyDestroy
 � tran_ApplIdDestroy
 � tran_ForceGroupIdDestroy
 � tran_LogRecordDestroy
 � tran_MessageDestroy
 � tran_PropertyKeyDestroy
 � tran_PropertyValueDestroy
 � tran_SecurityKeyDestroy

Array and String Destruction Functions

Some interface functions return strings or arrays of objects. These arrays may be indexed normally. The
application must call the appropriate destruction function when the string or array is no longer needed.
Destroying an array does not destroy its elements; they must be destroyed separately, as desired.

TRAN defines the following array- and string-destruction functions:

 � tran_PropertyValueArrayDestroy
 � tran_StringDestroy
 � tran_TidArrayDestroy

  Chapter 13. TRAN Data Types Overview 129



  
 

130 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 14. TRAN Initialization and Termination

An application must perform several steps each time it begins execution. First, the application must
specify its environment. Second, it must initialize the application interface. Third, its communication and
recovery services (if present) must initialize their portions of the interface. When all of these initialization
operations have been completed, the application indicates that it is ready to begin work. Figure 37
depicts the initialization sequence.

The application must specify its environment before making any other initialization calls. The application
environment includes functions that TRAN can use to perform various system functions, to allocate
memory, to synchronize, and to report fatal application errors. The tran_StandardEnvironment function
specifies that the Transaction Service (TRAN) should use the standard Toolkit environment functions. The
tran_SpecialEnvironment function permits sophisticated applications to specify one or more of their own
environment functions. Chapter 19, “TRAN Application Environment Specification” on page  155 provides
more information on specifying the application environment.

The application must call tran_Init after configuring its environment. This function initializes the
application interface. Once this step is complete, the application may use the data structure manipulation
functions described in “Special-Purpose Data Types” on page 125.

Other application components must be initialized next. The recovery service must call tran_RecInit and
replay log records written on behalf of TRAN. The communication service must call tran_CommInit.

Note:  tran_RecInit is not functional on z/OS.

These components are optional. If present, they may be initialized in either order or in parallel.

The application must call tran_Ready when all of its components have been completely initialized. Once
this step is complete, the application may use the remainder of the application interface.

The application must call tran_Terminate before exiting. After calling tran_Terminate, the application
must re-initialize the interface.

COMM

APPL

REC

LOCK

LOG

TRAN

1

TransportRPC

1’ 2’ 3’

2 3
3A

3A’

3A1
3A1’

3B
3B’

3B1
3B1’

Figure 37. Initialization Sequence

 Copyright IBM Corp. 1989, 2001  131



  
 

Note:  Arrows denote the call to and return from a procedure. The return from a procedure is often
labeled by the number of the corresponding call and an apostrophe (such as, 4') for clarity.

(1) The application defines an environment. The tran_StandardEnvironment function specifies that
the Encina Base Development Environment (BDE) should be used for basic services, such as memory
allocation and synchronization. The tran_SpecialEnvironment function may be used by advanced
applications to specify other functions that provide these services.

(2) The application initializes TRAN interface. The tran_Init function indicates that the environment
has been defined, and that other application components are ready to begin initialization.

(3) The application calls its component services (recovery and communication) to perform their
initialization. Each service is optional. If both services are present, they may be initialized in either
order or in parallel.

(3A) The application calls its recovery service to perform its initialization.

(3A1) The recovery service calls tran_RecInit and replays transaction service log records.
“Restart” on page 147 provides more detail on the recovery service initialization.

Note:  This step is not done on an ephemeral client.

(3B) The application calls its communication service to perform its initialization.

(3B1) The communication service calls tran_CommInit.

(4) The application calls tran_Ready after its component services have finished their initialization.

132 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 15. TRAN Application Interface

This chapter describes the application interface to the Transaction Service (TRAN). This interface allows
the application to begin, commit, and abort transactions and to determine the outcomes of transactions. It
also allows the application to influence certain transaction management decisions, such as the choice of a
coordinator.

Beginning and Ending Transactions

An application explicitly begins a transaction by calling tran_Begin. The same application can call
tran_End to attempt to commit the transaction. Any participant can call tran_Abort to abort it. Any
participant can call tran_AbortFamily to abort all members of a transaction family that have been active
in that application.

 Application Status

An application can call tran_ApplIsRecoverable to determine whether the local application is recoverable
and tran_ListTransactions to list the transactions in use by an application.

Transaction State Data Types and Functions

The following data types define the possible states of a transaction:

 � tran_globalState_t
 � tran_localState_t
 � tran_outcomeQuality_t
 � tran_relativeCommitState_t

The following functions are used in determining the state of a transaction:

 � tran_GetGlobalState
 � tran_GetLocalState
 � tran_GetRelativeCommitState

 Application Callbacks

Application callbacks include restart callbacks, prepare callbacks, relative commitment callbacks,
transaction resolution callbacks, and transaction completion callbacks.

 Restart Callbacks

The application can call tran_CallDuringRestart9 to request that a procedure be invoked after TRAN has
recovered its state during restart. The application can call tran_CallAfterRestart10 for a second restart
pass, where calls affecting the outcome, such as tran_Abort, can be made.

9 tran_CallDuringRestart is not for ephemeral clients.

10 tran_CallAfterRestart is not for ephemeral clients.

 Copyright IBM Corp. 1989, 2001  133



  
 

 Abort Callbacks

The application can call tran_CallBeforeAbort during a transaction to request that a procedure be
invoked before the transaction aborts, if it does abort. TRAN passes the callback procedure information
about the cause of the abort. This callback is useful, for example, when threads executing on behalf of
the transaction must be stopped before the transaction's updates are undone. All before-abort callbacks
for an aborted transaction are invoked before any after-resolution callbacks are invoked for any member of
the same transaction family.

 Prepare Callbacks

The application can call tran_CallBeforePrepare during a transaction to request a callback before the
transaction prepares. The application can call tran_CallTransactionallyBeforePrepare during a
transaction to perform additional transactional work before the transaction prepares.

Relative Commitment Callbacks

If the application supports nested transactions, it can call tran_CallAfterCWRT to request that a
procedure be invoked after a transaction commits with respect to another in the same family, or when
either of the two transactions aborts. This callback is typically used for passing locks between family
members.

Transaction Resolution Callbacks

The application can call tran_CallAfterResolution during a top-level transaction to request that a
procedure be invoked after the transaction's outcome is determined. This callback is typically used for
dropping locks or for deallocating data structures associated with a transaction.

Transaction Completion Callbacks

The application can call tran_CallAfterFinished to request a callback when all communication and
recovery functions associated with the transaction have been completed.

Transaction and Application Properties

TRAN provides a facility for associating property data with specific transactions or with the application.
This data takes the form of a list of (key, value) pairs. TRAN provides the tran_PropertyAdd function for
adding new properties and the tran_PropertyRetrieve function for retrieving properties that have been
installed. Properties can be associated with a specific transaction or with the application. Properties
associated with a transaction are propagated to other participants in the transaction along with
transactional RPC messages and other Transaction Service messages. Properties are recovered after a
failure if the application is recoverable. The propagation and recovery aspects of the facility make
properties expensive, so they should be used sparingly.

134 Encina Toolkit Executive Guide and Reference  



  
 

 Coordinator Selection

Usually, TRAN chooses a coordinator for each transaction. Sometimes the participating applications
should choose a coordinator based on application-specific considerations. They should base this decision
on which application is mostly likely to remain available during the commit and which has the most to lose
if the commit blocks. In many cases, the decision need not involve explicit negotiation. The choice of a
coordinator can be implied by client-server relationships, levels of authentication, or some other standard
acceptable to all participants. Ephemeral applications cannot be coordinators.

Any participant in a transaction can call tran_SetCoordinator to identify its preferred coordinator and
indicate whether it insists on this coordinator or is willing to prepare with a different one. TRAN selects a
coordinator according to the following rules:

� If participants insist on more than one coordinator, the transaction aborts.

� If participants insist on one coordinator, that one is chosen.

� If no participant insists on a coordinator, one is chosen arbitrarily from those suggested.

A participant can call tran_GetCoordinator during the before-prepare callback (callbackBeforePrepare)
or the recovery-prepare upcall (upcallRecPrepare)11 to make sure an acceptable coordinator was chosen.

Coordinating a transaction is enough of a burden that some applications prefer to decide whether they are
willing on a case-by-case basis. The application can call tran_SelectivelyCoordinate12 to indicate that it
wants an upcall whenever it is asked to coordinate a transaction that it did not begin.

Abort Data Interpretation

TRAN generates an abort reason when it causes a transaction to abort. TRAN aborts transactions only
when it must (for example, because a committed child or a parent transaction has been aborted) or when
some failure (for example, message delivery, application failure) occurs. An application can retrieve a
permanent form of the abort reason using the conventional abort properties (see tran_Abort). An
application can call tran_AbortDataToReason to convert this permanent form, a property value, to a
value of type tran_abort_t for comparison with known reasons. An application can call
tran_AbortReason to get the tran_abort_t form of the abort reason for a known transaction. See
“ThreadTid Diagnostics” on page 725 for descriptions of the reasons TRAN gives for aborting
transactions.

 Secure Communication

TRAN provides an interface for securing an RPC and asynchronous messages it uses to transmit
transaction state. Although a communication service is responsible for authenticating the source of
transaction service messages, it cannot verify that the source is authorized to participate in the transaction
represented by the message, because it cannot interpret the message. An application can call
tran_Secure to provide data immune to forgery for secure communications.

11 z/OS does not support recovery-prepare upcalls.

12 tran_SelectivelyCoordinate is not for ephemeral clients.

  Chapter 15. TRAN Application Interface 135



  
 

 Pre-Prepare

A server can save a round of messages by unilaterally preparing before it returns from the last RPC in a
transaction. The server calls tran_PrePrepare to give a hint to TRAN that it should prepare early. TRAN
may or may not actually prepare early.

 Application-Controlled Prepare

An application can call tran_DeferCommit13 to indicate that it wishes explicitly to provide an outcome in
the event that it coordinates the transaction. Typically, a module that uses tran_DeferCommit also calls
tran_SetCoordinator to insist that the application coordinate. When the beginner of the top-level
transaction calls tran_End (or tran_Prepare,14 see the following), each application that has participated in
the transaction family is given an opportunity to prepare. Once all participants prepare, TRAN usually
commits the transaction; however, if the coordinator application has elected to defer commitment (by
calling tran_DeferCommit), TRAN instead invokes the callback specified in the tran_DeferCommit call,
and waits for the application to direct an outcome. The application module that deferred commitment must
eventually call tran_ProvideOutcome15 to indicate that the transaction should commit or abort; however, it
need not do so within the scope of the callback. An application module that defers commitment of a
transaction remains responsible for providing the outcome until the transaction finishes.

The beginner of a transaction can call tran_Prepare in place of tran_End when it does not want to wait
for the transaction to be resolved. The tran_Prepare call, like tran_End, indicates that the transaction is
complete and that TRAN should initiate commitment. The tran_Prepare call returns as soon as the
transaction is prepared; the tran_End call does not return until the transaction is resolved. An application
that calls tran_Prepare is expected to have called tran_DeferCommit to ensure that it controls the
transaction outcome.

Application-controlled prepare is useful whenever the outcome of one transaction should be tied to the
outcome of another. For example, consider an application that acts as a bridge between two transaction
management protocols by forwarding requests from clients in one protocol domain to servers in another.
When it first encounters a transaction in the client domain, it can begin a proxy transaction in the server
domain. When it receives a prepare for the original transaction, it can prepare the proxy. When it
receives an outcome for the original transaction, it can call tran_ProvideOutcome for the proxy.

Outcome Delivery Requirements

TRAN provides functions to allow application modules to request special outcome delivery requirements.
Usually, outcome delivery is dictated by the recovery services present in the application. If no recovery
service demands the distributed outcome for a transaction, TRAN may deliver a local (read-only) outcome
instead. Application modules can call tran_RequireDistributedOutcome to specify that they require the
distributed outcome, regardless of the recovery services needs. Usually, after-resolution callbacks may be
lost in the event of an application failure. Application modules can call tran_RequireCompleteOutcome16

to specify that they need to run their after-resolution callbacks even after a failure; then TRAN permits
them to be re-registered during restart. Usually, ephemeral applications receive a local outcome.
Ephemeral applications can call tran_SetEphemeralOutcomeRequirementLimit and recoverable

13 tran_DeferCommit is not for ephemeral clients.

14 tran_Prepare is not for ephemeral clients.

15 tran_ProvideOutcome is not for ephemeral clients.

16 tran_RequireCompleteOutcome is not for ephemeral clients.

136 Encina Toolkit Executive Guide and Reference  



  
 

applications can call tran_SetEphemeralOutcomeDeliveryLimit to specify how long TRAN should
attempt to provide an ephemeral application with the distributed outcome.

Outcome Delivery Control

TRAN provides functions for controlling the progress of the callbacks and upcalls associated with
transaction completion. An application can call any of the following functions:

� The tran_DelayAbort17 function delays the invocation of recovery service upcalls when a transaction
aborts. This permits the application to operate on behalf of a transaction without concern for its local
recoverable resources changing while it is still working.

� The tran_ProlongResolution18 function indicates that the after-resolution phase should not be
considered complete. This allows an application module to return from its after-resolution callback (to
avoid blocking the thread that is invoking those callbacks) while still preventing the transaction from
being finished prematurely.

� The tran_ProlongFinish function indicates that the after-finished phase should not be considered
complete. This allows an application module to return from its after-finished callback but preserve the
transaction identifier (and access to the transaction state through that identifier), without prolonging the
resolution phase.

� The tran_RequestPromptFinish19 function indicates that the application waits synchronously for a
transaction to finish, not merely for an outcome (commit or abort) to be delivered. This permits the
transaction to encourage local recovery services and other applications to complete their finish phases
promptly, if necessary.

Declare Last Call

The beginner of a transaction can use the tran_DeclareLastCall function to declare that its next
transactional RPC will be its last. This enables TRAN to combine the first message exchange for
transaction commitment with the RPC. The tran_DeclareLastCall function can be called to enable and
disable this optimization.

Last-call optimization can only be used in certain circumstances. If the following conditions are not met, or
the transaction has been aborted, then the function returns TRAN_TID_NOT_VALID:

� Only the beginner of the transaction can use the tran_DeclareLastCall function. (You can use the
tran_PrePrepare20 function to make a similar statement for servers.) The beginner must not have
called either the tran_End or tran_Prepare14 function previously.

� The transaction must be top-level.

� The transaction must not have any outstanding subtransactions or RPCs.

� The next RPC absolutely must be the last. No transactional work is allowed between the next
outgoing RPC and the call to the tran_End function. Any attempt to do work (for example, calling the
tran_CommReceivedRequest function to begin an RPC) results in an error. TRAN does not do any
heuristic damage reporting automatically; if the application believes that it has damaged transactional
consistency through misuse of the tran_DeclareLastCall function, then the application can use the
tran_RecordHeuristicOutcome function to initiate reporting.

17 tran_DelayAbort is not for ephemeral clients.

18 tran_ProlongResolution is not for ephemeral clients.

19 tran_RequestPromptFinish is not for ephemeral clients.

20 tran_PrePrepare is not for ephemeral clients.

  Chapter 15. TRAN Application Interface 137



  
 

There are also limitations on the last call itself (in addition to any usual limitations on RPCs). If the
following conditions are not met, the transaction is aborted with TRAN_ABORT_ILLEGAL_LAST_CALL as the
abort reason:

� The last RPC must be made on behalf of the top-level transaction.

� There must be no other RPCs or subtransactions in that transaction family outstanding at the time of
the last call.

Once the optimization is enabled and the last call made, the beginner can enter the prepare phase of the
commit process. This means that the beginner cannot abort the transaction unilaterally—it must wait for
the outcome from the coordinator (or force a heuristic outcome, risking inconsistency). It also means that
the beginner must not depend on the local state being TRAN_LOCAL_STATE_ACTIVE or the before-prepare
callbacks not being fired before the tran_End function is called.

The Transaction Service does not deliver a commit result to the application until the tran_End function is
called. This ensures that resolution callbacks (and consequently, all finished phase actions) are held even
though the global state reflects commitment.

Transaction Identifier Reservation

An application module might need to perform recovery on behalf of transactions for which TRAN has no
responsibility, that is, before commitment of those transactions begins. To do so, it is useful for the
application module to be able to reserve the original identifier for the transaction, so that the same
identifier can be used after restart without concern for it also being used to identify a new transaction.

An application module can call the tran_Reserve function to reserve a transaction identifier during the
restart phase (that is, between the tran_Init function and the tran_Ready function). TRAN allows any
number of application modules to reserve a transaction identifier. Reserving an identifier does not affect
the recovery of that transaction if TRAN has any recovery responsibility (through replay of log records by
recovery services). If TRAN has no responsibility, the transaction appears to be finished.

Recovery services can reserve an identifier for a transaction that they know to be finished by replaying an
empty (“finished”) log record for that identifier; this facility, however, must be used very carefully. Instead
of replaying empty transaction records, recovery services can use the tran_Reserve function to reserve
transaction identifiers. Recovery services can use this function more safely in applications with multiple
recovery services or other pseudo-recoverable modules.

138 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 16. TRAN Communication Service Interface

A communication service is a module within the application that manages transactional communication
with other applications. A communication service provides the mechanism for invoking services in another
application; remote procedure call (RPC) is one such mechanism. The Transaction Service (TRAN)
provides an interface to the communication service for making remote invocations transactional; the
communication service makes calls to acquire transaction state to be passed along with the invocation. A
communication service must export an interface that TRAN may call to deliver transaction state
information to other applications during commit processing. TRAN also exports an interface for the
communication service to provide feedback about its communication abilities.

Each communication service must call tran_CommInit to initialize its interface to TRAN each time the
application runs. It must make this call after the application calls the tran_Init function, but before it calls
the tran_Ready function. The communication service must provide an address family to identify itself.
This identifier must be unique among all communication services, but a given communication service must
use the same identifier in all applications.

A communication service must call TRAN to acquire transaction state information to be transmitted along
with remote invocations. The communication service in the client application must call
tran_CommSendingRequest to inform TRAN that remote work is being done on behalf of a transaction.
TRAN returns data to be transmitted along with the request. The communication service in the server
application must call tran_CommReceivedRequest, providing this Transaction Service data; TRAN
returns an identifier for the transaction in the server.

An analogous sequence takes place when the remote work is done: The communication service in the
server calls tran_CommSendingReply to pick up Transaction Service data to be returned to the client;
the communication service in the client calls tran_CommReceivedReply to provide the information to its
Transaction Service. Figure 38 on page 140 depicts this sequence of calls for a transactional remote
procedure call. TRAN does not restrict the mechanism used for transmitting its data, or the amount of
communication that takes place between the tran_CommReceivedRequest and
tran_CommSendingReply calls. TRAN does require that once the remote invocation is begun, all four
calls must be completed; the communication service is responsible for aborting the transaction if it cannot
complete a remote invocation or deliver TRAN data.

Each communications service also provides an interface to deliver information for TRAN during commit
processing (see Figure 39 on page 141). The communications service provides an address for the other
application in each of the remote invocation calls (tran_CommSendingRequest, for example). The
address must contain sufficient information for the communications service to deliver additional
Transaction Service data to the same application, even after recovering from an application or
communications failure. A Transaction Service invokes the comm-send upcall (upcallCommSend)
procedure to ask the communications service to deliver Transaction Service data to TRAN in another
application, providing the application identifier and address for the destination. The communications
service in the destination application must call the tran_CommReceived function to provide the data to its
Transaction Service.

 Copyright IBM Corp. 1989, 2001  139



  
 

COMM

APPL

TRAN

CLIENT

TRANSPORTRPC

COMM

TRAN

SERVER

TRANSPORT RPC

APPL

1

9=1'

2,2' 8,8' 6,6' 4,4'

5

5'

3!

7=3'

Figure 38. Transactional Communication Example: Simple RPC

Note:  Arrows denote the call to and return from a procedure. The return from a procedure is often
labeled by the number of the corresponding call and an apostrophe (such as 4') for clarity. Operations
that may take place several times are denoted with an asterisk.

(1) The client application initiates a remote procedure call. It actually invokes a local stub procedure
that collects procedure arguments into a request message for transmission to the remote application.

(2) The client stub procedure calls tran_CommSendingRequest to pick up data from TRAN. It
incorporates this data in the message to be transmitted.

(3) The request message is transmitted to the server application. The transport medium (such as,
network, shared memory) and protocol used to transmit the message are not constrained by TRAN.
Any number of actual messages may be used to transmit the remote procedure call arguments and
TRAN data.

(4) Another stub procedure in the server application receives the message, and calls
tran_CommReceivedRequest. It supplies TRAN data from the message, and acquires a transaction
identifier in return.

(5) The server stub procedure calls the actual server procedure with the arguments from the message.
Any results from the server procedure are collected into a reply message.

(6) The server stub procedure calls tran_CommSendingReply to pick up Transaction Service data to
be incorporated into the reply message.

(7 =3') The reply message is transmitted back to the client application.

(8) The client stub procedure calls tran_CommReceivedReply with TRAN data from the reply
message.

(9 =1') The client stub procedure returns the remote procedure call results to the application.

Note:  Although LOCK, REC, and LOG appear in the following figure, the ephemeral client does not need
them. These are part of the Server code that z/OS does not supported.

140 Encina Toolkit Executive Guide and Reference  



  
 

COMM

APPL

REC

LOCK

LOG

TRAN

TransportRPC

1

6=1’ 2

5=2’

3

4!*

Figure 39. Asynchronous Communication Example

Note:  Arrows denote the call to and return from a procedure. The return from a procedure is often
labeled by the number of the corresponding call and an apostrophe (such as 4') for clarity. Operations
that may take place several times are denoted with an asterisk.

(1) The application makes some call to TRAN. Any call to TRAN may generate asynchronous
communication.

(2) TRAN calls the comm-send upcall (upcallCommSend) function provided by the communication
service in tran_CommInit. The upcall contains one or more address (an application identifier) and a
message to be delivered to each addressee.

(3) The communication service translates the application identifier into an appropriate communication
address. The addressee is usually an application that has been contacted before using the
transactional remote procedure call functions (tran_CommSendingRequest,
tran_CommReceivedRequest, tran_CommSendingReply, and tran_CommReceivedReply).

(4*) The communication service transmits the messages. The communication service at each
addressee that receives a message is expected to call tran_CommReceived.

(5 =2') The communication service returns from the upcall. The transmission need not be reliable; no
acknowledgment is required. The upcall function may queue messages for transmission and return
before they are actually delivered.

(6 =1') TRAN returns from the application call when its communication needs have been met.

TRAN provides several optional functions that are part of the communications service interface. A
communications service can call the tran_CommBlockFunctions function to supply special functions that
TRAN can call to wait for communications service functions to complete. If the communications service
does not call this function, TRAN uses the default blocking functions registered as part of the environment
(see Chapter 19, “TRAN Application Environment Specification” on page 155).

A communications service can call the tran_CommServicePromisesToMatchReplies function during its
initialization to inform TRAN that it can provide the transaction identifier to the call that completes a remote
invocation. Normally, the tran_CommReceivedReply function returns the transaction identifier to which a
remote invocation applies. Many communications services match requests and replies such that they
know the transaction identifier. If the communications service can provide the transaction identifier in the
tran_CommReceivedReply call (instead of it being returned as a result), TRAN can simplify the state

  Chapter 16. TRAN Communication Service Interface 141



  
 

information it needs to transmit. Calling tran_CommServicePromisesToMatchReplies enables this
optimization.

A communications service can call the tran_CommServiceAlwaysSendsReply function during its
initialization to inform TRAN that it delivers Transaction Service data on each RPC reply even when the
tran_CommSendingReply function fails. Normally, if the transaction involved in an RPC is aborted,
TRAN does not deliver Transaction Service data with the RPC reply; it delivers the data asynchronously,
which can cause abort information to be delivered late and a second abort to occur. The communications
service must call tran_CommSendingReply for every RPC, including ones for aborted transactions, to
ensure that Transaction Service data is delivered on the RPC reply.

The interface also defines a pair of functions that can be used to simplify the initiation of communications
in applications that do not require or cannot easily determine the identifier and address of the destination
application. A communications service typically uses these functions for the first RPC to a destination,
before the application identifier and address of the destination are known. TRAN does not need the
identifier and address of the destination application at the time an RPC is initiated, but this information
must be specified to TRAN before the RPC completes. Calling the tran_CommSendingBlindRequest
function initiates a blind RPC; the tran_CommIdentifyBlindRequest function can be called to provide the
application identifier and address to TRAN after they are known. These two functions can be used in
place of the tran_CommSendingRequest function (normally used to initiate an RPC), which requires that
the identity and address of the destination application be known before the RPC is initiated.

Note:  A disadvantage to using these calls instead of the tran_CommSendingRequest call is that TRAN
cannot contact the server if the client aborts the transaction while the RPC is in progress. In this case, the
server discovers the failure eventually but not promptly.

The tran_CommProvideAddressInfo function allows a communications service to provide feedback
about its communication abilities. A communications service can call this function to provide additional
addresses for applications or to provide an estimate of time required for message delivery using a
particular address.

142 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 17. TRAN Recovery Service Interface

Note:  z/OS does not support the TRAN Recovery Service Interface and underlying functions it requires.
Users can have their own such interface, but this book does not document this.

A recovery service is a module within an application that manages recoverable storage. A recovery
service provides an interface to the remainder of the application for modifying permanent storage
transactionally; this interface is not important to the Transaction Service (TRAN). A recovery service also
provides an interface to TRAN for commit processing. TRAN uses this interface to direct a recovery
service to prepare to commit a transaction, to commit or abort work associated with a transaction, to forget
about a transaction, and to perform logging for TRAN. TRAN provides an interface that the recovery
service must use during application restart to allow TRAN to resume commit processing for existing
transactions. Finally, TRAN provides features to aid a sophisticated recovery service in minimizing
logging.

Each recovery service must register its interface to TRAN at initialization time. A recovery service calls
tran_RecInit21 to provide the upcall functions in this interface. TRAN returns a service identifier that it will
use when invoking an upcall function and that the recovery service must use when invoking Transaction
Service functions. A recovery service can call tran_RecBlockFunctions22 to supply special functions that
TRAN can call to wait for recovery service functions to complete; otherwise, TRAN will use the default
blocking functions registered as part of the environment (see Chapter 19, “TRAN Application Environment
Specification” on page 155).

Note:  An ephemeral client should not use any of the interfaces in this chapter. (Doing so produces
incorrect results.)

The recovery service interface includes functions for participating in transaction commitment and for
logging Transaction Service data. TRAN invokes the recovery-active upcall23 (upcallRecActive) when a
transaction becomes active in the application. TRAN invokes the recovery-prepare upcall24

(upcallRecPrepare) to ask the recovery service to make preparations to accept an outcome (commit or
abort) for a transaction family. It invokes the recovery-commit upcall25 (upcallRecCommit) or
recovery-abort upcall26 (upcallRecAbort) to inform the recovery service of the outcome for a transaction.
TRAN invokes the recovery-write upcall27 (upcallRecWrite) to ask the recovery service to permanently
record data that will be needed after an application failure. The recovery service acknowledges that the
data has been recorded. When TRAN no longer needs this data, it calls the recovery-finished upcall28

(upcallRecFinished) to ask the recovery service to discard it. Figure 40 on page 144, Figure 41 on
page 145, and Figure 42 on page 146 depict the upcalls delivered during simple transaction commitment.

21 tran_RecInit is not for ephemeral clients.

22 tran_RecBlockFunctions is not for ephemeral clients.

23 z/OS does not support recovery-active upcalls.

24 z/OS does not support recovery-prepare upcalls.

25 z/OS does not support recovery-commit upcalls.

26 z/OS does not support recovery-abort upcalls.

27 z/OS does not support recovery-write upcalls.

28 z/OS does not support recovery-finished upcalls.

 Copyright IBM Corp. 1989, 2001  143



  
 

COMM

APPL

REC

LOCK

LOG

TRAN

TransportRPC

1

2A*2B

2E=2B’

2C

2C’
2D

2D’

Figure 40. Commitment Protocol: Prepare

Note:  Arrows denote the call to and return from a procedure. The return from a procedure is often
labeled by the number of the corresponding call and an apostrophe (such as 2B') for clarity. An
asterisk denotes an operation that can take place several times.

(1) The application calls tran_End to end the (top-level) transaction. TRAN begins the commitment
protocol.

(2) Each participant is asked to prepare:

(2A*) TRAN calls the communication service to deliver messages to other participants (see
Figure 39 on page 141). These messages ask the other participants to prepare. TRAN waits for
the communication service to deliver reply messages (indicating that those other participants are
prepared).

(2B) TRAN asks the recovery service to prepare. The recovery-prepare upcall
(upcallRecPrepare) includes some Transaction Service data that the recovery service should
include in its own prepare log record.

(2C) The recovery service calls the lock service to acquire lock information to include in the
prepare log record. The recovery service must be able to reacquire locks for prepared
transactions when it restarts after a system failure. The lock service may be an integral
component of the recovery service, or it may be an independent application component.

(2D) The recovery service calls the log service to permanently record its state information and
TRAN data. The log service may be an integral component of the recovery service, or it may be
an independent application component.

(2E =2B') The recovery service returns from the recovery-prepare upcall (upcallRecPrepare).

(3 – 4) TRAN delivers an outcome (see Figure 41 on page 145) and a finished indication (see
Figure 42 on page 146) to each participant.

144 Encina Toolkit Executive Guide and Reference  



  
 

COMM

APPL

LOCK

LOG

TRAN

TransportRPC

3C=1’

3D*

3A

REC

3A’
3B

3C=3A’

Figure 41. Commitment Protocol: Outcome

Note:  Arrows denote the call to and return from a procedure. The return from a procedure is often
labeled by the number of the corresponding call and an apostrophe (such as 1') for clarity. An
asterisk denotes an operation that can take place several times.

(1 – 2) TRAN has begun the commitment protocol, and each participant has prepared (see Figure 40
on page 144).

(3) Each participant is informed of the outcome.

(3A) TRAN calls the recovery-commit upcall (upcallRecCommit) to indicate that the transaction
has committed or the recovery-abort upcall (upcallRecAbort) to indicate that the transaction has
aborted. The recovery service can release any of its resources associated with the transaction,
but it must retain TRAN log data until TRAN calls the recovery-finished upcall
(upcallRecFinished).

(3B*) The recovery service calls the Log Service to write a commit indication. This indication need
not be forced to permanent storage.

(3C =1') The tran_End call returns. Other participants may not have received an outcome yet;
however, they all are guaranteed to receive the same outcome.

(3D*) TRAN calls the communication service to deliver outcome messages to other participants. It
does not wait for acknowledgments for these messages.

(4) TRAN tells all participants to forget about the transaction (see Figure 42 on page 146). This part
of the commitment protocol proceeds asynchronously.

  Chapter 17. TRAN Recovery Service Interface 145



  
 

COMM

APPL

LOCK

LOG

TRAN

TransportRPC

4A*

4D=4A'

4C

4C'
4B

4B'

REC

Note:  Arrows denote the call to and return from a procedure.
The return from a procedure is often labeled by the number of the
corresponding call and an apostrophe (such as 4A') for clarity.
An asterisk denotes an operation that can take place several times.

Figure 42. Commitment Protocol: Finished

(1 – 3) TRAN has begun the commitment protocol and has arrived at an outcome (see Figure 40 on
page 144 and Figure 41 on page 145). The local recovery service has been notified of the outcome.
Messages have been queued to other participants, but responses have not been received. The
recovery service still must retain the last Transaction Service log data for the transaction.

(4) Each participant is informed that the transaction is finished.

(4A) The communication service calls tran_CommReceived when it receives a message from
another participant in the transaction. This message contains an acknowledgment of the
transaction outcome. When TRAN receives the last acknowledgment, it can complete the
commitment processing.

(4B) TRAN delivers the recovery-finished upcall (upcallRecFinished) to indicate that the recovery
service should forget about the transaction.

(4C) The recovery service logs some indication that it should not replay any log records for this
transaction. This indication can be a separate log record, or it can be collected into another log
record (such as a checkpoint record), or it can erase records for the transaction if it can.

(4D =4A') The tran_CommReceived call returns.

If the recovery service cannot prepare, it must call the tran_RecRefuse function. If it does not need to
prepare, it must call the tran_RecReadOnly function.

Recovery service upcalls that take a log record as a parameter do not destroy those log records
automatically. When the application no longer needs the specified log record, it must then destroy that
record using the destructor function tran_LogRecordDestroy, as discussed in “Object Destruction
Functions” on page  129 

TRAN provides an interface for the recovery service to replay log data when the application restarts. The
recovery service calls tran_RecReplay to return the data it recorded on behalf of TRAN. This data
restores the correlation between local transaction identifiers and the distributed transactions, and allows

146 Encina Toolkit Executive Guide and Reference  



  
 

TRAN to resume commit processing for those transactions. After restart is complete, TRAN issues the
appropriate recovery service upcalls to deliver transactions outcomes and forget transactions.

 Restart
Note:  An ephemeral client cannot invoke restart.

The recovery service must replay Transaction Service log records each time it restarts. These log records
permit TRAN to reestablish the state of prepared transactions. TRAN resumes commit processing on
each transaction for which a log record is replayed, and delivers an outcome as soon as one can be
determined.

The recovery service must replay the most recently written Transaction Service log record for each
eligible transaction identifier. A transaction identifier becomes eligible when any Transaction Service log
record is written on its behalf, and the TID remains eligible until TRAN includes it in a call to the
recovery-finished upcall (upcallRecFinished). The special transaction identifier value TRAN_TID_NULL is
always eligible; TRAN uses this identifier to write a log record that contains state pertinent to all
transactions. The recovery service can replay TRAN log records in any order.

The recovery service can replay other Transaction Service log records under certain circumstances:

� Any log record for an eligible transaction identifier can be replayed in addition to the most recently
written log record.

� Log records for a transaction for which the recovery service has completed a recovery-finished upcall
(upcallRecFinished) can be replayed provided that an empty log record is also replayed for that
transaction.

� Log records for other ineligible transactions can be replayed provided that its most recently written log
record has been replayed in each complete restart since it was written. A complete restart is one in
which the application calls the tran_Ready function.

� An empty log record can be replayed for an ineligible transaction to prevent its transaction identifier
from being reused. An empty record must not be replayed for an eligible transaction, regardless of
what the recovery service knows about that transaction.

A recovery service should also replay commit and abort indications found in its log for eligible transactions.
These indications should be logged by the recovery-commit upcall (upcallRecCommit) and the
recovery-abort upcall (upcallRecAbort). The commit and abort indications should be replayed as the
special log record constants TRAN_LOG_RECORD_COMMIT and TRAN_LOG_RECORD_ABORT, respectively,
regardless how the recovery service actually logs them.

TRAN continues commit processing and will deliver the appropriate upcalls for each transaction for which
a record was replayed. An outcome will be delivered for each transaction that was not already finished. A
finished indication will be delivered for every transaction.

Each Transaction Service log record must be replayed using a separate call to tran_RecReplay. The
recovery service can write more than one Transaction Service log record together for efficiency, but it
must return them individually.

  Chapter 17. TRAN Recovery Service Interface 147



  
 

 Optimizations

TRAN provides a variety of interface features that recovery services can use to achieve better
performance. The recovery service upcalls that involve logging include a parameter containing
optimization information. Additional interfaces are provided to allow a recovery service to complete upcalls
asynchronously, to help recovery services make use of log services shared among several applications,
and to allow a recovery service to register upcalls dynamically.

 Optimization Parameter

TRAN provides optimization information in each recovery service upcall. The information is passed by
reference in a parameter of type tran_recOptimization_t.

In addition, TRAN defines two global variables for use with recovery service optimizations. The
tran_recOptimizationsSupported variable specifies the optimization fields that are supported. Fields with a
nonzero value indicate those optimizations that are supported. The tran_recOptimizationsSize variable
specifies the size of this structure. These variables are defined as follows:

tran_recOptimization_t tran_recOptimizationsSupported;
unsigned long tran_recOptimizationsSize;

Asynchronous Upcall Completion
Note:  An ephemeral client cannot use asynchronous upcall completion.

If recovery service logging upcalls can not complete, instead of waiting, the recovery service can elect to
complete the logging upcalls asynchronously. After calling tran_RecInit29 (but before tran_Ready), the
recovery service can call tran_RecExplicitlyAcknowledges to specify which of its upcalls will return
before the associated work is completed. The only requirement is that the specified upcalls must
eventually be acknowledged by a call to tran_RecAcknowledge. Acknowledgment can take place after
the upcall has returned or even in another thread.

Sharing Log Services
Note:  An ephemeral client cannot share log services.

Recovery services that use the same physical log can improve performance by doing only one log force
for each transaction. They must agree on a common name for each force group, or set of recovery
service logs that are forced as a single unit. This name, the force group identifier, must be globally,
permanently unique to the force group. The force group identifier is not interpreted or modified by TRAN;
it is passed unchanged to the other participants.

Each recovery service can call tran_RecUsingForceGroup during a transaction to declare the force
group that it is using. It can make this call more than once to declare that it is using multiple force groups
for the same transaction. TRAN uses the force group declarations made during a transaction to designate
one or more recovery services to force each group. It then stages upcalls among the recovery services
that use a given group to guarantee that the group is forced when necessary.

Each recovery service can call tran_RecMustForceGroup during the recovery-prepare upcall
(upcallRecPrepare) to find out if it has been designated to force a particular group. If it is not designated,

29 tran_RecInit is not for ephemeral clients.

148 Encina Toolkit Executive Guide and Reference  



  
 

then it must not return from a log write upcall before ensuring that its log records will be made permanent
if another application forces records to the same force group.

Dynamic Recovery Service Registration

Note:  An ephemeral client cannot use this.

TRAN allows a recovery service to register upcalls dynamically on a per-transaction basis. Dynamic
registration enables TRAN to avoid making unnecessary upcalls, eliminating communication or logging for
applications that do not actively modify data on behalf of the transaction.

During initialization of a recovery service the prepare, outcome, and finished upcalls can be specified as
dynamic. A recovery service can call the tran_RecDynamicallyRegisters function to specify that all or
some of these upcalls will be requested dynamically for each transaction. The upcalls themselves cannot
be changed; the tran_RecDynamicallyRegisters function changes only whether they are delivered
automatically (the default) or on request. The tran_RecDynamicallyRegisters29 function must be called
after the tran_RecInit function and before the tran_Ready function.

During a transaction the recovery service calls the tran_RecRegister function to specify which upcalls are
needed for that transaction. An upcall that has been specified as dynamic must be registered using this
function before doing work that requires the upcall. An optimal recovery service only registers for those
upcalls it actually needs. A recovery service should register dynamic upcalls as follows:

� Register for a prepare upcall only when the recovery service does recoverable (not read-only) work.

� Register for an outcome upcall only when the recovery service becomes involved in a transaction
(read-only or not).

� Register for a finished upcall only when the recovery service needs to release resources acquired in
the other upcalls.

Typically, all the upcalls are specified as dynamic, and then one or more is requested as needed for each
transaction. All upcalls are always delivered for replayed transactions.

  Chapter 17. TRAN Recovery Service Interface 149



  
 

150 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 18. TRAN Administrative Interface

This chapter describes heuristic outcomes and RPCs.

 Heuristic Outcomes

TRAN provides functions to force heuristic transaction outcomes, and to record and report heuristic
decisions taken by other participants. Once an application has completed the prepare phase for a
transaction, it is no longer allowed to abort that transaction. The application must hold locks and other
resources in order to abide by the result of the commitment protocol. An application can call
tran_ForceHeuristicOutcome to ask TRAN to deliver a specific heuristic outcome immediately, breaking
its promise to abide by the distributed outcome; it is expected that this call would be invoked as the result
of administrator interaction, not normal program control. An application module that interacts with a
foreign system can call tran_RecordHeuristicOutcome to indicate that the other system has taken such
a heuristic decision; this merely facilitates reporting, and does not cause the local application to receive a
heuristic outcome itself. An application can call tran_CallOnHeuristicDamage,
tran_DeclareReportableHeuristicDecisions, and tran_RequireHeuristicDamageReporting to indicate
how heuristic decisions should be reported to this and other applications. An application can call
tran_ForciblyFinish to ask TRAN to finish a transaction that has been resolved, abdicating responsibility
for providing outcome information to other applications.

Administrative RPC Interfaces for the TRAN Module

Note:  These administrative RPC interfaces can be used in an ephemeral client only if the client is part of
a long-running application, such as a server started (not transactionally) from a client.

The TRAN interface includes administrative RPC interfaces for use in administrative applications. The
administrative support provided through command-line administrative tools for Encina, such as the
tkadmin command, should be used whenever possible, rather than coding applications to use the
administrative functions directly.

The functions in this section are shown in the context of the TIDL (Transactional Interface Definition
Language) files that define them, admin_tran.idl and admin_tran_types.idl. See Appendix B,
“Administrative RPC Interfaces for the Encina Toolkit” on page  739 for information about incorporating
calls to these functions in an Encina application.

The administrative interfaces that the Toolkit Distributed Transaction Service exports are:

 � admin_tran_Abort
 � admin_tran_ApplIdLocal
 � admin_tran_ApplIsRecoverable
 � admin_tran_ForceOutcome
 � admin_tran_GetCoordinator
 � admin_tran_GetLocalState
 � admin_tran_GetGlobalState
 � admin_tran_GetRelCommitState
 � admin_tran_ListTransactions
 � admin_tran_PropertyRetrieve
 � admin_tran_ProvideOutcome
 � admin_tran_TidKnownDescendents
 � admin_tran_TidParent

 Copyright IBM Corp. 1989, 2001  151



  
 

 � admin_tran_TidTopAncestor

interface admin_tran_types
{

typedef unsigned long admin_tran_status_t;
typedef unsigned long admin_tran_tid_t;
typedef struct {

 admin_tran_tid_t tid;
 admin_tran_tid_t parentTid;
 long localState;
 } admin_tran_tranInfo_t.

typedef struct {
unsigned long int numElements;
[ptr, size_is(numElements)] admin_tran_tid_t Gtids.

 } admin_tran_tidList_t.
typedef struct {

unsigned long int numTrans;
[ptr, size_is(numTrans)] admin_tran_tranInfo_t GtranInfoP.

 } admin_tran_tranList_t.
typedef struct {

unsigned long int length;
[ptr, size_is(length)] char Gdata.

 } admin_tran_opaqueType_t.
typedef struct {

unsigned long int numElements;
[ptr, size_is(numElements)] admin_tran_opaqueType_t GlistP.

 } admin_tran_opaqueList_t.
}

Figure 43. admin_tran_types.idl

152 Encina Toolkit Executive Guide and Reference  



  
 

interface admin_tran
{
 import "admin/admin_types.idl";
 import "admin/admin_tran_types.idl";
 admin_wireStatus_t

admin_tran_ListTransactions([in] handle_t h,
[out] admin_tran_tranList_t GlistP,
[out] admin_tran_status_t Gstatus).

admin_wireStatus_t admin_tran_Abort([in] handle_t h,
[in] admin_tran_tid_t tid,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_ForceOutcome([in] handle_t h,

[in] admin_tran_tid_t tid,
[in] long commitDesired,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_GetLocalState([in] handle_t h,

[in] admin_tran_tid_t tid,
[out] long GlocalStateP,
[out] long GoutcomeQualityP,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_GetGlobalState([in] handle_t h,

[in] admin_tran_tid_t tid,
[out] long GglobalStateP,
[out] long GdamageKnownOutP,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_GetRelCommitState([in] handle_t h,

 [in] admin_tran_tid_t
 targetTransaction,
 [in] admin_tran_tid_t
 questionerTransaction,

[out] long GresultOut,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_TidTopAncestor([in] handle_t h,

[in] admin_tran_tid_t tid,
[out] admin_tran_tid_t GtopAncestorP,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_TidParent([in] handle_t h,

[in] admin_tran_tid_t tid,
[out] admin_tran_tid_t GparentP,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t

Figure 44 (Part 1 of 2). admin_tran.idl

  Chapter 18. TRAN Administrative Interface 153



  
 

admin_tran_TidKnownDescendents([in] handle_t h,
[in] admin_tran_tid_t tid,

 [out] admin_tran_tidList_t
 GdescendentsP,

[out] admin_tran_status_t Gstatus).
 admin_wireStatus_t
 admin_tran_PropertyRetrieve(

[in] handle_t h,
[in] admin_tran_tid_t tid,
[in] admin_tran_opaqueType_t key,
[out] admin_tran_opaqueList_t GvalueArrayP,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
 admin_tran_GetCoordinator(

[in] handle_t h,
[in] admin_tran_tid_t tid,
[out] admin_tran_opaqueType_t GcoordinatorP,
[out] long GdefiniteP,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_ApplIdLocal([in] handle_t h,

[out] admin_tran_opaqueType_t Gself,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_ApplIsRecoverable([in] handle_t h,

[out] long GisRecoverableOut,
[out] admin_tran_status_t Gstatus).

 admin_wireStatus_t
admin_tran_ProvideOutcome([in] handle_t h,

[in] admin_tran_tid_t tid,
[in] long commitDesired,
[out] admin_tran_status_t Gstatus).

}

Figure 44 (Part 2 of 2). admin_tran.idl

154 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 19. TRAN Application Environment Specification

The Transaction Service (TRAN) depends on several basic environment services:

� Identification. TRAN needs to acquire a new application identifier the first time an application
executes.

� Synchronization. TRAN permits the application to use multiple threads of control within its address
space. TRAN must coordinate access to shared data structures when more than one application
thread invokes an interface function.

� Scheduling. TRAN may need to prevent an interface function from returning until some other event
(for example, logging or communication) occurs.

� Memory management. TRAN needs to allocate memory for its data structures. This memory must
be accessible whenever an application thread invokes an interface function.

� Time. TRAN needs time information so that it can periodically retransmit messages or take alternative
steps to complete transactions.

� Termination. TRAN may detect unrecoverable application errors. Examples of unrecoverable errors
include memory corruption and improper behavior of application-provided upcall functions. TRAN
attempts to report these errors and terminate without further corruption.

The application must register functions to implement these services before it initializes any of TRAN
interfaces.

Note:  Some APIs that are referenced cannot be used in the ephemeral client. They are provided in case
the user is providing the equivalent of Encina Server Core services.

 Environment Registration

An application can use the tran_SpecialEnvironment function to establish its environment functions. The
same function may be used repeatedly to selectively replace environment functions. The
tran_StandardEnvironment function (see Chapter 14, “TRAN Initialization and Termination” on
page 131) itself uses tran_SpecialEnvironment to establish the Toolkit standard environment.

Initialization and Termination Upcalls

TRAN makes environment upcalls at initialization time and in the event of termination. The initialize
upcall (upcallInitialize) function is invoked before any other environment functions. The terminate
upcall (upcallTerminate) is invoked when TRAN is terminated, either normally or because an
unrecoverable condition is encountered.

Application Identifier Generation Upcall

TRAN needs a new, permanent, globally unique identifier for an application the first time it executes.
TRAN invokes the create-application identifier upcall (upcallCreateApplId) to ask the application to
generate a new identifier.

 Copyright IBM Corp. 1989, 2001  155



  
 

 Synchronization Upcalls

The environment must implement a synchronization mechanism to permit TRAN to coordinate access to
shared data. TRAN defines a mutual exclusion variable data type, and requires that the environment
provide functions to initialize, lock, unlock, query, and terminate objects of this type.

 Scheduling Upcalls

TRAN may need to prevent an interface function from returning until some other event occurs. For
example, the tran_End function cannot return until the local recovery services have prepared, and until all
other participants have reported that they are prepared. TRAN invokes a block upcall to give the
application an opportunity to trigger these events; it later invokes a wakeup upcall to indicate that the
associated block function can return. The environment contains a default set of block and wakeup
functions; a communication or recovery service may register its own set of functions.

TRAN uses a block upcall when it cannot return from an interface call until some application module takes
other action. The appropriate action might be an interface call: tran_CommReceived to deliver a
message from another TRAN; tran_RecAcknowledge30 to report that a log record has been made
permanent; or, tran_Alarm to report that an alarm interval has expired. The appropriate action might be
returning from an upcall or callback.

The block upcall should take appropriate steps to trigger the action that will allow the original interface
function to return. If the application is a multi-threaded program in which the actions take place in other
threads, the upcall can merely block the thread that is executing so that others may run. If the application
is a single-threaded program, the upcall may need to take explicit action (such as attempting to receive a
message, forcing a log record to permanent storage, or enabling asynchronous time notification).

The block upcall should not return until a matching wakeup upcall takes place. The block upcall includes
a block identifier parameter that, along with the identifier of the transaction that is being blocked, identifies
the particular invocation of the upcall. The wakeup upcall refers to the particular invocation that can
return. The wakeup upcall may take place before the corresponding block upcall invocation in a
multi-threaded application program; in this case, the block upcall should return immediately. The block
upcall also has a time interval parameter; if the upcall implementation would interfere with the alarm upcall
implementation, it should call tran_Alarm when the specified time has elapsed.

The default set of block and wakeup functions is used when TRAN must wait for the completion of a
callback or an upcall that is not part of the communication or recovery service interface.

A communication or recovery service may specify its own set of block and wakeup functions. TRAN calls
the block function associated with a particular service when an interface call must await work that must be
done by that service. The service may provide its own block function so that it can take appropriate
action: a communication service may need to explicitly try to receive TRAN messages from the
communication service in another application; a recovery service may opt to delay forcing a TRAN log
record to permanent storage until a block upcall takes place. The tran_CommBlockFunctions and
tran_RecBlockFunctions31 functions permit services to register their own upcalls. If a service does not
register its own upcalls, TRAN will use the default upcalls (provided as part of the environment) instead.

30 tran_RecAcknowledge is not for use with ephemeral clients.

31 tran_RecBlockFunctions is not for use with ephemeral clients.

156 Encina Toolkit Executive Guide and Reference  



  
 

Memory Allocation Upcalls

TRAN needs to dynamically allocate memory for its own use and to return variable-sized data to the
application. TRAN calls the allocate-memory upcall (upcallMemAlloc) and free-memory upcall
(upcallMemFree) to allocate and relinquish memory. These functions have the same form as the
standard C library malloc and free functions; applications that do not have special memory allocation
requirements may use these functions. The memory allocation upcalls must not call any other TRAN
interface functions or become blocked awaiting TRAN calls made by other threads.

 Time Upcalls

TRAN requires time information in order to retransmit messages or take other action to complete a
transaction. TRAN invokes the current-time upcall (upcallCurrentTime) to acquire the current time,
specified as a number of seconds and microseconds since some origin time. TRAN calls the alarm-set
upcall (upcallAlarmSet) to request a notification after a given interval, specified as a number of
microseconds; the environment alarm implementation must call tran_Alarm when the interval elapses.
The level of precision needed is on the order of ten round-trip network messages. If the implementation
supplies even less precision it degrades performance but not affect correctness.

  Chapter 19. TRAN Application Environment Specification 157



  
 

158 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 20. TRAN Properties

The following table lists the properties TRAN defines. The first column of the following table lists the
name of the property key constants exported in the interface declaration file. These constants may be
used in calls to tran_PropertyRetrieve. The second column describes the meaning of the value(s)
associated with the property key.

Table 6. TRAN Property Keys

Property Key Property Value Description

TRAN_PROPERTY_KEY_ABORT_DATA The abort data describes the reason that
TRAN aborted a transaction. This data can
only be interpreted using
tran_AbortDataToReason. This property is
recorded only when TRAN aborts a
transaction.

TRAN_PROPERTY_KEY_ABORT_FORMAT The abort format describes another property
key in which abort data is stored. A module
that aborts a transaction should encode its
reason for aborting in a property of its own,
and record the key for that property (as a
property value) in the abort format property.
When TRAN aborts a transaction, it stores
TRAN_PROPERTY_KEY_ABORT_DATA (converted to
a property value) in this property.

TRAN_PROPERTY_KEY_ABORT_SOURCE The abort source is the identifier of the
application that called tran_Abort (converted
to a property value).

TRAN_PROPERTY_KEY_GLOBAL_IDENTIFIER The global identifier is a unique name for the
transaction that is the same in all applications.
The local transaction identifier (tran_tid_t)
that is used in most TRAN interface calls is
unique only within the application; other
applications may have a different local
identifier. The global identifier is the same in
all applications, and can be used for
correlation between applications. The global
identifier is never reused for another
transaction (in this or in any other application,
including after restarts), so it can be used to
construct auditing information. Unlike the
local identifier, which is fixed in size, the
global identifier can be large.

 Copyright IBM Corp. 1989, 2001  159



  
 

160 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 21. Thread-to-Tid Mapping Overview

The Encina Toolkit Thread-to-Tid Mapping Service (threadTid) is a library that associates transactions
with threads. A transaction is associated with a thread through the use of a transaction identifier (TID).

Unlike the Encina Toolkit Distributed Transaction Service (TRAN), which allows a transaction to have
several threads working for it and a thread to work on several transactions, the Thread-to-Tid Mapping
Service implements a more structured one-thread-to-one-transaction model. The ThreadTid model only
allows a thread to work on behalf of one transaction at a time; there can, however, be multiple threads
that are each using ThreadTid and are working on behalf of the same transaction. The ThreadTid module
maintains a stack of transactions for each thread; the current transaction for a thread is at the top of its
stack.

The ThreadTid component provides the following functionality for applications:

� Setting or suspending the current transaction of a thread – Transaction programming language
modules, like Tran-C, make ThreadTid calls to set or suspend a thread's TID. The threadTid_Begin
call assigns a TID to the current thread in an application and certifies it. The thread may be explicitly
decertified with the threadTid_Decertify function.

� Retrieving the TID of the thread's current transaction – Any module in the application can use
ThreadTid to determine the transaction currently associated with the calling thread.

� Registering callback functions – Any module in the application can register ThreadTid callback
functions, which are invoked whenever a thread sets or suspends its TID.

When a transaction begins in a thread, threadTid_Begin is called to map the thread to the TID by
pushing the TID on top of the thread's TID stack. At that time, the thread is certified to operate on behalf
of the transaction. A thread that is certified need not be concerned with the transaction's aborting while it
is working. Certification prevents the transaction service from invoking recovery service abort and
application after-resolution procedures. As a result, threads should give up their certification whenever
they will remain blocked for a long time.

When the transaction finishes, threadTid_End is called to update the thread to the TID of the previous
transaction by popping the TID of the completed transaction from the top of the thread's TID stack. The
thread of the completed transaction is decertified, and the previously associated thread is recertified.

A thread can temporarily leave its current transaction to do nontransactional work. A transaction is
suspended by a call to threadTid_Suspend, which pushes a TRAN_TID_NULL on top of the thread's TID
stack and will automatically decertify the thread. After the thread returns from the nontransactional work, a
call to threadTid_Resume pops the TRAN_TID_NULL from the stack, resetting the thread to the previous
TID and recertifying the thread. To retrieve a thread's current TID, ThreadTid provides a query function,
threadTid_Lookup.

A set of certification functions including threadTid_Decertify, threadTid_Certify, and
threadTid_IsCertified, provide increased control over certification. The functions that result in the
certification of a thread return boolean values which indicate the success or failure of the certification.
Certification will fail if the transaction has been committed or aborted.

The Thread-to-Tid Mapping Service also provides callback registration. All the callback functions
registered in an application are called each time a thread is set to a TID. The callback functions are
called in the reverse order they were registered; functions registered first are called last. Callback
functions allow a thread to perform necessary cleanup work before finishing a transaction. For example,
Tran-C, the application's programming language module, first calls threadTid_Begin to set the current
thread to a TID. After that, another module participating in the application registers a callback function

 Copyright IBM Corp. 1989, 2001  161



  
 

using threadTid_RegisterCallback. When the transaction finishes, the programming language module
calls threadTid_End to reset the thread to the previous TID. When the thread's TID stack is modified, the
registered callback function is called and the cleanup work is done.

CAUTION:
The DCE threading model permits the cancellation of threads. However, the Thread-to-Tid Mapping
Service assumes that none of threads it has mapped to a transaction will be interrupted by such a
cancellation. Thread-to-Tid Service calls should be made only with thread cancellation disabled. If
a thread for which the Thread-to-Tid Service maintains a mapping is cancelled, the results are
undefined.

 Header Files

Applications that link with ThreadTid must include the header file threadTid/threadTid.h in their C
program.

 Libraries

The ThreadTid functions are contained in the ECNDLL dynamic link library. See “Specifying Library
Names” on page  99 for more information on the libraries used during compilation.

162 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 22. Thread-to-Tid Application Interface

This chapter describes the application interface to ThreadTid. It consists of functions to begin, end,
suspend, resume and query a transaction identifier in a thread and a function to register callbacks.

 Initialization

The ThreadTid component initializes itself. No explicit initialization procedure is needed.

Setting and Querying a Thread's Current Transaction

The following functions are related to TID mapping:

 � threadTid_Lookup
 � threadTid_Begin
 � threadTid_End
 � threadTid_Suspend
 � threadTid_Resume

Explicitly Decertifying and Certifying Threads

The functions that explicitly decertify and certify threads can be used by applications that require control of
thread certification beyond what is provided by the threadTid_Begin, threadTid_End, and
threadTid_Suspend functions.

The ThreadTid component provides the threadTid_Decertify function to decertify a thread from working
on behalf of a transaction, the threadTid_Certify function to certify a thread to work on behalf of a
transaction, and the threadTid_IsCertified function to check the certification status of a thread.

Certification prevents the transaction service from undoing the effects of a transaction while there are still
threads executing on behalf of that transaction. A thread can be temporarily decertified with the
threadTid_Decertify function or permanently decertified with the threadTid_End function. If there are
multiple threads executing on behalf of a single transaction, recovery can only take place when all of these
threads are decertified. Threads should be decertified if they block, for example, by making an RPC.

 Registering Callbacks

The ThreadTid component provides the threadTid_RegisterCallback function to register a callback. The
threadTid_event_t data type enumerates the events that can cause a registered callback to be invoked.

The ThreadTid component also provides the threadTid_RegisterTrpcCallbacks function to register TRPC
callbacks. See “threadTid_RegisterTrpcCallbacks” on page 321 for more information.

 Copyright IBM Corp. 1989, 2001  163



  
 

164 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 23. TRPC Overview

The Encina Transactional Remote Procedure Call (TRPC) Service enhances the DCE RPC package.
DCE RPC is a remote procedure call system that implements nontransactional RPCs for Encina Toolkit
components to use.

TRPC provides the same basic interface as DCE RPC. However, there is one significant difference. TRPC
implements transactional and nontransactional RPCs; DCE RPC implements nontransactional RPCs only.
To accommodate the transactional nature of TRPC, the Transactional Interface Definition Language (TIDL)
was developed. TIDL is described in Chapter 4, “TIDL” on page 23.

TRPC and the Toolkit

TRPC assumes a multi-threaded environment. A thread package is a prerequisite for DCE RPC, the
underlying communication paradigm for TRPC.

CAUTION:
The DCE threading model permits the cancellation of threads. However, the TRPC Service
assumes that its work will not be interrupted by such a cancellation. TRPCs should only be made
from threads with thread cancellation disabled. If a thread executing a TRPC is cancelled, the
results of that function are undefined.

Figure 45 on page 166 depicts the interaction between the application, the Transaction Service (TRAN),
TRPC, DCE RPC, and the threads package. The application interacts with TRPC via the TIDL
preprocessor and the TRPC run-time interface. TRPC interacts with TRAN by calling TRAN run-time
library functions. TRAN invokes TRPC run-time library functions through a system of upcalls which are
functions registered with TRAN by TRPC. The application also interacts with TRAN, DCE RPC and the
threads package directly.

 Copyright IBM Corp. 1989, 2001  165



  
 

Application

T
R

A
N TRPC

DCE RPC

Threads 
Package

Via TRAN runtime 
calls and callbacks

Via TIDL and TRPC
runtime calls

Via TRPC callbacks

Via DCE RPC
runtime calls

Via DCE 
threads
package
runtime calls

Via TRAN
runtime calls

Via TRPC
runtime calls

Figure 45. TRPC Architecture

 Transactional RPCs

Transactional RPCs are initiated from within the scope of a transaction. Each transactional RPC does
work on behalf of a transaction. The TIDL preprocessor adds additional parameters to user-specified
operations in an interface definition file. These additional parameters are used to carry the TRAN state
and data. Transactional RPCs carry the Transaction Service (TRAN) state and data along with the regular
parameters of the RPC; and pass the parameters to the appropriate TRAN.

Although transactional applications commonly use transactional RPCs, some transactional applications
may also use nontransactional RPCs. Therefore, TRPC provides a mechanism that allows an RPC to
retain its nontransactional semantics. TRPC's nontransactional RPC's are an enhanced version of the
DCE RPC.

Communication Support for TRAN

TRPC provides communication support for the Distributed Transaction Service (TRAN). TRPC piggybacks
TRAN data on user-initiated RPCs (this is also known as synchronous communication) which have been
preprocessed by TIDL. TRPC also provides a set of library functions that TRAN uses to do asynchronous
communication, where TRAN data is not piggybacked on RPCs. Messages sent by TRAN by this special
asynchronous communication mechanism are called out-of-band messages.

166 Encina Toolkit Executive Guide and Reference  



  
 

 TRPC Components

TRPC consists of two components: a preprocessor and a library of functions. The TIDL preprocessor, tidl,
preprocesses interface definition files. It produces a set of files that must be compiled and linked
appropriately with client and the server programs. It also produces an interface definition file that must be
processed by IDL.

The library of functions provide the relevant communication support for the Distributed Transaction Service
(TRAN). TRPC also exports interface calls to the application developer. The functions can be categorized
into sets as follows:

� Functions to support the TRAN communication interface. See Chapter 16, “TRAN Communication
Service Interface” on page 139 for a description of the TRAN communication interface.

� Functions used to initialize the TRPC run time interface, provide information about communication
protocols and endpoints, and register callbacks (see Chapter 25, “TRPC Application Interface” on
page 177).

� Functions that wrap certain DCE RPC run time functions that manipulate RPC handles (see
Chapter 26, “Wrapper Functions” on page 181).

TRPC Model For Transactional Communication

TRPC provides the TIDL preprocessor to support transactional RPCs and provides functions that
implement the TRAN asynchronous communication interface. Together, they comprise the model used by
TRPC to provide the required communication support to TRAN.

Transactional RPCs: To implement transactional RPCs, the tidl command accepts an interface
definition file and produces the following:

� IDL interface definition file - This file contains modified versions of the operations in the TIDL
interface definition file. Each operation in the IDL interface has extra parameters to transmit and
receive TRAN data and callback data. The TIDL interface definition file is slightly different from the
IDL interface definition file (see “Differences between TIDL and IDL” on page 25). IDL accepts the
modified interface definition file and produces the native client and server stubs.

� Shadow client stubs - These stubs are invoked when the client initiates an RPC. The shadow client
stubs then invoke the native client stubs produced by IDL.

� Shadow manager functions - These functions are invoked when the RPC run time invokes manager
functions within the server stubs. The shadow manager functions eventually call the user provided
manager functions.

The shadow client stubs provide entry points for remote procedures initiated by the client. Each shadow
client stub first calls a function called tran_CommSendingRequest to get transaction service data for the
remote TRAN. It then invokes the native client stub that marshalls the in parameter of the RPC as well as
the transaction service data. The native client stub sends the request message and waits for the
response. On receiving the response message, the native client stub unmarshalls the out parameter
which now include a parameter for the received transaction service data. The shadow client stub then
invokes another function called tran_CommReceivedReply to pass the received transaction service data
to the local TRAN.

The shadow manager functions are invoked by the native server stubs. Each shadow manager function
must guarantee its local TRAN the authenticity of the application identifier (see “Application Identifier” on
page 171) in the received request. The shadow manager function calls a TRAN function called
tran_CommReceivedRequest to pass the transaction service data in the request message to its local
TRAN. After calling tran_CommReceivedRequest the shadow manager function calls the native

  Chapter 23. TRPC Overview 167



  
 

manager function and then calls a function called tran_CommSendingReply to request its local TRAN for
data for the client's TRAN.

Figure 46 on page 170 depicts the flow of calls and messages in a transactional RPC.

Transactional Asynchronous Communication:  TRAN also requires TRPC to provide a
mechanism for asynchronous transaction communication. Asynchronous transaction communication
implies that TRAN data is not piggybacked on application RPCs. Instead, TRAN expects the
communication service (for example TRPC) to deliver the data using separate messages. TRPC provides
this mechanism via a library of functions. Some functions in this library provide a way to do
special-purpose RPCs to allow asynchronous transaction communication. TRAN messages delivered
asynchronously are also referred to as out-of-band TRAN messages in this document. TRPC does the
authentication for out-of-band TRAN messages.

Limitations on Transaction State Data:  The TRPC run-time library imposes limitations on the
amount of TRAN state information that can be transmitted (“piggybacked”) on client RPCs. These
limitations are imposed in the interests of normal-case performance, where the amount of state data that
must be transmitted is expected to be small. Unfortunately, this may indirectly limit the complexity of
transactions.

The following factors contribute to the amount of TRAN state data that must be transmitted with an RPC:

� the number of participants in the transaction family

� the depth to which a transaction is nested within other transactions

� the number of nested transactions in the same transaction family (and the depths to which they are
nested)

� the number of applications that have caused heuristic damage

When the amount of TRAN data exceeds the limit imposed by the TRPC run-time library, transactional
RPCs will fail, and the encompassing transaction will abort. Depending on the point at which this limit is
actually exceeded, an error message may be displayed, stating “fault invalid bound (dce / rpc)”.

To approximate transaction complexity, add the number of instances of each limiting item from the
previous list. Encina systems should support all transactions with a complexity of ten or less, and most
transactions with a complexity of twenty or less.

Advantages for Transaction Programming Environments

In addition to providing transactional RPCs, TRPC also provides functionality for transaction programming
environments like Transactional-C. For transactional programming environments, TRPC supports

� Piggybacking data on an RPC;

� Handling exceptions during the course of an RPC;

� Aborting an RPC and the enclosed transaction;

� Invoking functions at specific places in an RPC sequence.

TRPC provides a general callback mechanism (see “Callbacks” on page 169) for the last item.

168 Encina Toolkit Executive Guide and Reference  



  
 

 Callbacks

Callbacks are procedures that are registered with TRPC by transaction programming environments (for
example, Transactional-C) and the application. They are invoked by TRPC when specific events occur.
TRPC provides callbacks to enable different transaction programming components of an application to
piggyback data on RPCs, set up data structures and clean data structures before and after the RPC in
both the server and the client, and to provide an opportunity to the application to do security checks. The
application developer's use of callbacks must be compatible with the use of the callbacks by the
transaction programming environments. The compatibility issues are outlined in the description of each
callback in Chapter 25, “TRPC Application Interface” on page 177.

The shadow client stubs and the shadow manager functions invoke callback procedures in addition to the
TRAN procedures. TRPC exports functions to the application to register callbacks. For further
information, see Chapter 25, “TRPC Application Interface” on page 177.

The following callback procedures are invoked at the same four points in the RPC sequence as the TRAN
functions called by TRPC:

before-sending-request callback (callbackBeforeSendingRequest)

after-receiving-request callback (callbackAfterReceivingRequest)

before-sending-reply callback (callbackBeforeSendingReply)

after-receiving-reply callback (callbackAfterReceivingReply)

As an example, the before-sending-request callback (callbackBeforeSendingRequest) can be used on
the client side to set up authentication and authorization information, while the after-receiving-request
callback (callbackAfterReceivingRequest) can be used on the server side to retrieve the authentication
and authorization information. Figure 46 on page 170 depicts the manner in which these callbacks are
invoked during a transactional RPC.

TRPC also provides other callback functions to provide transaction identifiers and handle exceptions. A
transaction identifier is a TRAN abstraction that identifies a transaction in an application. The
get-transaction-identifier callback (callbackToGetTid) is invoked to get a transaction identifier if the
transaction identifier is not passed as a parameter of an RPC. This callback must be registered with
TRPC by calling trpc_CallToGetTid. A fatal error results if the callback function is not registered.

TRPC invokes exception handling callbacks in the server and the client when it detects an exception. If
an exception occurs on the server side, the shadow manager functions cause the server-side-exception
callbacks to be invoked. After the exception callbacks have executed, the exception is passed to the
client, causing an exception to occur in it. If an exception occurs in the client, the shadow client stubs
cause the client-side-exception callbacks to be invoked. After the execution of the exception handlers, the
shadow client stubs do the following:

1. If the RPC is transactional, the shadow client stubs abort the transaction.

2. Control is passed to a function registered with the shadow client stub by the TRPC function
trpc_CallOnRpcTermination. Such a function is provided by certain transactional run-time
environments like Transactional-C (Tran-C). In the absence of Tran-C, the application can register this
function.

3. If the trpc_CallOnRpcTermination function returns and an error parameter is specified in the
interface definition file, the exception code is passed to the application by the error parameter.

The exception callbacks can be used to do any cleanup associated with the RPC. The exception
callbacks, along with trpc_TerminateRpc and trpc_CallOnRpcTermination (see “Abort RPC Functions”
on page 179), provide a mechanism to longjmp out of the scope of the RPC.

  Chapter 23. TRPC Overview 169



  
 

Callbacks and manager functions that raise exceptions must use exception codes that have a value
greater than or equal to the symbolic constant TRPC_APPLICATION_ERROR. The value must be carefully
selected, as it must not collide with the status value used by the DCE RPC. Also, arbitrary values are
likely to confuse the client about the actual reasons for aborting the RPC.

TRPC Model for Nontransactional RPCs

TRPC provides a mechanism allowing for nontransactional RPCs. Nontransactional RPCs provide support
for the callback and exception handling mechanisms described earlier. However, nontransactional RPCs
however do not carry any TRAN data. Nontransactional RPCs issued within the scope of a transaction
(that is, when the transaction identifier obtained by the get-transaction-identifier callback
(callbackToGetTid) is nonzero) are treated as standard function calls. If an exception occurs during their
execution, the exception callbacks are still executed, and the exception code is returned in an out
parameter (type trpc_status_t or error_status_t) of the RPC. The transaction is not automatically
aborted. For further information, see Chapter 4, “TIDL” on page 23.

Flow of a Transactional RPC

During the course of a transactional RPC, TRPC invokes both the TRAN calls and the callbacks registered
with TRPC in a specific order. The sequence of these calls is illustrated in Figure 46.

1. Initiate
Call

4.
7. Execute

Request

8. Before-sending-reply callback

10.

11. tran_CommReceivedReply12. After-receiving-reply callback

13. Call
Returns

Wait

2. Before-sending-request callback 3. tran_CommSendingRequest 5. tran_CommReceivedRequest 6. After-receiving-request callback

TRPC STUBCLIENT TRPCRPC
runtime

RPC
runtime

STUB SERVER

Native Client Native Server

9. tran_CommSendingReply

TRAN TRAN

Figure 46. Flow of a Transactional RPC

In Figure 46:

1. The client initiates an RPC, causing the shadow client stub to be invoked.

2. The shadow client stub then invokes the before-sending-request callbacks. These callback
procedures may return data that is piggybacked on the RPC request.

3. The shadow client stub calls local TRAN and requests transaction service data to be sent.

4. The shadow client stub invokes the native client stub that causes the request message to be
delivered. The request message contains the callback data and the transaction service data, in
addition to the in parameters of the operation specified in the TIDL file.

5. On the server side, the shadow manager function is invoked. It first authorizes the use of the
application identifier in the received request and then passes any transaction service data to the local
TRAN.

6. The shadow manager function then invokes the after-receiving-request callbacks. It passes to each
callback the portion of the callback data meant for it.

170 Encina Toolkit Executive Guide and Reference  



  
 

7. The shadow manager function invokes the actual operation.

8. The shadow manager function calls the before-sending-reply callbacks. These callbacks may return
data that is piggybacked on the RPC reply.

9. The shadow manager function calls local TRAN to request transaction service data that must be sent
back to the client.

10. The run time delivers the RPC reply. The reply message contains callback data and transaction
service data in addition to the out parameters of the operation specified in the TIDL file.

11. The shadow client stub receives the reply. It passes any transaction service data to the local TRAN.

12. The shadow client stub calls the after-receiving-reply callbacks. It passes to each callback the portion
of the callback data meant for it.

13. The shadow client stub passes the out parameters of the operation specified in the TIDL file to the
client and the RPC returns.

 Important Abstractions

This section describes certain abstractions that are used by TRPC. They include the application identifier,
application addresses and the transactional handle.

 Application Identifier

TRAN uses an application identifier to uniquely name each application that participates in a transaction.
The type of the application identifier (tran_applId_t) is exported by TRAN. During the course of a
transactional RPC, TRAN requires TRPC to provide the application identifier of the remote application.
Conversely, when TRAN initiates asynchronous communication, it provides TRPC with the application
identifier of the remote application and an entity described by the type tran_address_t along with the
message. If necessary, TRPC queries a directory service for the communication endpoint of the remote
application using the application identifier as the key. As part of the TRPC initialization, each application
also registers the application identifier and the communication endpoints with the directory service to allow
the lookup mentioned earlier.

 Application Addresses

TRAN expects the communication subsystem to assign addresses to each application. Each application
address is contained in the tran_address_t data type TRAN exports. TRAN does not create or interpret
application addresses. It merely maintains a binding between the application identifier and the application
address. When TRAN initiates asynchronous transactional communication, it provides the communication
subsystem with both the application identifier and the application address of the remote application. The
application address can be used by the communication subsystem to locate the remote application.

There are several possible reasons why an application has multiple addresses.

� An application may support multiple communication services like TRPC and another communication
service based on some other communication paradigm. Each communication service may assign a
different address to itself.

� An application using TRPC may decide to use all the communication protocols supported by DCE
RPC. TRPC creates a different address for each communication protocol.

� An application may decide to create multiple communication endpoints for a single communication
protocol that it plans to use. TRPC creates different addresses for each communication endpoint.

  Chapter 23. TRPC Overview 171



  
 

Application addresses created by TRPC provide either the logical or the physical address of an
application. As an example of the logical address, the application address may merely contain a cell
name, allowing TRPC to contact the appropriate directory service to initiate a lookup using the application
identifier as the key. On the other hand, the application address may in fact contain the actual
communication endpoint of an application.

TRPC creates local application addresses as part of its initialization process. Some of the interface
functions and the state information that TRAN provides enable TRPC to create the appropriate kind of
application addresses. As a general rule, TRPC creates application addresses with actual physical
addresses for ephemeral applications and applications that use well known communication endpoints.
Further, in the absence of a directory service, TRPC insists that recoverable applications provide well
known communication endpoints. If well known endpoints are not provided the application will terminate
with a fatal error message.

 Transactional Handles

DCE RPC provides an abstract data type called an RPC handle that describes the binding between the
client and the server. TRAN uses the application identifier to identify each application and provides the
application address to enable the communication subsystem to address an application. It expects the
transactional communication service to deliver messages by providing application identifiers, application
addresses and messages for the corresponding applications. Initially TRPC provides TRAN with the
application identifier and the application address of a remote application to which a transactional RPC is
initiated. Eventually TRAN passes this information back to TRPC during asynchronous transactional
communication. TRPC maintains a binding between application identifiers and addresses (TRAN's way of
addressing applications) with RPC handles (DCE RPC's way of addressing applications).

TRPC exports an abstraction called a transactional handle which maintains such a binding. The
application must use transactional handles in place of the regular RPC handles. The type of the regular
RPC handles is handle_t (DCE RPC equivalently also uses the type rpc_binding_handle_t), while the type
of the transactional handles is trpc_handle_t.

When an application initiates a transactional RPC, the shadow client stubs must know the application
identifier and the address of the remote application. The shadow client stub needs to pass these to the
local TRAN and the callback functions while requesting data to be piggybacked on the RPC. The
following two situations may arise:

� The transactional handle does not have the application identifier and the application address. In this
situation the shadow client stub tries to determine the remote application's application identifier. If it
succeeds, then it initiates the transactional RPC. After the transactional RPC completes the
transactional handle will contain the application identifier and the application address for future calls. If
it fails, then the shadow client stub aborts the RPC and consequently the enclosing transaction.

� The transactional handle contains both the application identifier and the application address. In this
situation, the shadow client stub uses the application identifier and the address in the transactional
handle. This can happen if the application knows the application identifier and the address of the
remote server beforehand (that is, at the beginning of execution).

TRPC caches transactional handles with application identifiers, application addresses and bound RPC
handles. The cache is used to determine the RPC handle of the remote application when TRAN initiates
out-of-band communication and the corresponding application address does not contain the actual
physical address of the remote application.

172 Encina Toolkit Executive Guide and Reference  



  
 

TRPC Header files

The file trpc/trpc.h contains the TRPC interface declarations for the C language. This file must be
included in any file that uses the TRPC interface functions or data types.

 TRPC Libraries

The TRPC functions are contained in the ECNDLL dynamic link library. See “Specifying Library Names”
on page  99 for more information on the libraries used during compilation.

  Chapter 23. TRPC Overview 173



  
 

174 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 24. TRPC Data Types and Auxiliary Functions
Overview

The following are the data types TRPC defines:

� trpc_status_t — return type for most TRPC functions
� trpc_outOfBandMode_t — enumerated type used to determine the mechanism used by TRPC to

deliver out-of-band TRAN messages
� trpc_handle_t — handle used in transactional RPCs
� trpc_tranInfo_t — a structure containing the transaction identifier and application identifier of a remote

application
� trpc_ifSpec_t — a structure containing the name of an operation, the name of the interface to which

the operation belongs, and another structure that contains the version number and the UUID of the
interface

TRPC also defines the trpc_Free function to free memory that is allocated dynamically by TRPC.

Imported DCE RPC Data Types

Parameters to some TRPC functions use DCE RPC data types, for example, functions that wrap certain
DCE RPC functions. TRPC imports the following DCE RPC data types:

 � rpc_protseq_vector_t
 � rpc_binding_vector_t
 � uuid_t
 � rpc_binding_handle_t
 � unsigned32
 � signed32
 � unsigned_char_p_t

 Copyright IBM Corp. 1989, 2001  175



  
 

176 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 25. TRPC Application Interface

The TRPC application interface provides functions for the primary application tasks. Functions are
provided for initializing and terminating TRPC, for registering callbacks, for making callbacks to get
transaction identifiers, for aborting RPCs, for manipulating application addresses, for getting interface
specifications, and for determining if the RPC is transactional or not.

 Initialization Functions

There are three possible steps in initializing TRPC manually:

1. Specify communication protocols and well-known endpoints, if necessary. The
trpc_UseProtseqVector function specifies information about communication protocols. The
trpc_UseWkEndpoints function and the trpc_BindWkEndpoints function specify information about
well-known endpoints. The trpc_InitWithTrdce function can specify information about both if the
server has created and registered binding handles. (An application that can use all the communication
protocols supported by DCE RPC, and does not use well-known endpoints, can omit this step.)

2. Set directory service and security specifications, if necessary, using the trpc_SetEnvironment
function. If this function is not explicitly called in an Encina application, TRPC uses a set of default
values for these specifications. These values are correct for most cases, and they should only be
changed if an application explicitly needs to override one or more of these defaults. See
“trpc_SetEnvironment” on page  638 for a discussion of the default values TRPC uses.

3. Initialize the TRPC runtime interface. The trpc_Init function initializes basic features of the TRPC
application interface. If the first part of the initialization (step 1) is omitted, this function uses default
communication protocols and creates suitable communication endpoints.

If used, the trpc_SetEnvironment function must be called before the trpc_Init function, because it
defines aspects of the environment used when initializing TRPC. Similarly, the trpc_Init function uses
default communication protocols and endpoints if others are not specified by the trpc_UseProtseqVector,
trpc_UseWkEndpoints, trpc_BindWkEndpoints, and trpc_InitWithTrdce functions. The trpc_Init
function must be completed prior to calling the tran_Ready function.

You can call the trpc_GetEnvironment function after the tran_Ready function to retrieve the environment
values Encina registered. You can use the trpc_SetTranTimeout function to set a timeout for inactive
transactions.

Before Sending Request Callbacks

TRPC invokes a set of callback procedures in the shadow client stubs before shipping the RPC request to
the server. These callback procedures are registered by calling the trpc_CallBeforeSendingRequest
function.

 Copyright IBM Corp. 1989, 2001  177



  
 

After Receiving Request Callbacks

TRPC invokes a set of callback procedures in the shadow manager functions after receiving an RPC
request. These callback procedures are registered by calling the trpc_CallAfterReceivingRequest
function.

Before Sending Reply Callbacks

TRPC invokes a set of callback procedures in the shadow manager functions before shipping the RPC
reply to the client. These callback procedures are registered by calling the
trpc_CallBeforeSendingReply function.

After Receiving Reply Callbacks

TRPC invokes a set of callback procedures in the shadow client stubs after receiving the RPC reply from
the server. These callback procedures are registered by calling trpc_CallAfterReceivingReply.

Client Side Exception Callbacks

TRPC invokes a set of callbacks in the shadow client stubs when an exception is detected in the client.
These callbacks are registered by calling trpc_CallOnClientException.

Server Side Exception Callbacks
Note:  The following callbacks are not supported on z/OS unless you provide the equivalent of the Encina

Server Core.

TRPC invokes a set of callbacks in the shadow manager functions when an exception is detected in the
server. These callbacks are registered by calling trpc_CallOnServerException.32

 Callback Data

The TRPC Service allows callback data to be passed from client to server. A client uses the
trpc_SendCallbackData function to provide the data to be piggybacked on a TRPC. A server uses the
trpc_ReceiveCallbackData function to retrieve the data that has been piggybacked on a TRPC. Both of
these functions use the callbackDataId parameter (an unsigned long integer) to identify the module
sending the piggybacked data. These identifiers must have a value less then 32768; values greater than
or equal to 32768 are reserved for use by TRPC.

32 trpc_CallOnServerException is not for ephemeral clients.

178 Encina Toolkit Executive Guide and Reference  



  
 

Abort RPC Functions

Server and client applications can abort RPCs by calling trpc_TerminateRpc and
trpc_CallOnRpcTermination respectively. These functions are meaningful in the shadow manager
functions and the shadow client stubs and therefore can be called from within the callback functions. The
trpc_CallOnRpcTermination is used to register the on-Rpc-termination callback
(callbackOnRpcTermination). The callback is invoked by TRPC on the client side when an RPC is
aborted.

Application Address Manipulation Functions

TRPC provides a function that allows an application to get a local address corresponding to a given DCE
RPC protocol sequence. These local addresses can be registered with directory services (or otherwise
distributed) so that clients can call trpc_ConsBinding to produce a fully-bound handle.

Server-side Transaction Functions

This section describes the functions used for creating and managing server-side transactions. A
server-side transaction is a transaction that a client application initiates but a server runs.

A client application can specify that a transactional RPC should be executed in a server-side transaction
by associating a special transaction identifier (acquired with the trpc_GetWrapTid function) with the
TRPC. The manager function in the server is executed within a transaction begun and ended by the
TRPC runtime in the server. Nontransactional RPCs are not eligible for execution in server-side
transactions; their manager functions are always executed nontransactionally. If a server-side transaction
aborts, the client can retrieve the abort reason by calling the trpc_ServerSideAbortReason function. The
server can call the trpc_IsLocallyWrapped33 function to determine whether a transaction that is executing
locally is a server-side transaction.

Server-side transactions can improve the performance of an application because transactional information
is not sent on each TRPC. However, because the client and server do not share transactional
information, only client applications that do not rely on transactional guarantees should use server-side
transactions.

 Termination Functions

An application must terminate using the trpc_Terminate function to orderly shutdown the server or to exit
a client application.

33 trpc_IsLocallyWrapped  is not for ephemeral clients.

  Chapter 25. TRPC Application Interface 179



  
 

180 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 26. Wrapper Functions

The Transactional Remote Procedure Call (TRPC) library provides functions that manipulate transactional
handles. Many of these functions wrap functions of the DCE RPC run-time library that manipulate RPC
binding handles.

TRPC defines the following wrapper functions:

 � trpc_BindingCopy
 � trpc_BindingFromStringBinding
 � trpc_BindingToStringBinding
 � trpc_ConsBinding
 � trpc_CreateBinding
 � trpc_FreeBinding
 � trpc_GetRpcHandleFromBinding
 � trpc_InqObjectFromBinding
 � trpc_InqTimeoutFromBinding
 � trpc_ResetBinding
 � trpc_SetObjectBinding
 � trpc_SetTimeoutBinding

TRPC also defines two functions used to get information from a transactional handle: the
trpc_GetApplIdFromBinding function and the trpc_GetAddressFromBinding function.

 Copyright IBM Corp. 1989, 2001  181



  
 

182 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 27. The Encina Abort Facility

The Encina Abort Facility provides support for setting and retrieving abort reasons. This support includes
the following (see Part 3, “Reference Information” on page  235 for details):

 � encina_abortReason_t
 � encina_FreeAbortReason
 � encina_GetAbortReason
 � encina_SetAbortCode
 � encina_SetAbortString
 � encina_status_t
 � encina_FormatAbortReason
 � encina_GetAbortCode
 � encina_GetAbortString
 � encina_RegisterAbortFormatter
 � encina_SetAbortReason

You can use abort reasons to determine why a transaction aborted. They are typically presented as
strings or codes. A number of Encina components support the use of abort reasons. The functionality of
the Abort Facility is generalized to allow it to be used with any component that requires abort reasons.

 Abort Reasons

An abort reason is a structure (of type encina_abortReason_t) that consists of a format identifier and an
abort code and/or abort data. The format identifier is a DCE UUID (universal unique identifier) that
uniquely identifies the abort reason. The abort code is a signed, 32-bit integer that defines the reason for
aborting a transaction. Abort data is component specific, and may consist of a string describing the
reason for an aborted transaction and an integer defining the length of that string. Abort data can also be
used to further qualify an abort reason described by the abort code.

Defining abort codes as part of abort reasons allows abort reasons to be easily compared. That is, the
abort codes can simply be compared instead of trying to compare variable-length strings. In addition, an
abort code can be encoded in such a way that a formatting function can be used to convert the abort code
to an NLS-compliant string for printing.

A formatting function is used to format abort codes and data for a specific format identifier into a
null-terminated string for printing. A format identifier is a UUID created with the uuidgen utility provided
by the DCE; the format identifier is referred to as the format UUID. Abort formatting functions can be
registered with a component or an application by calling the encina_RegisterAbortFormatter function.
After an abort reason has been retrieved, a formatting function can be invoked by passing the abort
reason to the encina_FormatAbortReason function; if the format UUID of the abort reason matches the
format UUID of a registered formatting function, that formatting function is invoked to format the abort
reason.

For example, all the abort codes defined in Encina components follow the format used by the Encina
status codes. A formatting function, which is registered for all the Encina components that define abort
codes, interprets the abort codes using the encina_StatusToString function.

Setting and retrieving abort reasons can be done using the encina_SetAbortReason and
encina_GetAbortReason functions. These two functions require that an encina_abortReason_t
structure be defined, and the encina_SetAbortReason function requires that it has a valid format UUID.
Also, a formatting function should be defined and registered with the same format UUID if the abort reason

 Copyright IBM Corp. 1989, 2001  183



  
 

can be converted into a printable string. Abort reasons set for a transaction with the
encina_SetAbortReason function can contain abort data, an abort code, or both.

You can use the encina_FreeAbortReason function to de-allocate the memory the
encina_GetAbortReason function allocated. This function needs to be called only when an abort reason
contains abort data.

Abort Strings and Codes

The Abort Facility provides an alternative to defining an encina_abortReason_t structure, generating a
format UUID, and writing a formatting function; it includes four higher-level functions that can be used to
set and retrieve abort reasons. These functions set and retrieve the abort reason for a transaction either
as an abort string or an abort code only.

The encina_SetAbortString and encina_GetAbortString functions treat abort reasons as null-terminated
character strings. The encina_SetAbortCode and encina_GetAbortCode functions treat abort reasons
as integer codes. An abort reason that is set for a transaction with these higher-level functions can have
either an abort string or an abort code—it cannot have both.

Encina automatically registers formatting functions for abort reasons that are set as strings (or as abort
codes that use the format defined for Encina status codes). The formatting function for strings simply
returns the abort string as a null-terminated character string.

Exported Variables and Constants

Encina exports two variables and two constants that are used by the Abort Facility. The variables define
format UUIDs that can be used to label abort reasons. Encina provides formatting functions that are
automatically registered to format abort reasons that use either of these two format UUIDs. The exported
variables are defined as follows:

uuid_t ENCINA_STANDARD_FORMAT_UUID
uuid_t ENCINA_STRING_FORMAT_UUID

The ENCINA_STANDARD_FORMAT_UUID variable is used to label an abort reason that follows the format used
by Encina status codes. Abort codes that can be decoded by the encina_StatusToString function should
be registered with this format UUID. Encina components, such as TRAN, that return an Encina status
code when a transaction is aborted use this format UUID.

The ENCINA_STRING_FORMAT_UUID variable is used to label an abort reason that has been specified as a
string using the encina_SetAbortString function.

In addition to the two variables, the following constants are also exported:

#define ENCINA_STRING_FORMAT_UUID_STRING \
 “BB7b53a4-cf9c-1cfc-b6cc-9e62B5B3aa77”

#define ENCINA_STANDARD_FORMAT_UUID_STRING \
 “BB4bdeda-dBc2-1cfc-8eB1-9e62B5B3aa77”

These constants can be used to create a variable of type uuid_t (using the uuid_from_string DCE
function) with the same value as the exported variables. These constants are used by Encina
components that use Tran-C, because Tran-C requires that the format UUID be specified as a string.

184 Encina Toolkit Executive Guide and Reference  



  
 

The abort facility functions return a value of encina_status_t type, which the encina_StatusToString
function can convert into a string.

 Encina Internationalization

The encina_StatusToString function is provided to translate an Encina status code to an internationalized
string. An internationalized string is one that can be displayed in a variety of languages and character
sets. The encina_StringToStatus function inverts the result of a call to encina_StatusToString and is
useful in programs that perform error translation. See Part 3, “Reference Information” on page 235 for
details about the following internationalization functions:

 � encina_StatusToString
 � encina_StringToStatus

  Chapter 27. The Encina Abort Facility 185



  
 

186 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 28. TRDCE Utilities

The TRDCE Utilities library provides utilities for constructing DCE client and server programs. Some of
these functions are intended to provide a simpler interface to common services, such as server registration
and client binding, while other functions add functionality to existing DCE functions. See the z/OS DCE
Application Development Guide: Core Components for information on DCE.

In addition to server registration and client binding, the TRDCE functions are used to listen for RPCs and
control RPC dispatching, provide administrative control of RPC interfaces, and cope with security
requirements. Several utility functions and destruction functions are also defined.

Client Binding and Server Registration Functions

Encina provides simplified functions for registering servers and enabling clients to acquire bindings to
servers. Using these functions, servers can register with the DCE Directory Service or RPC runtime and
obtain the server binding handles for any well-known endpoints registered by the server. Clients can
lookup server binding handles using the name that the server registered, get string bindings from binding
handles, and set protection levels for bindings. Either DCE Directory Service names or RPC string
bindings can be used for registration and lookup.

Servers use the trdce_ServerRegister function to initialize and register binding handles. The function
registers servers at specified locations, which can be either DCE Directory Service names or string
bindings for well-known endpoints. The trdce_ReturnWkEndpoints function returns the subset of the
server's bindings that were generated from well-known endpoints (specified using string bindings).

Clients use the trdce_BindingImport function to obtain a server binding handle, given the name of the
server. Once the binding handle is obtained, the trdce_ReturnCallbackBinding function can be used to
get a string binding (binding information in string form) from the binding handle, so the server can use the
string binding to make RPCs to the client. Clients use the trdce_BindingSetProtectionLevel function to
set an explicit protection level for use by the trdce_BindingImport function call.

Both clients and servers use the trdce_QualifyName function. The trdce_QualifyName function
guarantees that a server name is fully qualified and, therefore, unambiguous. For example, the name
logfile1, which is relative to a component, could be translated into /.:/encina/log/logfile1 to make it a
fully-qualified name.

Encina offers a simple translation facility that allows names to be associated with RPC string bindings.
The ENCINA_BINDING_FILE environment variable can be set to the name of a text file that contains
name-to-binding translations. Each line of the binding file must contain a single translation consisting of a
fully-qualified DCE Directory Service name followed by any amount of white space followed by a string
binding. Whenever a name matching one in the translation file is passed to one of the TRDCE binding
functions described in this section, the corresponding string binding is used instead. This facility lacks the
flexibility of the DCE Directory Service and is not intended as a full replacement, but it may be useful in
situations where the Directory Service cannot be used.

 Copyright IBM Corp. 1989, 2001  187



  
 

Server Listening and Dispatch Handling Functions

Extensions to the DCE RPC dispatch mechanism allow independent libraries within an application to
control the number of threads that service their interfaces. Any component, the server main program or
an independently-developed library, can allocate a thread pool to service its RPC interfaces. A component
can use the trdce_CreateThreadPool function to create a pool. A component can create any number of
thread pools.

If a component allocates a thread pool, it can then register a dispatch function to determine whether a
given RPC should use its thread pool; this determination is typically based on the RPC interface identifier.
The trdce_RegisterSimpleDispatch function causes all calls to a specified RPC interface to be directed
to a specified thread pool.

Each component that uses a thread pool to service its RPC interface must ensure that the application is
listening for incoming RPCs by calling the trdce_ServerListen function. DCE system limitations require
that a default thread pool be created for servicing those calls that do not get dispatched to a specific
thread pool. Because the DCE RPC dispatch mechanism requires that a default thread pool be initialized
when an application begins listening, the trdce_ServerListen function includes a parameter for specifying
the size of the default thread pool.

Server main programs that require a thread pool of a specific size should create a thread to call the
trdce_ServerListen function with the correct number of threads before initializing other components that
might also make the call. Library components that need to receive RPCs should call the
trdce_ServerListen function asking for zero threads; a default number of threads will be provided. This
function returns only when the application invokes the rpc_mgmt_stop_server_listening function.

Interface Control Functions

Encina provides several functions for controlling RPC interfaces. Server applications can call these
functions to register interfaces and to obtain information about the interfaces that are registered. The
interface control functions support administrative RPCs that register and unregister RPC interfaces at
runtime.

Encina programs can register interfaces with the TRDCE library and the RPC runtime. The
trdc_OfferInterface function registers an RPC interface specification and entry point vector with TRDCE
and associates a descriptive string with the interface. TRDCE registers the interface with the RPC runtime
automatically (using the DCE RPC function rpc_server_register_if) and stores the registration information
for later retrieval.

Alternatively, the trdce_DefineInterface function registers an interface with TRDCE and stores the
registration information, but it does not register the interface with the RPC runtime. Unlike the
trdce_OfferInterface function, the trdce_DefineInterface function allows a manager type UUID to be
specified when registering an interface.

Two interface control functions return information about registered interfaces. The trdce_ListInterfaces
function returns a list of interfaces registered with TRDCE. The trdce_QueryInterface function returns the
registration information—interface specification, entry point vector, and descriptive string—for a given
interface and manager type UUID.

188 Encina Toolkit Executive Guide and Reference  



  
 

 Security Functions

Encina provides several functions that are used to handle the security requirements of applications.
These extensions to the DCE Security Service are used for managing key files and principals and
establishing login contexts.

The key file for an application can be set using the trdce_SetKeyFile function and queried using the
trdce_ReturnKeyFile function. The principal for an application can be set using the trdce_SetPrincipal
function and queried using the trdce_ReturnPrincipal function. The trdce_IsPrincipalSet function
determines whether a principal is set for a function.

After a key file and principal are set, a new login context can be created using the
trdce_SecLoginContextCreate function. To prevent the login context from expiring, the
trdce_SecLoginContextRefresh function periodically refreshes the login context. Similarly, the key for
the principal using the key file is periodically refreshed using the trdce_SecKeyManagement function. As
an alternative to calling each of these three functions individually, the trdce_SecManagement function
combines them in one call. In addition, the trdce_SecManagement function calls the
rpc_server_register_auth_info function to register an authentication service. (For simplicity, the period
and policies used in the refresh functions are unspecified; if an application has specific policy
requirements, management functions should be implemented using DCE facilities.) The
trdce_SecLoginContextCertify function enables and disables certification for new login contexts. By
default, login contexts are not certified when they are created or refreshed.

 Deallocation Functions

Encina provides functions for freeing the memory used by data structures created as a result of using
some of the TRDCE functions.

� The trdce_FreeBindingVector function (used by servers) frees the memory that stores the vector of
binding handles created by the trdce_ReturnWkEndpoints function.

� The trdce_FreeProtseqVector function frees the memory that stores the vector of protocol sequences
created by the trdce_ReturnSupportedProtseqs function.

� The trdce_Free function frees allocated memory for which no specific deallocation function is
provided.

General Utility Functions

Encina provides several utility functions that support the TRDCE functions.

� The trdce_GetDCEStatus function returns a status code associated with an exception (an object
providing information about an error condition), as implemented by the DCE Exception package.

� The trdce_NormalizeProtseq function translates an abbreviated protocol sequence into its expanded
form. For example, “ip” is translated to “ncadg_ip_udp.”

� The trdce_ProtectLevelFromString function can be called by a client to obtain a protection level for
communication with a server. The protection-level value is obtained either from a specified string or
the ENCINA_AUTHN environment variable.

� The trdce_ReturnSupportedProtseqs function returns a vector of RPC protocol sequences
supported by the DCE RPC runtime and by the Encina components in an application.

  Chapter 28. TRDCE Utilities 189



  
 

TRDCE Header Files and Libraries

The trdce/trdce.h header file contains structure and data type declarations required by the Encina
TRDCE interface functions for the C language. This file must be included in any C file that uses TRDCE
functions.

The TRDCE functions are contained in the ECNDLL dynamic link library. See “Specifying Library Names”
on page  99 for more information on the libraries used during compilation.

190 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 29. Writing a Simple Client-Server Application

This chapter and others later in this manual develop a simple Encina application. This chapter starts with
a simple client-server application. The next chapter makes the application transactional.

Overview of the Sample Application

This manual uses a simple order entry system as an example of a basic application. Within this sample
application, the user has one option: to order an item. The application checks for the ordered item in its
database, decrements the inventory, and sends requests to billing and shipping. Orders of over $1000 are
considered high priority and are shipped before orders under this amount. A real application would, of
course, have more features and options, and a more robust user interface.

Figure 47 shows the basic design of this application.

Note:  z/OS does not support all of the application parts shown in Figure 47. The client may be run on
z/OS, but servers with recoverable data are not supported. Encina's RQS and PPC are not
supported. The full example is described here because a z/OS client could interact with a
nonrecoverable z/OS server or with a recoverable server on another platform as shown in the
figure.

Client Application
Server

RQS

RDBMS

Mainframe
PPC Connection

Order Item

Check/Decrement 
Inventory

Queue
Shipping
Request

Dequeue
Shipping
Request

Send Billing
Request

Application
Server

Dequeue
App.

Figure 47. Sample Order-Entry Application

In this application, the client, which interacts with the user, makes a remote procedure call to an
application server. This application server, in turn, does three things: it checks for the item in a relational
database, decrementing that database entry by the amount ordered; it queues a shipping request using
the Recoverable Queueing Service (RQS); and it sends a billing request to a mainframe. It performs the
latter function by making a remote procedure call to another application server, which in turn uses Encina
SNA Peer-to-Peer Communications (PPC) support to start a conversation with the mainframe. If any of
these operations fails (for example, if there is insufficient inventory to fill the order), the server returns a
status code to the client, indicating that an error has occurred. If all operations succeed, a small,
stand-alone application dequeues the shipping request.

This application is designed to demonstrate Encina functionality. It is not intended to show the best
possible nor the most robust design. As much as possible, we try to follow good design and programming
practices. However, the application is far simpler than a real application would be. For example, the
server interface offers only one function. Furthermore, the application does not try to recover from errors;
it simply aborts when an error occurs.

 Copyright IBM Corp. 1989, 2001  191



  
 

Some application design choices were made to demonstrate certain Encina features, even though again
an actual application would not need to be designed this way. For example, one application server makes
an RPC to another, which in turn uses PPC to interact with a mainframe. The first application server
could have contacted the mainframe directly. It does not because we want to demonstrate the way in
which one application server can be a client to another application server.

This chapter develops the client, the server, and their interface. The shaded area in Figure 48 shows the
part of this application that is described in this chapter.

Client Application
Server

RQS

RDBMS

Mainframe
PPC Connection

Order Item

Check/Decrement 
Inventory

Queue
Shipping
Request

Dequeue
Shipping
Request

Send Billing
Request

Application
Server

Dequeue
App.

Figure 48. Sample Order-Entry Application

Defining the Interface

The first step in writing an application is defining the interface the server makes available to the client. To
do so, we must decide which functions the server will export (make available to the client), what their
arguments will be, and so forth.

One decision that we must make is exactly how to modularize the interface: does the interface consist of a
number of small, general purpose functions or a smaller number of larger functions that perform specific
tasks? For example, ordering an item in the order-entry system described in the previous section involves
the following steps:

� Checking to see if the item is available

� Decrementing the inventory

� Sending the billing request

� Queueing a request to shipping

As part of designing the interface, we must decide whether the server will export four functions (one for
each task), one function (for “ordering an item”), or some number in between.

In general, a good rule of thumb is to have the interface reflect the logic of what the client wants to do and
to allow the server to perform as much of the work as possible. This approach has several benefits:

� It simplifies client programming. The client need only know that it has to order an item; it does not
need to know the steps involved in this process.

� It makes it easier to change implementation details. If we later decide that “ordering an item” also
includes sending electronic mail to the Manufacturing department if the inventory drops below a certain
amount, only the server, not the client, needs to be modified. Similarly, we could replace one
relational database with another without modifying the client. Because there are usually fewer copies

192 Encina Toolkit Executive Guide and Reference  



  
 

of the server than the client, and because the servers are often in locations that are easier to update
(for example, on central machines rather than on PCs running on users' desks), the update procedure
is also simplified.

� It reduces the number of remote procedure calls (RPCs) made by the client to the server. In this
example, the client need only make one RPC, not four separate RPCs (one for each of the four parts
of an order listed above). This can result in better performance.

� It provides for better application security because only the server needs to know the specifics of
accessing the database.

Our example uses this “light client/heavy server” approach. The client makes a single RPC. The server
then perform the steps involved in ordering an item, issuing RPCs of its own.

We also must choose the way in which our client binds to the server. The most flexible way would be for
the client to explicitly obtain a binding handle to the server (for example, by calling the
trdce_BindingImport function). A binding handle is used by the client to identify the server in much the
same way that a file handle, returned by a function that opens a file, is used to identify the file. The
binding handle is then passed as a parameter to subsequent RPCs to identify the server and interface.
Clients can obtain binding handles to multiple servers and thus access multiple interfaces. However, in
exchange for this flexibility, we must include a binding handle as a parameter to every function in the
interface.

Because our example is using only one interface and one server, we instead use automatic binding. With
automatic binding, our client does not obtain a binding handle to a specific server, nor do we specify a
binding handle each time we make an RPC. Instead, the client automatically obtains a handle to the
server specified in the RPC_DEFAULT_ENTRY environment variable.

The Example Interface

For simplicity, our example interface consists of only one function: OrderItem. As input, this function
takes three arguments: the stock number of the item, the number of items ordered, and the ID of the
customer ordering the item. It returns a status code.

If this function were a local procedure, its prototype would look like this:

unsigned long OrderItem (unsigned long stockNum,
unsigned long numOrdered,
unsigned long customerId);

To be invoked as a remote procedure call, this function must be defined in an interface definition file using
the DCE Interface Definition Language (IDL) or Encina's transactional extension to IDL, TIDL. At this
point, because the call to the OrderItem function is not going to be made from within a transaction, we are
using an IDL file. This is described in the next section. Later, we will make minor changes to this IDL file
to convert it to a TIDL file.

Creating the Interface Definition File

In an IDL file, we must specify the following about each function:

� The arguments to the function and their types

� Whether each argument is input, output, or both

The OrderItem function is defined in the IDL file as follows:

error_status_t OrderItem([in] unsigned long stockNum,
[in] unsigned long numOrdered,
[in] unsigned long customerId).

  Chapter 29. Writing a Simple Client-Server Application 193



  
 

The type error_status_t is defined by DCE for error status. It is equivalent to the unsigned long type, but
it also specifies to DCE that this is a status parameter or return value. This fact is used by DCE if we
specify that DCE use a status code to return errors it detects to our client rather than generating an
exception (see “Creating the Attribute Configuration File” on page 195).

The full IDL file must include a universal unique identifier (UUID), generated by the DCE uuidgen
command. The UUID is a number that uniquely identifies an interface across all network configurations.
You can generate the UUID as well as the skeleton for the IDL file with the following command:

uuidgen -i -o OrderInterface.idl

Because we are using automatic binding, our client automatically looks for an interface with this UUID
when it makes an RPC. Were we to use explicit binding, we would specify this UUID when obtaining a
binding handle to the server.

We must edit the skeleton produced by the uuidgen command to add the interface name
(OrderInterface) and the prototype for the function that makes up the interface (OrderItem). The
complete IDL file for this application is shown in Figure 49. The version (1.0) is the version number of the
interface; our sample application does not use the version number.

[
uuid(BB2978fe-bb72-1ea6-b3fb-9e62B4B4aa77),
version(1.B)
]
interface OrderInterface
{
error_status_t OrderItem([in] unsigned long stockNum,

[in] unsigned long numOrdered,
[in] unsigned long customerId).

}

Figure 49. IDL File for the Example Application

You can compile this file with the IDL compiler to produce the necessary stubs (the code that turns the
local procedure call into a remote procedure call) and the OrderInterface.h file. Figure 50 on page 195
shows the files that are produced by the IDL compiler. (The OrderInterface.acf file shown in the figure is
a DCE attribute configuration file. This file is described in “Creating the Attribute Configuration File” on
page 195.)

The OrderInterface.h header file is included in both the client and the server. The stub files,
OrderInterface_cstub.o and OrderInterface_sstub.o, are linked in with the client and server,
respectively.

194 Encina Toolkit Executive Guide and Reference  



  
 

IDL

orderInterface.idl

orderInterface.horderInterface_
cstub.c

orderInterface_
sstub.c

orderInterface.acf

Figure 50. Files Used and Produced by the IDL Compiler

Creating the Attribute Configuration File

A client or a server can use an attribute configuration file (ACF) to modify the way the IDL compiler
creates stubs. There are two primary uses for the ACF.

� To control the way binding occurs

� To control the way errors and exceptions are reported

Unless we specify otherwise in an ACF, binding is explicit: the client must obtain a binding handle to the
server and use this handle in all RPCs. If the client is using DCE automatic or implicit binding we must
specify this in an ACF.

The ACF also allows communications errors and exceptions in the underlying DCE layers to be returned
to the client. Our server returns errors that it detects to the client by returning status. However, errors
detected by DCE (for example, network communications errors) normally generate exceptions, which
typically cause the client to exit. Applications can be designed to handle exceptions, but this is a more
complicated programming task than simply checking a status code. We can use an ACF to specify that
such exceptions are instead to be returned as status codes, which can be handled by the client in the
same way that it handles other status codes.

Figure 51 on page 196 shows an ACF. This file specifies that we are using an automatic binding handle.
It also specifies that communications status and fault status are to be returned by the OrderItem function.
Thus, for example, if a network error occurs, an indication of this is returned by the OrderItem function
and the client can handle the error as it sees fit; an exception is not raised and the application is not
terminated.

  Chapter 29. Writing a Simple Client-Server Application 195



  
 

/G ACF for OrderInterface G/

[auto_handle] interface OrderInterface
{
[comm_status, fault_status] OrderItem().

}

Figure 51. Using an Attribute Configuration File to Control Errors and Exceptions

Writing the Server

With the interface now defined, writing the server is a matter of implementing the interface and performing
some initialization. As part of initialization, the server must

1. Initialize any Encina components it is using

2. Export its interface

3. Listen for incoming RPCs

To keep the application simple, our example application does not use DCE security. If it did, it would have
to call several other functions.

Implementing the Server Interface

The interface as we have defined it consists of one function, OrderItem, which takes three arguments and
returns a status code. The function in turn calls three functions.

� PlaceOrder, which checks for the item in a database and decrements that database by the number
ordered

� QueueItemForShipping, which places information about the order on a queue for subsequent
shipping

� BillForItem, which bills the customer's account maintained in a mainframe database

If any of these functions fails, the OrderItem function returns immediately. Figure 52 on page 197 shows
this function at this point.

196 Encina Toolkit Executive Guide and Reference  



  
 

#include "OrderInterface.h"

error_status_t OrderItem(idl_ulong_int stockNum,
 idl_ulong_int numOrdered,
 idl_ulong_int customerId)
{

 idl_long_int returnStatus;
idl_long_int costPerItem, totalCost;

 short priority;

returnStatus = PlaceOrder(stockNum, numOrdered, &costPerItem);
if (returnStatus != SUCCESS){

 return returnStatus;
 }

totalCost = numOrdered G costPerItem;
if (totalCost > 1BBB)

priority = HIGH_PRIORITY;
 else

priority = NORMAL_PRIORITY;

returnStatus = QueueItemForShipping(stockNum, numOrdered,
 customerId, priority);

if (returnStatus != SUCCESS){
 return returnStatus;
 }

returnStatus = BillForItem(customerId, totalCost);
if (returnStatus != SUCCESS){

 return returnStatus;
 }

 return SUCCESS;
}

Figure 52. The OrderItem Function

The application performs only very simplified error checking. If any of the three functions called by the
OrderItem function returns a value other than success, the function simply returns that value to the client.
In particular, if a function call fails, the OrderItem function does not try to undo the results of previous
successful function calls. For example, if billing for the item fails, the application does not try to undo the
order or remove it from the shipping queue. We will enhance this error handling in the next chapter, when
we add transactions to the program.

A Note on Data Types:  In the IDL file, we used the data type unsigned long. This type in DCE
IDL files and Encina TIDL files, unlike the C data type of the same name, is defined to be exactly 32 bits
long. All of the IDL (and TIDL) data types are defined this way. The C types, on the other hand, are
defined such that they can be different sizes on different systems; on many platforms, unsigned long
integers are 32 bits long, but on others they are 64 bits long.

The parameters of the OrderItem function must be the same as those defined in the IDL file; thus, we
cannot portably define them as unsigned long. IDL and TIDL provide data types defined to be the same
sizes on all platforms. The OrderItem function uses the idl_ulong_int data type for unsigned 32-bit
integers. DCE functions also customarily use the error_status_t data type for status codes. This type is
identical to the idl_ulong_t type, and our application uses it for status codes.

  Chapter 29. Writing a Simple Client-Server Application 197



  
 

For information about available DCE data types, see the z/OS DCE Application Development Guide:
Introduction and Style.

Initializing the Server

As noted earlier, initializing the server consists of three steps: initializing any Encina components it uses,
making the interface available to clients, and listening for incoming RPCs. In this chapter, we use the
functions provided by DCE and by the Encina TRDCE component to perform these operations. The
functions provided by TRDCE make initialization simpler than if we used the native DCE functions.

At this point, we need perform no explicit Encina initialization. The only Encina component that we are
using is TRDCE, which requires no special initialization.

Making the interface available to clients involves exporting the server's binding information to the DCE Cell
Directory Service (CDS) and registering the interface with the endpoint map and the RPC runtime. To do
this, we call the following three functions:

1. The trdce_ServerRegister function exports binding information to CDS and registers the server with
the endpoint map. This function registers a default ID for the interface.

2. The trdce_InterfaceRegister function exports binding information about our interface and registers the
interface in the endpoint map.

3. The DCE rpc_server_register_if function registers the interface with the RPC runtime.

The trdce_ServerRegister function is called only once by any server. The trdce_InterfaceRegister and
rpc_server_register_if functions are called once for each interface that is supported (which, because we
have defined only one interface for our application, is one time).

The first argument to both the trdce_InterfaceRegister and rpc_server_register_if functions is an
interface handle, which is defined in the OrderInterface.h header file generated by the IDL compiler.
The second and third arguments to the rpc_server_register_if function are used in more complex
applications to register more than one implementation for the set of remote procedures. Because we have
only one implementation in our example, we specify NULL.

After it has registered, the server waits for incoming RPCs by calling the trdce_ServerListen function.
This function returns only when the server shuts down. Until that point, it listens for incoming RPCs,
which are directed to the appropriate function (OrderItem).

Figure 53 on page 199 shows the complete server initialization. Note that the server is expecting one
argument: the name under which it is to register in CDS.

198 Encina Toolkit Executive Guide and Reference  



  
 

int main (int argc, char GGargv)
{
 unsigned32 status;
 char GserverName;

if (argc == 2){
serverName = argv[1].

 }
 else {

fprintf(stderr, "Usage: OrderServer server_name.\n").
 exit(B);
 }

/G Register the Server G/
trdce_ServerRegister( (unsigned_char_t G) serverName, &status);

 CHECK_STATUS(status);

/G Register the interface G/
 trdce_InterfaceRegister(OrderInterface_v1_B_s_ifspec, &status);

 CHECK_STATUS(status);

/G Register the interface with the RPC runtime G/
 rpc_server_register_if(OrderInterface_v1_B_s_ifspec, NULL,
 NULL, &status);
 CHECK_STATUS(status);

/G Listen for RPCs G/
 trdce_ServerListen(B, &status);
 CHECK_STATUS(status);

 exit(B);
}

Figure 53. Initializing the Server

When each function returns, the server checks the return status. If the status indicates a failure, the
server prints an error message and exits. See the next section for more details.

Checking the Return Status of Encina Functions:  All Encina functions return status codes,
either as a return code or as an out parameter. When a function completes successfully, it returns a value
of 0 (zero). Other status codes are used to indicate function calls that are completely or partially
unsuccessful.

Each status code corresponds to a message. The encina_StatusToString function can translate these
codes into internationalized strings. You can use this function to write error messages to the screen or to
an error log, as shown in Figure 54 on page 200.

  Chapter 29. Writing a Simple Client-Server Application 199



  
 

tc_status_t status;
char statusString[BUF_LEN].
...
trdce_ServerRegister(..., &status);
if (status){

encina_StatusToString(status, BUF_LEN, statusString);
fprintf(stderr, “Operation failed: %s\n”, statusString).
/G perform operations to handle the error G/

 ...
}

Figure 54. Using the encina_StatusToString Function

The codes are expanded based on the language and the path of the message catalog. These are
determined via two environment variables (LANG and NLSPATH).

In our example, when each function returns, the application checks the return status. If the status
indicates a failure, it uses the encina_StatusToString function to convert the status code to an error
message, prints the error message and exits. See the next section for more details.

Writing the Client

In our application, the client interacts with the user and makes a remote procedure call on the user's
behalf. Because this manual is not about writing user interfaces, our user interface is simple; the user
invokes the client with three command-line arguments: a customer ID, the stock number of the item to
order, and the number of items to order.

In addition to implementing the user interface, the client must

� Initialize any Encina components it is using

� Identify a server that exports the desired interface

� Make the remote procedure call

� Notify the user of the calls success or failure

As with the server, the only Encina component we are using is TRDCE, and it requires no special
initialization.

The sever is set as an environment variable (RPC_DEFAULT_ENTRY) before we invoke the client. RPCs
made by the client use automatic binding to automatically connect to this server and to the interface
specified in the IDL file.

The client makes the RPC by calling the OrderItem function. Note that invoking this function looks very
much like invoking a local function. After the call to OrderItem returns, the client checks the return status
and informs the user of the success or failure of the order.

The client code is shown in Figure 55 on page 201.

200 Encina Toolkit Executive Guide and Reference  



  
 

int main(int argc, char GG argv)
{

idl_ulong_int custId, stockNum, numOrdered;
 unsigned32 status;
 char GserverName;

if (argc != 4){
 fprintf(stderr,

"Usage OrderItem custId stockNum numOrdered\n");
 exit (1);
 }

custId = atoi(argv[1]).
stockNum = atoi(argv[2]).
numOrdered = atoi(argv[3]).

/G Invoke the RPC G/

status = OrderItem(stockNum, numOrdered, custId);
 CHECK_STATUS(status);

fprintf(stderr, "Order processed.\n");
 exit(B);

}

Figure 55. The Client Portion of the Application

Notes on Building and Running the Application

Each chapter, as we create and enhance our application, will end with a section of notes on building and
running the application. These notes are not intended to provide all of the information needed, which
varies from platform to platform; the are intended to provide some guidance in the general steps involved
in building and running an Encina application. For more details, see Chapter 9, “Compiling Encina Toolkit
Applications” on page  95 and the manuals for the specific Encina components.

At this point, our application is divided into the following files:

� OrderInterface.idl — the IDL file for the Order Interface

� OrderInterface.acf — the client-side ACF file for the Order Interface

� OrderServer.c — the application code for the Order Server

� OrderItem.c — the application code for the client

Based on the DCE and Encina components we are using, both client and server need to include the
trdce/trdce.h header file. Both must also include the OrderInterface.h file generated by the IDL
compiler, which includes definitions used in both the client and the server. In addition, both the client and
the server must link with the encina and dce libraries.

The server can be started as a background process. It takes one argument, the server name. For
example, the following line starts the server using the name /.:/servers/OrderServer:

% OrderServer /.:/servers/OrderServer

  Chapter 29. Writing a Simple Client-Server Application 201



  
 

The client is started interactively. Before starting the client, you must set the RPC_DEFAULT_ENTRY
environment variable. The server can then be started as a background process and the client started
interactively. The client requires three integers as command-line arguments. For example, we could issue
the following command to order 15 instances of the item with stock number 5 for the customer with
customer ID 2:

% OrderItem 2 5 15

202 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 30. Making the Sample Application Transactional

This chapter builds on the sample application that was started in the last chapter by making the
application transactional. It discusses the steps that must be followed to add transactional capabilities to
the server. It describes the Encina Tran-C language and the various ways that aborted transactions can
be handled.

As previously mentioned, z/OS does not support recoverable servers. z/OS does support transactional
clients that start and end transactions but that do not have local recoverable data. The Telshop example
program shipped with z/OS shows this capability.

Making the Application Transactional

The server divides the concept of ordering an item into three steps: the actual ordering of the item, placing
the order in the shipping queue, and billing the customer. However, at this point in the development of our
sample application, if one function fails, the results of previous functions are not undone. For example, if
the billing operation fails, the database is still updated and the item is still shipped. We must modify the
server so that these three actions are tied together in such a way that either all happen or none happen.
In other words, we must group these three operations into a single transaction.

As “Transactional RPCs” on page 7 describes, a transaction is a group of actions that adheres to the
ACID properties. That is, a transaction is atomic, consistent, isolated, and durable. In the context of our
application, “atomic” means that either all three operations happen or none do. “Consistent” means that if
we deduct three items from the database, we ship and bill for three items. “Isolated” means that, in a
multi-client environment, work our transaction does is invisible to transactions in other clients until our
transaction ends. “Durable” means that, after the transaction commits, all actions happen, even in the
event of system failures; for example, even if a disk fails, our changes are recorded in the database.

We must do three things to make our current server transactional.

1. We must make the server recoverable.

2. We must modify the initialization steps so that our server initializes the parts of Encina needed for
transactions. Depending upon the component we use for this, we may also have to modify the way
the server terminates.

3. We must delimit (indicate the beginning and end of) the transaction, specifying which operations are to
be part of the transaction.

The final two steps are related: the initialization steps we need depend upon which Encina component we
use to delimit transactions. The Encina Toolkit provides several transactional interfaces, such as Tran-C
and TX (the X/Open transactional interface). This chapter primarily uses Tran-C. The end of this chapter
shows changing the application to use TX instead.

After we perform these steps, Encina handles all the details of transactions and two-phase commit
processing. There is no need to write code that coordinates processing if the transaction commits, that
rolls back changes if aborts occur, and so forth. Encina does this for us. For example, if the transaction
aborts after having updated the database and queuing a shipping request, Encina undoes changes to the
database and removes the shipping request from the queue.

 Copyright IBM Corp. 1989, 2001  203



  
 

Making the Server Recoverable

As “Recoverable and Ephemeral Processes” on page 8 describes, a recoverable process is one that logs
information about a transaction's state and can thus restore the transaction state if the transaction in
aborted. Resource managers (such as relational database management systems) and processes that use
resource managers transactionally must be recoverable. Because our server interacts with a resource
manager, it must be recoverable. The client does not interact directly with a resource manager, so it does
not have to be recoverable.

To make a server recoverable, you must initialize and use a recovery service. This in turn requires using
a log and specifying a log file.

The application needs to set up for use of the recovery service only during initialization. After this, Encina
performs all the necessary logging operations. The application itself does not have to contain procedures
for logging transaction state or for determining what it needs to do to abort or commit a transaction after a
failure.

Modifying Server Initialization and Termination

Previously, the only Encina component our application used was TRDCE. In this chapter, we also use
Tran-C, so it must also be initialized. There are several ways to initialize Tran-C, depending upon whether
the application is using external services and which other Encina components it is using. These include
the following:

� If the application does not use any external services (such as a recovery service), it can call the
initTC function.

� If the application does use external services, it can begin Tran-C initialization using the preInitTC
function. It then initializes any external services it is using and completes initialization by calling the
postInitTC function.

In addition, any application that uses Tran-C transaction constructs (as our server does) must register the
name of the module (typically the name of the source file) with the Tran-C runtime using the inModule
statement.

Since our server would typically use a recovery service, we would normally use the two-step initialization
procedure. However, as we discussed in the previous section, we are not actually going to go through the
steps of initializing and using a recovery service in this chapter. Thus, at this point, we use the one-step
InitTC function.

Figure 56 on page 205 shows the new initialization steps.

Note that we have also changed the way the server terminates. It now calls two functions instead of
calling the C exit function. It first calls the quiesceTC function to allow all outstanding transactions to
complete. It then calls the exitTC function to exit the application.

204 Encina Toolkit Executive Guide and Reference  



  
 

inModule("OrderServer");

int main (int argc, char GGargv)
{
 unsigned32 status;
 char GserverName;

if (argc == 2){
serverName = argv[1].

 }
 else {

fprintf(stderr, "Usage: orderInterface server_name.\n").
 exit(B);
 }

/G Tran-C Initialization G/
 InitTC();

/G Register the Server G/
trdce_ServerRegister( (unsigned_char_t G) serverName, &status);

 CHECK_STATUS(status);

/G Register the interface G/
 trdce_InterfaceRegister(orderInterface_v1_B_s_ifspec,
 &status);
 CHECK_STATUS(status);

/G Register the interface with the RPC runtime G/
 rpc_server_register_if(orderInterface_v1_B_s_ifspec, NULL,
 NULL, &status);
 CHECK_STATUS(status);

/G Listen for RPCs G/
 trdce_ServerListen(B, &status);
 CHECK_STATUS(status);

 quiesceTC();
 exitTC(B);
}

Figure 56. Initializing Tran-C

Specifying Which Operations Are Part of a Transaction

The final step in adding transactions to our server is to specify which operations are part of the
transaction. To do this, we must delimit the transaction, specifying where the transaction begins and
where it ends. We will use Tran-C to accomplish this.

Tran-C provides a number of features used by transactional applications. It provides several constructs
for delimiting transactions. It also automatically associates a transaction with a thread of execution and
handles flow of control, automatically transferring to the appropriate location when a transaction aborts. It
provides a number of additional features, all of which are described in Chapter 5, “Transactional-C
Concepts” on page 39. We will use some of these other features in later chapters.

The Tran-C construct used to delimit the transaction in the server is the transaction construct. The
transaction construct delimits a transaction and provides a mechanism for specifying the transfer of

  Chapter 30. Making the Sample Application Transactional 205



  
 

control when the transaction commits or aborts. The transaction construct is shown in Figure 57 on
page 206.

transaction{
/G Operations that are part of the transaction go here. G/

}onCommit{
/G Operations to perform after the transaction commits go here. G/

}onAbort{
/G Operations to perform after the transaction aborts go here. G/

}

Figure 57. The Tran-C transaction Construct

In the construct, the keyword transaction indicates the start of the transaction. When the flow of control
reaches the closing brace, Encina tries to commit the transaction. If the transaction commits, the flow of
control proceeds into the onCommit clause. If at any point the transaction is aborted (by the current
process or by any other process in the transaction), control automatically transfers to the onAbort clause.
We can use several Tran-C functions to get more information about why the abort occurred.

Figure 58 shows the OrderItem function after we have modified it to use the transaction construct to
group its three functions into a transaction.

error_status_t OrderItem(idl_ulong_int stockNum,
 idl_ulong_int numOrdered,
 idl_ulong_int customerId)
{

 idl_long_int returnStatus;
idl_long_int costPerItem, totalCost;

 short priority;

 transaction{
PlaceOrder(stockNum, numOrdered, &costPerItem);
totalCost = numOrdered G costPerItem;
if (totalCost > 1BBB)

priority = HIGH_PRIORITY;
 else

priority = NORMAL_PRIORITY;

 PlaceItemOnQueue(stockNum, numOrdered,
 customerId, priority);

 BillForItem(customerId, totalCost);
 }onCommit{

fprintf(stderr, "We committed.\n");
 return SUCCESS;
 }onAbort{

fprintf(stderr, "We aborted. %s\n", abortReason());
 return ORDER_FAILED;
 }
}

Figure 58. Adding Transactions to the Server

206 Encina Toolkit Executive Guide and Reference  



  
 

Note that the functions that make up the transaction no longer return status codes. This does not mean
that the server is no longer performing error checking. Instead, the called functions now abort the
transaction if they discover an error. Control then switches to the onAbort clause, and the server prints
an error message (including the text that the aborting operation specified when it aborted, which is
returned by the abortReason function). This is described in more detail in “Aborting Transactions”.

 Aborting Transactions

Tran-C provides functions for explicitly aborting a transaction. The server uses an abort function to abort
a transaction if it detects a failure. For example, if a billing error occurs, it aborts the transaction; all
actions in the transaction, such as changes to the database, are then rolled back to their state before the
transaction.

In this manual, we use the following two Tran-C functions for aborting transactions:

 � abort

 � abortWithCode

Both functions abort the transaction. The difference between them concerns how you specify an abort
reason.

The abort function provides a simple abort mechanism. It takes one argument, a string. This string is
simply passed to applications that are notified of the abort. These applications use the abortReason
function to retrieve the string.

The abortWithCode function provides a more flexible abort mechanism. It takes one argument: an abort
code. Applications that are notified of the abort can take action based on this code, including converting
the code to a string.

These two mechanisms are described in somewhat more detail in the following sections. Note that at this
point our server does not explicitly abort transactions. However, it must be able to handle aborts
generated by other parts of the application or by the underlying RPC mechanism.

Aborting With Strings

The abort function aborts a transaction. The application aborting the transaction can pass a string
specifying the reason for the abort. All applications that are notified of the abort can then retrieve this
string.

This method is used by our server as it now stands. If any part of the application aborts the transaction,
control is transferred to the onAbort clause. Our application uses the abortReason function to determine
why the transaction aborted. This function returns whatever string the aborting component specified as an
abort reason.

Figure 59 on page 208 shows an example of a call to the abort function as it might be made by some
part of our application. It also shows how our server uses the abortReason function to display the reason
for the abort before returning from the RPC. Note that in our example application, the call to the
abortReason function occurs in the order server (that is, in the server that we have been developing up to
this point). In general, the abort can be initiated by any process in the distributed transaction, including
the process that started the transaction.

  Chapter 30. Making the Sample Application Transactional 207



  
 

/G Billing Server G/
abort("Insufficient funds");

 /G Order Server G/

transaction{
 .
 .
 .
}onAbort{

fprintf(stderr, "Transaction aborted. %s\n", abortReason());
 return ORDER_FAILED;
}

Figure 59. Aborting a Transactions to the Server

If the transaction aborts, the order server writes the following string to the standard error stream:

Transaction aborted. Insufficient funds.

Aborting With an Abort Code

Encina applications can also use an abort code rather than an explicit abort string. The application that
receives this abort code can then take action based on this code, including converting it to a string. Using
abort codes offers several advantages over using strings:

� It is easier to compare codes (which are integers) than it is to compare strings. Thus, an application
can more easily take action based on a code.

� Codes can be translated into strings using external catalogs of messages. It is thus easier to
internationalize programs using codes.

The abort code interface is somewhat more complex than the string interface. Thus, for applications
whose only response to an abort notification is to print a string and exit, aborting with strings can be a
better approach, especially if such applications are used in only one language.

For more information on aborting using abort codes, see Chapter 32, “Using Abort Codes” on page 217.

Notes on Building and Running the Application

Both the client and the server need to include the header files specified in Chapter 29, “Writing a Simple
Client-Server Application” on page 191. In addition, the server must include the Tran-C header file,
tc/tc.h. Both the client and the server must continue to link with the encina and dce libraries. The
program is started as described in Chapter 29, “Writing a Simple Client-Server Application” on page 191.

Using TX in the Order Application Server
Note:  This is included only for completeness. The z/OS Encina Toolkit Executive does not support

servers.

This section changes one of our application servers (the order server) to use TX instead of Tran-C to
manage transactions. To use TX, we must do the following three things in the order server:

� Change the application to initialize the TX interface.

� Remove the Tran-C constructs and instead use TX to delimit the transaction.

208 Encina Toolkit Executive Guide and Reference  



  
 

� Change the termination steps to close the TX interface as part of application shutdown.

We do not need to change the client or the billing server. Moreover, the billing server continues to use
Tran-C and, in particular, still calls the Tran-C abort function if an error occurs.

Initializing the TX Interface

Normally, the TX interface is initialized simply by calling the tx_open function.

Starting and Ending a Transaction Using TX

Using TX, transactions are started by calling the tx_begin function and ended by calling either the
tx_commit function or the tx_rollback function. Between these statements, the application does the work
associated with the transaction, which for our application is the same work it performed previously.

All TX functions return a status code, which we must check. This is especially important in the case of the
tx_commit function. As noted earlier, TX does not have the equivalent of the Tran-C onAbort clause.
Instead, our application is notified that another process wants to abort the transaction by a return code
from a TX function. For example, if the billing server aborts the transaction, our server is notified of the
abort by a non-zero return code from the tx_commit function. (If the function is successful, it returns a
status code of zero.)

The code is shown in Figure 60.

int txRetCode;
...
txRetCode = tx_begin();
if (txRetCode) {

/G Print error message and return. G/
fprintf (stderr,"Transaction failed.\n");

}
PlaceOrder(stockNum, numOrdered, &costPerItem);
totalCost = numOrdered G costPerItem;
PlaceItemOnQueue(stockNum, numOrdered, customerId);
BillForItem(customerId, totalCost);

txRetCode = tx_commit();
if (txRetCode) { /G Commit failed.G/

fprintf (stderr,"Transaction failed: %s\n",
 tx_get_rollback_string());
 return ORDER_FAILED;
}
else
 return SUCCESS;

Figure 60. Using TX to Start and End a Transaction

Note in the example code that if the transaction aborts, our application is notified only when it calls the
tx_commit function. At this point, all the work done as part of the transaction is rolled back. This is not a
problem in our application because the transaction is short and not much work is done during any of the
steps. However, in applications that do more work (and thus would have much more work to roll back),
waiting until the end of the transaction to roll back the work can be a problem. We can solve this problem
by either of the following methods:

  Chapter 30. Making the Sample Application Transactional 209



  
 

� Modifying the three functions that are part of the transaction to return status codes, rather than abort
the transaction themselves, when they encounter an error. The server can then check these status
codes and call the tx_rollback function to abort the transaction if necessary.

� Calling the tx_info function after each function call. The tx_info function returns information about the
current transaction. If another process has marked the transaction to be aborted, the tx_info function
returns this information. The server can then immediately call the tx_rollback function to abort the
transaction if necessary.

An example of the second approach is shown in Figure 61. We pass a structure of type TXINFO to the
tx_info function. The transaction_state field of this structure contains the state of the transaction. If the
transaction is still active (and thus has not been marked for abort), the value of this field is TX_ACTIVE.

int txRetCode;
TXINFO txInfo;

txRetCode = tx_begin();
if (txRetCode) {

/G Print error message and return G/
fprintf (stderr,"Transaction failed.\n");

}
PlaceOrder(stockNum, numOrdered, &costPerItem);
txRetCode = tx_info(&txInfo);
if (txInfo.transaction_state != TX_ACTIVE) {

 tx_rollback();
fprintf (stderr,"Transaction failed: %s\n",

 tx_get_rollback_string());
 return ORDER_FAILED;
 }

/G Place similar calls to tx_info after other functions G/
 ...
txRetCode = tx_commit();
if (txRetCode) {

fprintf (stderr,"Transaction failed: %s\n",
 tx_get_rollback_string());
 return ORDER_FAILED
}

Figure 61. An Alternate Method of Detecting Aborts Using TX

Closing the TX Interface
Note:  This is included only for completeness. This is not for clients, and the z/OS Encina Toolkit

Executive does not support servers.

To close the TX interface, our server calls the tx_close function. The server calls this function as part of
server termination. This is shown in Figure 62.

tx_close();

Figure 62. Closing the TX Interface

210 Encina Toolkit Executive Guide and Reference  



  
 

Notes on Building the Application

To use TX, the application must include the tx/tx.h header file. No additional libraries are needed: TX
functions are included in the Encina Toolkit libraries that we have been linking with since Chapter 2.

  Chapter 30. Making the Sample Application Transactional 211



  
 

212 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 31. Using Nested Transactions

In this chapter, we introduce the concept of nested transactions as a way to achieve error isolation. After
introducing the concepts, we add a nested transaction to our example.

z/OS supports invocation of nested transactions to servers on other platforms that support nesting, but not
necessarily as described here. A nonrecoverable z/OS client can use nested transactions that
communicate with recoverable servers on other platforms.

Introduction to Nested Transactions

Using transactions as we have to this point does not always allow applications the granularity of error
isolation that may be desired. If the transaction aborts, all changes are rolled back. As our example
application is now written, this is the desired behavior. However, for more complicated transactions, we
may want a finer granularity in error isolation. For example, we may not want to undo all parts of a
transaction due to an error in one operation.

As an example, consider the billing part of our application. Currently, the billing algorithm is the following:

1. The order server makes an RPC to the billing server.

2. The billing server, queries the billing database on the mainframe and decrements the account balance.

3. If the customer has insufficient funds in the billing database, the transaction is aborted.

The abort in Step 3 results in all parts of the transaction being aborted. Not only is the change to the
billing database backed out; changes to the inventory database are backed out, and the shipping request
is dequeued. This algorithm is used for orders from all customers.

However, suppose we want to extend credit to preferred customers. These customers are listed in
preferred customer database, which also records the current credit and maximum credit for preferred
customers. The preferred customer database is local; thus our application does not have to access the
mainframe for preferred customers. To use this database, we change the billing algorithm as follows:

1. The order server first checks the preferred customer database.

2. If the customer has an entry in that database, we increment the “current credit” amount by the amount
of the order.

3. If the current order would place that customer over the credit limit, we abort the transaction to back out
any changes we made to the database.

4. Only if the customer is not a preferred customer or does not have sufficient credit do we make an
RPC to the billing server.

In our current transactional model, the abort in Step 3 in the new billing algorithm would back out not only
any changes to the preferred customer database but all work done by the transaction. We could of course
change the algorithm so that the application does not abort in the case of insufficient funds but instead
queries the database and then decrements it only if sufficient funds exist. However, as “Changing the
Design of the Application Server” on page 214 discusses, there are reasons for not doing so.

We need a way to isolate any errors that occur in the interaction with the local database, preventing such
errors from aborting the entire transaction. The solution is to check and decrement the local database
from within a nested transaction. A nested transaction is a new transaction begun from within the scope
of another transaction.

Nested transactions offer several features, including:

 Copyright IBM Corp. 1989, 2001  213



  
 

� Nested transactions enable an application to isolate errors in certain operations.

� Nested transactions allow an application to treat several related operations as a single atomic
operation.

� Nested transactions can operate concurrently.

Nested transactions, like any other transactions, do incur a performance cost. Therefore, they should be
used only when necessary.

Nested and Top-Level Transactions

As described in the previous section, a nested transaction is begun within the scope of another
transaction. The transaction that starts the nested transaction is called the parent of the nested
transaction. There are two types of nested transactions:

� A nested top-level transaction commits or aborts independently of the enclosing transaction. That is,
after it is created, it is completely independent of the transaction that created it. The Tran-C topLevel
construct for creating nested top-level transactions. The syntax of this construct is identical to that of
the transaction construct, but the topLevel keyword is used instead of the transaction keyword.

� A nested subtransaction commits with respect to the parent transaction. That is, even though the
subtransaction commits, the permanence of its effects depends on the parent transaction committing.
If the parent transaction aborts, the results of the nested transaction are backed out. However, if the
nested transaction aborts, the parent transaction is not aborted. The easiest way to create a nested
subtransaction transaction in Tran-C is to simply use a transaction block within the scope of an
existing transaction. Tran-C automatically makes the new transaction a subtransaction of the existing
transaction.

In this chapter, when we discuss nested transactions, we are generally referring to nested subtransactions
unless we specify otherwise.

A series of nested subtransactions is viewed as a hierarchy of transactions. When transactions are
nested to an arbitrary depth, the transaction that is the parent of the entire tree (family) of transactions is
referred to as the top-level transaction. If the top-level transaction aborts, all nested transactions are
aborted as well.

By default, nested subtransactions of the same parent transaction are executed sequentially within the
scope of the parent. The Tran-C concurrent and cofor statements can be used to create subtransactions
that execute concurrently with each other on behalf of their parent transaction. For more information, see
“Using the Concurrent Construct” on page 59 and “Using the Cofor Construct” on page 60.

Using Nested Transactions in the Example Application

In this section, we will add a nested transaction to the example that we developed in preceding chapters.

Changing the Design of the Application Server

We are changing our application to perform one additional action: prior to checking a mainframe database
for billing information, the application first checks a local preferred customer database. Only if this lookup
fails do we check the mainframe database. The function that checks the local database aborts the
transaction if the customer is not a preferred customer (not in the database) or if it encounters an error.
To prevent this abort from aborting the whole transaction, we isolate it using a nested transaction.

214 Encina Toolkit Executive Guide and Reference  



  
 

We could implement this extra lookup without using nested transactions. For example, we could have the
new function return a status code and have the application query the mainframe only if the function returns
an error. However, there are several reasons for using a nested transaction:

� Using a nested transaction isolates any errors that occur in the underlying RPC mechanism. Such
errors could abort the transaction. A nested transaction isolates these aborts in the same way that it
isolates aborts explicitly generated by the application.

� Using a nested transaction allows the function to abort (and thus back out) its own actions. If it did
not use a nested transaction, the function would first have to query the database, then update it if the
query indicated sufficient credit. If each update required an RPC, this design would result in two
RPCs for each successful call. By contrast, if the function instead aborts the transaction, it needs only
one RPC. Although this results in an abort (and hence more work for the application) in the failure
case, it is more efficient in the normal case.

� None of the other functions called as part of the transaction returns a status code. All abort if they
encounter an error. Thus, using a nested transaction gives the new function an interface similar to
other functions in the transaction.

Note that in this particular case, we could not reverse the order of the lookups (that is, first check the
mainframe database and then check the local database). The LU 6.2 specification does not support
nested transactions. Thus, if the mainframe transaction were to abort, the top-level transaction (not simply
the nested transaction) would be aborted.

Creating the Nested Transaction

To create a nested transaction in our application, we simply use a second transaction construct within the
scope of the first. Tran-C creates a nested subtransaction when it encounters the new transaction
construct. When execution reaches the closing brace of the nested subtransaction, Tran-C initiates
commit processing and commits the subtransaction with respect to the parent transaction. That is,
changes made in this subtransaction are backed out if the parent transaction aborts. Figure 63 on
page 216 shows the top-level transaction and the nested subtransaction.

  Chapter 31. Using Nested Transactions 215



  
 

error_status_t OrderItem(idl_ulong_int stockNum,
 idl_ulong_int numOrdered,
 idl_ulong_int customerId)
{

 idl_long_int returnStatus;
idl_long_int costPerItem, totalCost;

 short priority;
volatile short preferredCustomer = TRUE;

 transaction{
PlaceOrder(stockNum, numOrdered, &costPerItem);
totalCost = numOrdered G costPerItem;
if (totalCost > 1BBB)

priority = HIGH_PRIORITY;
 else

priority = NORMAL_PRIORITY;

 PlaceItemOnQueue(stockNum, numOrdered,
 customerId, priority);

transaction{/G Begin a nested transaction. G/

 BillPreferredCustomer(customerId, totalCost);
} onAbort {

/G If nested transaction aborts. G/
preferredCustomer = FALSE;

 }

/G If nested transaction aborted, check mainframe database G/
 if (!preferredCustomer)
 BillForItem(customerId, totalCost);
 }onCommit{

fprintf(stderr, "We committed.\n");
 return SUCCESS;
 }onAbort{

fprintf(stderr, "We aborted. %s\n", abortReason());
 return ORDER_FAILED;
 }
}

Figure 63. Using a Nested Transaction in the Sample Application

The BillPreferredCustomer function is part of the nested transaction. If this function is successful, the
nested transaction commits. However, the results can still be backed out if the parent transaction is
aborted. If the BillPreferredCustomer function aborts, only the nested transaction is aborted, not the
parent transaction. Control transfers to the onAbort clause of the nested transaction, where the
preferredCustomer flag is set to FALSE.

The BillForItem function, which queries the mainframe database, must be part of the top-level transaction
and must be invoked only if the nested transaction aborts. Therefore, the BillForItem function is invoked
if the value of the preferredCustomer flag is FALSE.

216 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 32. Using Abort Codes

This chapter describes the Encina Abort Code Facility.

Overview of Aborting with Abort Codes

In the example application developed elsewhere in this documentation, a character string is specified
when a function aborts. The function that receives notification of the abort can retrieve and print this
character string. Encina applications can also use abort codes rather than explicit character strings. Abort
codes offer the following advantages over strings:

� As integers, they are easier to compare than strings. Thus, an application can respond to a code
more easily than to a string.

� They can be translated into strings using external catalogs of messages. Thus, programs that use
codes can be internationalized more easily than programs that use strings.

However, the abort code interface is somewhat more complex than the character-string interface. Thus,
aborting with strings can be a better approach for those applications that are used in only one language
and that respond to abort notifications by simply printing a string and exiting.

The basic steps in using the abort code mechanism follow:

� Each process that can abort transactions defines a set of abort codes and an associated abort
formatting function. The formatting function translates the abort codes into character strings.

� Each process that can abort transactions specifies which abort codes it is using.

� Each process that can be notified of an abort registers the abort formatting function for each set of
abort codes used in transactions in which it participates. When the process calls the Tran-C
abortReason function or the TX tx_get_rollback_string function, Encina automatically calls the
formatting function associated with the abort code to translate the code into a string.

For example, to use abort codes with the initial transactional server (the order server) that we developed
in Chapter 30, “Making the Sample Application Transactional” on page 203, we define a set of abort
codes, which we call order abort codes to associate them with the order server. We then write a simple
abort formatting function to convert these codes into strings. At runtime, the order server specifies that it
is using the order abort codes for aborting transactions. It also registers the abort formatting function
because, in addition to aborting transactions, it also is notified of aborts and prints out abort messages.
Note that the client does not need to register the abort formatting function because the server manages
transactions. The client does not receive abort notifications and thus does not handle abort codes.

In the case of the order server, the same process both initiates aborts and receives notification of them.
The billing server, which is invoked from the order server, can also abort transactions, so it too must
define and use abort codes. We must also write an abort formatting function associated with these billing
abort codes. However, the billing server does not need to register this abort formatting function because
it does not print abort messages; it only initiates aborts. The order server must register the abort
formatting function for the billing server abort codes; this formatting function must be linked with the order
server code (that is, it is not invoked as an RPC). The order server therefore registers two abort
formatting functions: one for its own abort codes and one for the abort codes used by the billing server.
This is summarized in Figure 64 on page 218.

 Copyright IBM Corp. 1989, 2001  217



  
 

Order Abort
Codes

Order Abort
Formatter

Billing Abort
Formatter

Billing Abort
Codes

Client Order Server Billing Server

KEY

Function is linked with the server.
The process then registers it at runtime.

    Process specifies that it uses these
    abort codes.

RPC RPC

Figure 64. Using Abort Codes in Our Application

The abort code facility can be used with Tran-C, TX, or the underlying Toolkit components. This chapter
shows only the Tran-C interface.

Defining Abort Codes

Defining abort codes involves the following two steps:

1. Defining the abort codes themselves

2. Writing the abort formatting function

Defining Abort Codes
For each condition under which an application can abort a transaction, we must define an abort code. An
abort code is an unsigned-integer constant that indicates the reason why a transaction aborted. These
codes are typically placed in a header file. In our example, we define abort codes for a few common
reasons, as shown in Figure 65.

/G Abort codes and abort format used to abort transactions G/
typedef enum {
BAD_STOCK_NUM = 1,

 INSUFF_STOCK,
 ILLEGAL_QTY,
 RESOURCE_MGR_OP_FAILED,
 ENQUEUE_FAILED,
} order_abort_t.

static char ORDER_ABORT_FORMAT[] =
 "BB14ad2B-e154-1d68-85bB-9e62B92caa77";

Figure 65. Defining Abort Codes for Our Example

Each set of abort codes must have a unique format identifier so that Encina can associate a formatting
function with the abort reason generated by an aborted transaction. The format identifier is a DCE UUID

218 Encina Toolkit Executive Guide and Reference  



  
 

(universal unique identifier) that uniquely identifies the format for abort reasons. This format UUID is
created with the DCE uuidgen utility.

Writing the Abort Formatting Function

For each set of abort codes defined, we must provide an abort formatting function. The purpose of the
formatting function is to take the information in an abort reason and use it to generate output appropriate
to the application. This formatting function can then be registered by any process that wants to obtain the
abort reasons. When invoked, the formatting function is automatically passed two arguments: a pointer to
an abort reason for the aborted transaction and a pointer to a buffer that can be used to hold the string
that corresponds to the abort reason.

In our example, the function OrderAbortFormatter is defined as the formatting function for the abort
codes defined by the order server (see Figure 66). The function checks the abort code set for the abort
reason, and based on the value of the abort code, returns a string that describes the reason for the abort
in the bufferP parameter. Note that this example generates a printable string in English. In production, an
application might instead look up abort strings in a message catalog, making it easier to internationalize
the application.

static void OrderAbortFormatter(encina_abortReason_t GabortReasonP,
 char GbufferP)
{
 char GabortString;

 switch(abortReasonP->code) {
 case BAD_STOCK_NUM:

abortString = "Stock number out of range.";
 break;
 case INSUFF_STOCK:
 abortString = "Stock not available in that quantity.".
 break;
 case ILLEGAL_QTY:

abortString = "Illegal value for a stock quantity.";
 break;
 case RESOURCE_MGR_OP_FAILED:
 abortString =

"Operation on underlying resource manager failed.";
 break;
 case ENQUEUE_FAILED:

abortString = "Enqueue attempt failed.";
 break;
 default:

abortString = "Unknown abort code.";
 }
 strcpy(bufferP, abortString);
}

Figure 66. Example Function for Formatting an Abort Reason

  Chapter 32. Using Abort Codes 219



  
 

Aborting a Transaction with an Abort Code

Each module that can abort a transaction using abort codes must specify which abort codes it is using
with the useAbortFormat function, which can be placed after the call to the inModule function, as shown
in Figure 67. In this example, the order server specifies that it is using the order abort codes. The billing
server makes a similar call to specify that it is using the billing abort codes. Encina uses this information
to determine which abort formatting function to call when an application calls the abortReason function
(see “Using Abort Data”). Note that although each module can register multiple abort format functions, it
can use only one set of abort codes and thus calls useAbortFormat only once.

inModule("OrderServer");
useAbortFormat(ORDER_ABORT_FORMAT);

Figure 67. Specifying the Abort Format to Use

After specifying which abort codes it is using, the module uses the abortWithCode function to abort
transactions. The abortWithCode function requires one argument, an integer abort code that describes
the reason for the abort. We can code the application to specify an abort code, as shown in Figure 68.
The abort formatting function for the order abort codes (shown previously in Figure 66 on page 219) can
convert this abort code into a string.

status =
rqs_Enqueue (...);
if (status != RQS_SUCCESS)
 abortWithCode(ENQUEUE_FAILED);

Figure 68. Aborting a Transaction Using an Abort Code

Using Abort Data

In previous chapters, we used the Tran-C abortReason function to return a string that contains the reason
a transaction was aborted. We can continue to use this function when aborting with abort codes.
However, because the process that aborts transactions specifies an abort code instead of a string, we
must tell Encina which formatting function to use to convert the code into a string. A module must register
an abort formatting function for each set of abort codes for which it needs to print corresponding abort
strings. For example, our order server must register two abort formatting functions: one for its own abort
codes and one for the billing server's abort codes.

To register an abort formatting function, we use the encina_RegisterAbortFormatter function. This
function takes two arguments: a pointer to a format UUID and the name of a formatting function. The
format UUID passed to the function must be of type uuid_t. Our application uses strings to represent
UUIDs (see the example header file in Figure 65 on page 218). A string representing a UUID can be
converted to a UUID using the uuid_from_string DCE function. To simplify our application, we use the
REGISTER_ABORT_FORMATTER macro, which converts the string to a UUID and then invokes the
encina_RegisterAbortFormatter function.

Figure 69 shows how the order server registers the abort formatting functions it uses. Figure 70 on
page 221 shows the REGISTER_ABORT_FORMATTER macro.

REGISTER_ABORT_FORMATTER(ORDER_ABORT_FORMAT,OrderAbortFormatter);
REGISTER_ABORT_FORMATTER(BILLING_ABORT_FORMAT,BillingAbortFormatter);

Figure 69. Registering Abort Formatting Functions

220 Encina Toolkit Executive Guide and Reference  



  
 

/G
 G REGISTER_ABORT_FORMATTER -- register a function to convert abort
 G codes to strings. G/

#define REGISTER_ABORT_FORMATTER(formatUuidString, formatFunction)\
BEGIN_MACRO \
 unsigned32 _status; \
 uuid_t _abortFormatUuid; \

uuid_from_string((unsigned_char_t G) (formatUuidString), \
 &_abortFormatUuid, &_status); \
 CHECK_STATUS(_status); \

_status = encina_RegisterAbortFormatter(&_abortFormatUuid, \
 (formatFunction)); \
 CHECK_STATUS(_status); \
END_MACRO

Figure 70. The REGISTER_ABORT_FORMATTER Macro

After a function registers an abort code formatting function, subsequent calls to the abortReason function
return a string formatted by the appropriate registered function. If the application needs to retrieve the
code itself, it can use the abortCode function.

  Chapter 32. Using Abort Codes 221



  
 

222 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 33. Using the Encina Trace Facility

This chapter describes the tracing support that the Encina Trace Facility provides. The facility delivers
error messages, enables execution path tracing, and produces snapshots of the state of Encina
applications. Furthermore, the Encina Trace Facility also allows administrators to organize the trace
output by sending classes of output to specific destinations.

There are two independent controls for tracing: (1) the type of tracing to enable and (2) where trace output
is sent. Enabling specific types of traceable events for Encina components and products is done by
setting trace masks. Redirecting trace output is done by specifying the destinations for trace classes.

There are several steps to obtaining meaningful output from the Encina Trace Facility:

1. Triggering trace events
2. Capturing trace events
3. Redirecting trace events
4. Formatting trace events.

Types and Levels of Trace Output

The Encina Trace Facility provides the following types of output:

� Error information contains all messages signalling fatal and non-fatal errors.

� Audit information contains messages pertaining to the operation and usage of the Encina system.

� Execution path information contains all information used to follow the execution path of a program, that
is, entry/exit and parameter tracing of functions and tracing of important events during function
execution.

� State dump information contains volatile (in memory) information.

Capture of the trace output for error and audit information is always enabled. The tracing of state
information is enabled by performing a state dump function. The tracing of all other events is controlled by
trace masks.

Administrators can control the amount of trace output generated for a server by enabling selective tracing
of component-specific events using trace masks. A trace mask serves as a filter for controlling the type of
event tracing that is enabled for a component. See “Enabling and Disabling Tracing” on page 227 for
more information on enabling tracing.

Valid Trace Destinations

By default, the output of the fatal, error, and audit trace classes is redirected from the ring buffer to the
stderr stream. Administrators should monitor messages that these classes generate because these
messages can greatly impact system operation. Table 7 on page 224 lists trace classes and their default
destinations.

 Copyright IBM Corp. 1989, 2001  223



  
 

Encina provides the following aliases for frequently used combinations of trace classes:

� The critical alias includes the audit, error, and fatal trace classes.

� The trace alias includes the entry, event, and param trace classes.

� The all alias includes all the standard trace classes listed in Table 7.

Administrators can redirect any class of trace output from the ring buffer to one of the following
destinations:

 � A file.

� A standard I/O stream, such as the standard error (stderr) or standard output (stdout) streams.

� An RPC interface for transmitting trace data.

One exception is the destination of fatal, error, and audit trace output. Messages generated by these
classes may greatly impact the operation of the system and should be monitored. These trace classes
can be redirected from stderr (the default destination) to a file, for example. However, they must be
directed to some destination for monitoring (they cannot be allowed to remain in the ring buffer only).

Because tracing affects performance, administrators should consider the performance implications of
sending trace output to different locations. Sending trace output to a file, I/O stream, or RPC interface
impacts performance negatively. Because trace output can be large, use caution when sending trace
output to the stderr or stdout streams.

Format of Trace Output

The default format of Encina messages includes the following fields:

� A thread ID.

� A process ID. This is a system-dependent process ID.

� A timestamp. This is the time at which the event occurred, in number of seconds and microseconds.
Note that the local time zone is used by default to generate this field.

� A trace ID. This hexadecimal number is a unique identifier for the message. The trace ID is provided
for customer support purposes or for use when error message catalogs are not available.

Table 7. Encina Trace Class and Their Default Destinations

Trace Class Content of Trace Information Default Destination

audit Contains a report of security-related events and
configuration changes.

stderr + ring buffer

dump Contains a dump of the state information relating to a
component.

ring buffer

error Contains information relating to nonfatal errors. Also
referred to as the warning class.

stderr + ring buffer

fatal Contains information relating to fatal errors. stderr + ring buffer

param Contains parameter tracing information ring buffer

entry Contains a subset of the trace trace class, parameter
tracing, specifically entry/exit tracing information.

ring buffer

event Contains a subset of the trace trace class, specifically
event tracing information.

ring buffer

224 Encina Toolkit Executive Guide and Reference  



  
 

� A trace class code. This one- or two-character abbreviation represents the class (or subclass) of trace
output and can be one of the following:

– > indicates a function entry.
– < indicates a function exit.
– <R indicates a function exit with a return value.
– A indicates an audit message.
– D indicates a state dump message.
– E indicates an event message.
– F indicates a fatal error message.
– P indicates a parameters message.
– T indicates a termination message.
– W indicates a non-fatal error (warning) message.

� A message body. The body of the message describes the event that generated the message and
includes event-specific data. Fatal errors generate two messages. The body of the first message
describes the event; the body of the second message includes the name of the source file in which
the statement that generated the error appears, and the line of the file where the error occurred. If the
body of the message cannot be displayed, then the trace ID can be used to look up the information in
the appropriate message catalog. (See the Toolkit administrator's guide for your system for a
description of translateTraceId.)

Examples of Encina Messages

The following output in the default format shows example trace messages for error (warning), event, fatal,
entry, param, audit, and dump classes. The output shows the thread ID, process ID, timestamp, trace
ID, trace class (or subclass) code, and body of the message.

 1 22753 94/B3/28-B8:17:51.BB3B38 aBB4B437 W Unable to bind to
server /.:/encina/sfs/sfsServer1 (DCE-rpc-B214: not registered in
endpoint map)
 1 22644 94/B5/26-19:4B:18.557693 5B4BB415 E sfs: Hello from
SERVER
31 22644 94/B5/26-19:43:43.724B26 3B349826 F Undo operation has
repeatedly failed
31 22644 94/B5/26-19:43:43.744425 BBBBBBB6 F /abc.com/project/
build/src/sfs/server/sfs.c 932
 1 B1324 94/B8/18-BB:27:18.9B5458 28B4BcBB > trpc_UseWkEndpoints
 1 B1324 94/B8/18-BB:27:18.9B552B 28B4Bc23 P bindingVectorP:
36Bd3B; count B.
 1 B1324 94/B8/18-BB:27:18.9B584B 28B4BcB1 <R trpc_UseWkEndpoints
trpc.c trpc -> BBBBBBBB
 1 22719 94/B4/11-19:B5:45.755217 B48BBB17 A sfs: Initialized ...
Tue Apr 11 19:B5:45 1994
 1 B9515 94/B8/19-12:35:41.987159 1BB43819 D threadTid state
dump for thread id: 1

Controlling the Amount of Trace Output

Administrators can control the amount of trace output generated for a server by enabling selective tracing
of components using trace masks. A trace mask is a 32-bit unsigned integer associated with each
component. Bits in the trace mask enable various types of tracing in the component. These bits are
referred to as trace options. Bits 0 through 7 (0x000000FF) represent the standard trace options common
to all components. The remaining 24 bits represent component-specific trace options. To trace a

  Chapter 33. Using the Encina Trace Facility 225



  
 

component's operation, administrators must specify a valid component name and one or more trace
options. Trace options are identified by a string value or its associated hexadecimal value.

Table 8 lists the standard trace options common to all Encina components.

Standard Trace Options

Table 8 lists the standard trace options, hexadecimal values, and C symbolic constants common to all
Encina components.

Table 8. Standard Trace Options

Trace Options Hex Value C Symbolic Constant Tracing enabled for...

trace_event 0x00000001 TRACE_EVENT Events in all functions.

trace_entry 0x00000002 TRACE_ENTRY Entry/exit of all exported
functions.

trace_param 0x00000004 TRACE_PARAM Parameters of all exported
functions.

trace_export 0x00000006 TRACE_ENTRY+TRACE_PARAM Entry/exit and parameters
of all exported functions.

trace_internal_entry 0x00000008 TRACE_INTERNAL_ENTRY Entry/exit of non-exported
functions.

trace_internal_param 0x00000010 TRACE_INTERNAL_PARAM Parameters of
non-exported functions.

trace_global 0x0000001F TRACE_GLOBAL Entry/exit and parameters
of all functions.

trace_all, all 0xFFFFFFFF - - - All bits in the trace mask.

Valid Component Names

Table 9 lists all the valid Encina component names for which tracing can be enabled. Note that not all
components are supported in z/OS.

Table 9 (Page 1 of 2). Valid Trace Component Names

Trace Components Description

admin Toolkit Administration Interface

afac Abort Facility

bde Base Development Environment

cmdline Command Line Processor

tc Transactional-C

threadTid Thread-to-Tid Mapping Service

tidl TIDL Preprocessor

tran Transaction Service

trdce DCE Utilities

trpc Transactional RPC Service

226 Encina Toolkit Executive Guide and Reference  



  
 

In addition, Table 10 lists special trace aliases, which can be used to cause multiple trace masks to be
enabled.

Enabling and Disabling Tracing

Most Encina platforms support the tkadmin command for activating and modifying tracing. z/OS does not
support tkadmin, and so tracing is activated through the ENCINA_TRACE environment variable.

Before starting the program, set ENCINA_TRACE to a trace specification. The informal basic trace
specification can be described as:

name=value

where name is the name of a trace component, and value is an expression that may contain numeric
constants or string values as found in Table 8 on page 226. Sequences of statements may be connected
with commas. For example:

export ENCINA_TRACE=all=B,tc=xB1f,tran=trace_export

which sets all trace masks to 0, then sets the tc trace mask to 0x0000001F and the tran mask to
0x00000006.

After an event is triggered, relevant data for the event is captured and stored in the ring buffer. Logically,
the ring buffer is a circular buffer; as new events are added, old events may be deleted. The size of the
buffer is specified in bytes. The default size is 64K bytes. To alter the byte size of the buffer, set the
ENCINA_TRACE_RING_SIZE environment variable to a value that is a power of two.

The amount of data captured for an event varies with the event, so the number of events that fit in the ring
buffer varies. A minimal event uses 7 4-byte words; an average event will contain a few more words, so a
default-sized buffer will hold approximately 1000 to 2000 events.

Directing Trace Output

In z/OS, redirecting trace output is done using the ENCINA_TRACE_VERBOSE environment variable.

Before starting the program, set the ENCINA_TRACE_VERBOSE environment variable to cause
formatted events to be sent to I/O streams. Notice that the entries are formatted before being sent. Set
the variable to one of these values to select the corresponding option:

1 = standard error stream
2 = standard output stream

Table 9 (Page 2 of 2). Valid Trace Component Names

Trace Components Description

tx X/Open TX Interface

util Toolkit Utilities

Table 10. Special Trace Aliases

Alias Description

all All trace masks

client, exec Encina Toolkit Executive components

  Chapter 33. Using the Encina Trace Facility 227



  
 

3 = both

Stdout and stderr may then be redirected to somewhere else, for example, a file, if desired.

Formatting Trace Events

The final step in obtaining meaningful trace output is formatting the binary data associated with trace
events. Trace events may be formatted online as they are triggered or offline with the interpretTrace tool.

The following utilities are provided to format binary trace buffers. See Chapter 48, “Trace Facility
Functions” on page 691 for details on these programs.

The interpretTrace program reads a binary trace: ring buffer dump and writes formatted trace statements
to the standard output stream.

The indentTrace program reads formatted trace output and indents it so that entry to nested functions is
clearly visible. The formatted, indented output is written to the standard output stream.

The traceListener program acts as a server to receive trace redirection RPCs from other processes.

The translateTraceId program looks up a traceId in the trace catalogs and displays information cataloged
for the trace event.

The translateError program translates Encina and DCE status codes into different formats. The
NLSPATH and LANG environment variables are used to locate the appropriate message catalogs.

228 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 34. Tracing and Debugging Encina Toolkit
Applications

This chapter describes the tracing facilities that the modules of the Encina Toolkit provide. These facilities
enable users and developers to monitor and observe the execution of those modules when called within
an application. Sections of this chapter introduce the Encina Toolkit Trace facility, discuss its organization
into multiple levels of tracing control, and discuss how to configure an application to use these facilities.
Subsequent sections discuss how to enable and disable Toolkit tracing, how to selectively enable or
disable tracing within specific modules of the Encina Toolkit, the different levels of tracing specific Encina
Toolkit modules provide, how to activate or deactivate specific levels of tracing, and how to direct tracing
output to specific locations, depending on the application that is producing the output. This chapter
concludes with reference information for the data types and functions the Encina Toolkit Trace facility
exports.

General Information about Tracing

Tracing allows a developer or system administrator to obtain information about the execution path of an
application, the parameters with which functions and procedures are called, and tracks significant,
developer-defined events in the execution of an application. This type of information can be very useful
when debugging user-level applications or when monitoring system performance and module interaction.
The ability to obtain tracing output from tools that provide an enabling technology, such as the modules of
the Encina Toolkit, can also provide substantial insights into how the software is being used, and therefore
how it can be tuned to provide increased performance.

Most tracing facilities, such as those provided by the Encina Toolkit, can be enabled or disabled within an
application. In the case of server programs, tracing is generally compiled in, but tracing output is not
produced unless tracing is enabled (activated) in the server program. The most common types of tracing
information gathered from applications or underlying services are the following:

� Tracking the values of the parameters passed to functions or procedures within a component or
product. This is generally known as parameter tracing.

� Tracking the calling sequence of functions or procedures within a component or product. This is
frequently known as entry-exit tracing.

� Tracking the occurrence of specific events within a product or component. This is generally known as
event tracing.

Each of these types of tracing produces a different amount of output. For example, tracing both the
calling sequence of internal functions and changes in the parameters passed to them can produce a great
deal of output. This type of output may only be useful in certain circumstances, such as when attempting
to resolve certain types of problems or when using tracing to obtain performance statistics. For this
reason, the tracing facilities provided by Encina support different levels of tracing, which means that you
can selectively identify the type of tracing output that you want to obtain.

In general, tracing should only be enabled when absolutely necessary. Tracing is best suited to detecting
logical problems in the design or implementation of a system. Generating trace output is often
counterproductive when attempting to diagnose timing problems, because the resources required to
generate and write tracing information may obscure the timing problem. The best argument for only
enabling tracing when absolutely necessary is the sheer volume of output which it generates. In general,
tracing should also only be enabled selectively - if you suspect a problem in a specific module, you should
only enable tracing for that module of component, expanding the tracing scope only as you discover that it
is necessary to do so.

 Copyright IBM Corp. 1989, 2001  229



  
 

Overview of Tracing in the Encina Toolkit

Encina software consists of products and components, where a product is a collection of components.
Encina products also generally make use of supporting services provided by Encina components.

Because of the open, modular nature of Encina, its tracing facilities are similarly modular. Tracing can be
controlled and separately enabled in both Encina products and Encina components. These are referred to
as standard and component tracing. Standard tracing activates tracing information throughout all Encina
products. Component tracing activates tracing information that has special significance to each
component, and only affects tracing output generated by calls to that component.

Each Encina product and component defines a trace mask, which is a 32-bit global variable that controls
the type of tracing that is currently active for that product or component. This variable is a logical OR of
all of the types of tracing that are currently active for the component. A trace mask is of the following
form:

extern unsigned long component-name_traceMask;

Encina products do not have explicit trace masks. Tracing within Encina products must be enabled or
disabled within an application.

The Encina tracing facilities support generation of the following types of information during the execution of
a product or component:

� For exported functions, those documented and available to users of a component or product:

– the calling sequence of exported functions within the product or component. This is activated by
setting the TRACE_ENTRY bit of the component's trace mask to the value 1 (a logical OR of
TRACE_ENTRY and the current value of the trace mask).

– the values of the parameters with which exported functions in that product or component are
called. This is activated by setting the TRACE_PARAM bit of the component's trace mask to 1 (a
logical OR of TRACE_PARAM and the current value of the trace mask).

� For internal functions, those used internally by a component or product that are unavailable to users:

– the calling sequence of internal functions within the product or component. This is activated by
setting the TRACE_INTERNAL_ENTRY bit of the component's trace mask to 1 (a logical OR of
TRACE_INTERNAL_ENTRY and the component's trace mask).

– the values of the parameters with which internal functions in that product or component are called.
This is done by setting the TRACE_INTERNAL_PARAM bit of the component's trace mask to 1 (a logical
OR of TRACE_INTERNAL_PARAM and the component's trace mask).

� the occurrence of specific events within a product or component. This is activated by setting the
TRACE_EVENT bit of the component's trace mask to 1 (a logical OR of TRACE_EVENT and the component's
trace mask).

To simplify enabling tracing when attempting to resolve a problem where performance during debugging is
not an issue, Encina also provides two mask values which simultaneously either enable all standard
tracing (TRACE_GLOBAL) or disable all tracing (TRACE_NONE).

230 Encina Toolkit Executive Guide and Reference  



  
 

Requirements for Using Encina Tracing

This section describes the additions to your application code and working environment that are required to
use the Encina Tracing facility, and to display tracing messages in the correct language.

Include Files for Compiling Applications with Tracing

In order to compile applications that provide tracing output, the source code for your application must
specify the include file that defines constants and data structures used by the Encina tracing facility. This
is the file trace.h, which can be specified in your application source code by using a line like the
following:

#include <utils/trace.h>

Environment Variables for Generating Trace Output

During the execution of Encina Toolkit component routines within an application, the Encina tracing
mechanism uses a component-specific trace database to identify and interpret the events for which tracing
has been activated. Each Encina Toolkit component's trace database has a name of the form
trace_componentName.tpp. These databases are located by the Encina tracing run-time environment by
checking the directories listed in the NLSPATH environment variable. This environment variable must be set
to enable National Language Support (NLS), and defines a search path (a collection of directory names
separated by colons) that will are searched in order by the NLS support system to locate NLS message
catalogs. For tracing purposes, the NLSPATH variable usually contains an entry of the form
installationDirectory/msg/%L/%N, where installationDirectory is the name of the directory in which
Encina has been installed on your system, %L represents the language in which you want those
messages to be displayed, and %N is the name of the file containing the messages

The language used for NLS-aware messages from the Encina trace facility is C, because this is the
programming language in which the Encina Toolkit is written. The name of the catalog of messages used
by the tracing facility for a specific component is formed from this abbreviation. For example, the
abbreviation for the Toolkit Distributed Transaction Service is tran, which means that the name of the
message catalog containing Toolkit Distributed Transaction Service trace messages for use by
applications running in the United States is installationDirectory/msg/C/trace_tran.cat.

If the trace database cannot be found for a component in which tracing has been enabled, a warning
message will be displayed for each trace statement whenever tracing is enabled. If you receive such
messages, check to make sure that this variable has been set, and correctly includes the name of the
directory in which the Encina Toolkit trace message catalogs have been installed.

Enabling Tracing in Encina Applications

Once you know a component's trace mask and the level of tracing that you want to activate, tracing can
be enabled by setting the bit corresponding to the required level in the trace mask. This can be done in
several different ways. This section discusses the mechanisms that application developers can use to
enable tracing while they are working on or testing an application.

  Chapter 34. Tracing and Debugging Encina Toolkit Applications 231



  
 

Activating Component-Level Tracing in Encina

The level of tracing within a component can be controlled in one of the following ways:

� From within a program: This option would typically be used during the development of an application
to verify its execution path. The trace mask can either be explicitly set, or you can implement an
application-specific mechanism for getting trace levels from the environment. For example, if you
needed to do a great deal of tracing at multiple levels, without having to recompile your application,
you might consider using an environment variable to hold a numeric value which your application
reads and converts to a trace mask value.

� By using a debugger to set trace masks while an application is running: This can either be done
by starting the application inside a debugger, or by attaching to a running process using the debugger.
These options would typically be used when tracking down problems in an application that is under
development, but which is undergoing testing.

The mechanism that you use to enable tracing depends largely on the type of application you are
developing and the stage of the development of your application. For example, the first and second
options would typically be used during the development of an application. The first option requires the
application to be recompiled if you need to change the tracing level or types of tracing events.

The next few sections provide examples of using each of these mechanisms to enable entry/exit and
parameter tracing for the Toolkit TRAN component.

Enabling Component Tracing Within an Application:  When a program enables tracing, it
can set and reset trace bits explicitly. For example, required trace bits could be added to the
tran_traceMask variable with an OR operation:

tran_traceMask |= TRACE_ENTRY | TRACE_PARAM;

To disable this tracing, the program would use an AND operation with the bitwise negation of the trace
bits:

tran_traceMask &= ˜(TRACE_ENTRY | TRACE_PARAM).

Enabling Component Tracing Using a Debugger:  Tracing can be enabled using a debugger
in two different ways: either by attaching to a running process, and setting the desired trace mask while
the process is active, or by starting the application within a debugger, and enabling the trace masks when
certain breakpoints are reached.

For example, when running an application within a debugger, tracing can be enabled by assigning the
required trace bits to the appropriate trace mask variable. Typically, you would do this by setting a
breakpoint in the main routine of the application, assigning the appropriate trace mask value to the internal
location where the that variable is stored, disabling the breakpoint, and then continuing the execution of
the application. The numeric value assigned to the location of the trace mask variable would be the
numeric OR of the different types of tracing that you want to enable.

Enabling Product Tracing in an Application:  In an application, product-wide tracing can be
enabled by using the TRACE_PRODUCT macro to specify the trace mask for the product. The
parameters to this macro are the name of the product, passed a string value, and the trace mask values
that you want to enable for that product. An example of using this construct to specify entry/exit and
parameter tracing in the Encina Toolkit Executive product:

TRACE_PRODUCT("Encina Executive", TRACE_ENTRY | TRACE_PARAM);

232 Encina Toolkit Executive Guide and Reference  



  
 

Functions for Obtaining Trace Output in Applications

Within applications, all trace, dump, warning, and fatal error output produced by the Encina tracing facility
is stored in a circular, internal buffer (ring buffer). The size and type of information stored in the ring
buffer is defined in the trace buffer header, which is pointed to by an instance of the type trace_buffer_t.
See the description of this function for more information about this data type.

Tracing information obtained using the Toolkit administrative tool, or by calling the administrative RPC
interfaces to the Toolkit, is automatically extracted from the ring buffer and formatted. Within applications,
you must call the trace_Register function to register an upcall for all of the classes of tracing events you
want to obtain. The limit on the number of upcalls that can be registered for each class of tracing output
is specified in the tracing constant TRACE_MAX_UPCALLS.

The Encina Toolkit tracing facility provides the trace_FileUpcall upcall to implement Encina tracing to the
UNIX stderr or stdout devices with the trace_Register function. This upcall should be used unless you
are integrating Encina tracing with existing tracing mechanisms. An alternate upcall is provided too, for
this sort of integration.

The following is a typical example of using the trace_FileUpcall function to register tracing output:

trace_Register(TRACE_CLASS_ENTRY,trace_FileUpcall, stderr);

This call directs the output of entry tracing to the UNIX error output stream, stderr. Substituting another
file pointer for stderr in this example would write all entry tracing output to that file.

Registering upcalls for certain tracing events eliminates the need to explicitly display or monitor the
contents of the ring buffer where trace output is stored. However, in case this is necessary, or for better
performance, the Encina tracing facility provides the trace_DumpRingBuffer function.

For example, a call to this function to write the contents of the tracing ring buffer to the UNIX standard
error output stream, in formatted fashion, would be the following:

trace_DumpRingBuffer((void G) stderr, TRUE);

As mentioned previously, it is usually unnecessary to explicitly call the trace_DumpRingBuffer function.
In most cases, trace output from Encina can be obtained using the upcalls discussed earlier in this
section.

To format tracing information collected from the ring buffer, the Encina tracing facility provides the
trace_FormatBuffer function. This function takes three parameters; a pointer to a buffer holding the
tracing information, the length of the buffer supplied to hold the formatted output, and a pointer to a buffer
used to hold the formatted output. This function returns the length of the formatted event description
written in the supplied buffer. If the buffer provided to the trace_FormatBuffer function is too small to
hold the entire formatted trace event string, the string is truncated to fit in the buffer.

Redirecting Tracing Output in an Application:  The trace facility functions can be used at any
time to direct trace output to a new output stream. The following example shows the redirection of trace
output to the file /tmp/trace.out, appending entry and parameter tracing information to any existing
contents of the file:

FILE GnewOutputStream;

if ((newOutputStream = fopen("/tmp/trace.out", "a+")) != NULL) {
trace_Register(TRACE_CLASS_ENTRY | TRACE_CLASS_PARAM,

trace_FileUpcall, (void G) newOutputStream); }

  Chapter 34. Tracing and Debugging Encina Toolkit Applications 233



  
 

In this example, trace_Register and trace_FileUpcall are the functions provided by the trace facility to
register and unregister destinations for specific trace output classes. The trace_FileUpcall function is
provided by the trace facility to interpret the trace output and send the result to a previously-opened file (in
this case, /tmp/trace.out). These functions are discussed in “Functions for Obtaining Trace Output in
Applications”.

Disabling Specific Trace Class Output:  The trace_Unregister function is used to
programmatically unregister upcalls for the specified: class or classes of events.

Unregistering a single upcall for a specific class of tracing event does not affect any other upcalls
registered for that event. Each upcall for specific events must be separately registered and unregistered.

Obtaining Tracing Information after Application Failures

If an application terminates abnormally while tracing is enabled, the Encina Toolkit automatically saves all
the information found in the tracing ring buffer for that application. The information is saved to a file
located in the directory from which the application was started. The file is named EncinaTraceBuffer.PID,
where PID was the process ID of the application. This file, commonly referred to as the ring buffer dump
file, contains the contents of the tracing ring buffer in binary format.

The file containing the ring buffer dump is created only if an application terminates abnormally while
tracing is enabled. To interpret the contents of this binary file, the Encina Toolkit provides the
interpretTrace command. This program reads from standard input, taking a binary ring buffer file as
input, and produces a human-readable translation of its input on standard output. On operating systems
that support output redirection, you can redirect the output of this program to a file. The following is an
example of using this program:

% interpretTrace < EncinaTraceBuffer.17123

See the Toolkit administrator's guide for your system for additional information on the interpretTrace
command. If the tracing output produced by this program does not reveal the reason that your application
terminated, please see your Encina site contact.

234 Encina Toolkit Executive Guide and Reference  



  
 

 Part 3. Reference Information

 Copyright IBM Corp. 1989, 2001  235



  
 

236 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 35. Tran-C Functions and Constructs

The Tran-C constructs and functions provide support for the development of transactional applications.
Tran-C allows you to create, commit, and abort transactions, create lightweight threads of control, manage
access to shared data and resources, and issue transactional RPCs to other applications.

 Header Files

The header files provided with Tran-C define different aspects of Tran-C functionality. An application must
include the tc/tc.h file. If an application uses the Tran-C transactional RPC communications functions, it
must also include the file tc/tc_trpc.h.

 Basic Functionality

Tran-C provides a set of constructs and functions for the development of transactional applications. Both
client and server applications can use Tran-C. If an application is ephemeral (that is, does not manage
recoverable data), it must communicate with a recoverable application to guarantee that the effects of
transactions are permanent.

The basic functionality Tran-C provides includes the management of transactions and support for
transactional applications. The Tran-C interfaces allow you to create serial and concurrent transactions,
retrieve various types of status information, and control program flow. The basic Tran-C constructs and
functions can be categorized according to functionality.

� Initializing and terminating Tran-C applications
 – exitTC
 – exitTConInterrupt
 – initTC
 – initTCWithTRPC
 – postInitTC
 – preInitTC
 – quiesceTC
 – tc_InitTRPC

� Setting and retrieving function and module names
 – abortFunctionName
 – abortModuleName
 – currentFunctionName
 – currentModuleName
 – inFunction
 – inModule

� Beginning, suspending, and resuming transactions
 – resumeTran
 – topLevel
 – transaction

 � Aborting transactions
 – abort
 – abortNamedTran
 – abortNamedTranWithCode
 – abortWithCode

� Retrieving transaction identifiers in different contexts
 – getCompletedTid

 Copyright IBM Corp. 1989, 2001  237



  
 

 – getContainingTid
 – getTid

� Retrieving and setting information for an aborted transaction
 – abortCode
 – abortFormat
 – abortReason
 – getAbortData
 – setAbortData
 – useAbortFormat

� Creating concurrent transactions and threads
 – cofor
 – concThread
 – concurrent
 – subThread
 – subTran

� Setting callbacks in applications
 – registerApplCallback
 – registerTranCallback
 – registerTRPCCallbacks

� Creating server-side transactions
 – inWrapEachTrpc
 – inWrappedTran
 – wrapEachTrpc

� Monitoring transaction and application states
 – abortCheck
 – catchAbort
 – commError
 – inTransaction
 – tc_DumpState
 – trpcPermitted
 – watchNamedTran
 – watchTran

� Using transactional mutexes
 – tranMutexInit
 – tranMutexInitOnce
 – tranMutexLock
 – tranMutexTerminate
 – tranMutexTryLock
 – tranMutexUnlock

� Allocating and freeing transactional memory
 – tranMemAlloc
 – tranMemFree

� Saving and restoring transaction context 
 – tc_RestoreTranContext
 – tc_SaveTranContext

238 Encina Toolkit Executive Guide and Reference  



  abort
 

 abort

Aborts a transaction and sets a string describing the reason for the abort.

 Synopsis
#include <tc/tc.h>

void abort(
IN char GabortString)

 Parameters
abortString

Specifies a null-terminated character string that describes the abort reason.

 Description

The abort function aborts the current transaction. The reason for the abort is specified by the value of the
abortString parameter, which must be a null-terminated character string. The abortReason function can
be called in the onAbort clause of the transaction to retrieve the abort string.

 Notes

It is recommended that a string used as the reason for an abort be defined as a string constant and
declared in a header file. By using a string constant, the onAbort clause of a transaction can be coded to
compare the string against known values to determine what action to take when the transaction is aborted.

 Related Information

abortNamedTran
abortNamedTranWithCode
abortWithCode
abortReason
transaction

  Chapter 35. Tran-C Functions and Constructs 239



 abortCheck  
 

 abortCheck

Checks whether the current transaction has aborted.

 Synopsis
#include <tc/tc.h>

void abortCheck()

 Description

The abortCheck function checks whether the current transaction has aborted and, if so, transfers control
to the onAbort clause of the enclosing transaction statement. If the current transaction has not aborted,
the abortCheck call has no effect.

Normally, if a transaction is aborted by a thread other than the thread that initiated the transaction, the
abort is not detected until a Tran-C statement is executed in the transaction clause or an RPC is made.
The abortCheck function can be used in the transaction clause to avoid delays in detecting aborts in
transactions that are long-running or that use Tran-C constructs and functions infrequently.

 Related Information

transaction

240 Encina Toolkit Executive Guide and Reference  



  abortCode
 

 abortCode

Returns the abort code for an aborted transaction.

 Synopsis
#include <tc/tc.h>

long abortCode()

 Description

The abortCode function returns an integer code representing the reason that a transaction aborted. The
abortWithCode function is used to set the abort code for a transaction.

In applications that make decisions based on the value returned by the abortCode function, the
abortFormat function should be called to retrieve the universal unique identifier of the abort format
(referred to as the “format UUID”) for the abort reason. If the transaction can be aborted by different
sources, the abort code alone may not identify the abort reason uniquely; both the abort code and the
format UUID are needed.

The abortCode function can be called only in the onAbort clause of a transaction construct. The abort
code returned is valid only within the onAbort clause from which the abortCode function is called and
must not be de-allocated.

 Related Information

abortFormat
abortNamedTranWithCode
abortWithCode
transaction

  Chapter 35. Tran-C Functions and Constructs 241



 abortFormat  
 

 abortFormat

Returns the abort format UUID for an aborted transaction.

 Synopsis
#include <tc/tc.h>

uuid_t abortFormat()

 Description

The abortFormat function returns the universal unique identifier of the abort format (referred to as the
“format UUID”) associated with an aborted transaction. The format UUID identifies the formatting function
used to format the abort reason for a transaction. The useAbortFormat function can be used to set the
scope of an abort format.

In applications that make decisions based on the value returned by the abortCode function, the value of
the format UUID for the abort reason should also be checked. If the transaction can be aborted by
different sources, the abort code alone may not identify the abort reason uniquely; both the abort code and
the format UUID are needed.

The abortFormat function can be called only in the onAbort clause of a transaction construct. The UUID
returned is valid only within the onAbort clause from which the abortFormat function is called and must
not be de-allocated.

 Related Information

abortCode
abortNamedTranWithCode
abortWithCode
transaction
useAbortFormat

242 Encina Toolkit Executive Guide and Reference  



  abortFunctionName
 

 abortFunctionName

Returns the name of the function that aborted a transaction.

 Synopsis
#include <tc/tc.h>

char GabortFunctionName()

 Description

The abortFunctionName function returns a character string identifying the function in which a transaction
aborted. The name for any function defined in a Tran-C application can be set using the inFunction
function; if a name is not set for the function that aborted a transaction, calling the abortFunctionName
function returns a default name defined by the TC_UNKNOWN_FUNCTION constant.

The abortFunctionName function can be called only in the onAbort clause of a transaction construct.
The name returned is valid only within the onAbort clause from which the abortFunctionName function
was called and must not be de-allocated.

 Related Information

currentFunctionName
inFunction

  Chapter 35. Tran-C Functions and Constructs 243



 abortModuleName  
 

 abortModuleName

Returns the name of the module that aborted a transaction.

 Synopsis
#include <tc/tc.h>

char GabortModuleName()

 Description

The abortModuleName function returns a character string identifying the module in which a transaction
aborted. The inModule function must be used to set a name for each module of a Tran-C application. A
module must be declared at the beginning of each source file that contains any Tran-C transaction
constructs.

The abortModuleName function can be called only in the onAbort clause of a transaction construct. The
name returned is valid only within the onAbort clause from which the abortModuleName function is
called and must not be de-allocated.

 Related Information

currentModuleName
inModule

244 Encina Toolkit Executive Guide and Reference  



  abortNamedTran
 

 abortNamedTran

Aborts a specified transaction and sets a string describing the reason for the abort.

 Synopsis
#include <tc/tc.h>

void abortNamedTran(
IN tran_tid_t tid,
IN char GabortString)

 Parameters
tid Specifies the transaction identifier of a transaction to abort.

abortString
Specifies a null-terminated character string that describes the abort reason.

 Description

The abortNamedTran function aborts a specified transaction. The transaction specified by the transaction
identifier in the tid parameter is aborted; the thread aborting the transaction does not have to be executing
within the scope of the transaction being aborted. The reason for the abort is specified by the value of the
abortString parameter, which must be a null-terminated character string. The abortReason function can
be called in the onAbort clause of the transaction to retrieve the abort string.

 Notes

It is recommended that a string used as the reason for an abort should be defined as a string constant
and declared in a header file. By using a string constant, the onAbort clause of a transaction can be
coded to compare the string against known values to determine what action to take when the transaction
is aborted.

 Related Information

abort
abortNamedTranWithCode
abortWithCode
abortReason
tran_tid_t
transaction

  Chapter 35. Tran-C Functions and Constructs 245



 abortNamedTranWithCode  
 

 abortNamedTranWithCode

Aborts a specified transaction and sets a code representing the reason for the abort.

 Synopsis
#include <tc/tc.h>

void abortNamedTranWithCode(
IN tran_tid_t tid,
IN long abortCode)

 Parameters
tid Specifies the transaction identifier of a transaction to abort.

abortCode
Specifies an integer constant that represents the abort reason.

 Description

The abortNamedTranWithCode function aborts a specified transaction; the thread aborting the
transaction does not have to be executing within the scope of the transaction being aborted. The
transaction specified by the transaction identifier in the tid parameter is aborted. The reason for the abort
is specified by the value of the abortCode parameter, which must be an integer code. The abortCode
function can be called in the onAbort clause of the transaction to retrieve the abort code.

 Related Information

abort
abortNamedTran
abortWithCode
abortCode
tran_tid_t
transaction

246 Encina Toolkit Executive Guide and Reference  



  abortReason
 

 abortReason

Returns the abort reason for an aborted transaction.

 Synopsis
#include <tc/tc.h>

char GabortReason()

 Description

The abortReason function returns a string describing the reason that a transaction aborted. The string
returned is either the string passed to the abort function or a string returned by a formatting function if the
transaction was aborted without a string (for example, using the abortWithCode function). Note that if the
reason was defined as an abort code but no formatting function was registered for the code's format, the
abortReason function returns a string indicating that the abort reason could not be formatted.

The abortReason function can be called only in the onAbort clause of a transaction construct. The
reason returned is valid only within the onAbort clause from which the abortReason function is called
and must not be de-allocated.

 Related Information

abort
abortNamedTran
abortWithCode
transaction

  Chapter 35. Tran-C Functions and Constructs 247



 abortWithCode  
 

 abortWithCode

Aborts a transaction and sets a code representing the reason for the abort.

 Synopsis
#include <tc/tc.h>

void abortWithCode(
IN long abortCode)

 Parameters
abortCode

Specifies an integer constant that represents the abort reason.

 Description

The abortWithCode function aborts the current transaction. The reason for the abort is specified by the
value of the abortCode parameter, which must be an integer code. The abortCode function can be called
in the onAbort clause of the transaction to retrieve the abort code.

 Related Information

abort
abortNamedTran
abortNamedTranWithCode
abortCode
transaction

248 Encina Toolkit Executive Guide and Reference  



  catchAbort
 

 catchAbort

Intercepts the transfer of control on abort.

 Synopsis
#include <tc/tc.h>

catchAbort
 statement
onAbort
 statement

 Description

The catchAbort construct enables an application to intercept the transfer of control that occurs as a result
of an abort. The application can perform any necessary actions before the transfer of control continues to
the encompassing transaction statement's onAbort clause.

The catchAbort construct is typically used to enclose calls that could abort the containing transaction,
allowing any resources created locally to be de-allocated (in the catchAbort construct's onAbort clause)
before control is transferred to the transaction's onAbort clause. An application can nest catchAbort
constructs to an arbitrary depth. If a function that contains a catchAbort construct is executed outside the
scope of a transaction, control cannot transfer to the onAbort clause of the catchAbort construct and all
statements in the catchAbort construct's onAbort clause are ignored.

 Related Information

abort
transaction

  Chapter 35. Tran-C Functions and Constructs 249



 cofor  
 

 cofor

Runs a variable number of subtransactions or synchronous threads.

 Synopsis
#include <tc/tc.h>

cofor(IN int loopVar, IN int expression) {
subTran or subThread clause

}
onCommit
 statement

onAbort
 statement

cofor(IN int loopVar, IN int expression) {
subTran or subThread clause

} coEnd;

 Parameters
loopVar

Specifies a previously defined variable to be used as the loop counter. The value of the variable is
incremented by one for each iteration of the loop.

expression
Specifies an expression that evaluates to an integer. The value determines the number of times the
loop executes.

 Description

The cofor construct executes a variable number of subtransactions or synchronous threads. The number
of subtransactions or synchronous threads is determined at run time. This construct is essentially a “for
loop” in which each iteration spawns a concurrent subtransaction or thread.

A cofor construct consists of a cofor statement terminated either by the onCommit and onAbort clauses
or by the coEnd keyword. The cofor statement takes two arguments—a loop variable (a previously
declared integer) and an expression—followed by a single subtransaction (subTran) or thread
(subThread) clause. Refer to the documentation for the transaction construct for more information on
the onCommit and onAbort clauses.

The number of times the loop executes is a function of the result of the specified expression, which must
yield an integer result. The loop variable ranges from 0 (zero) to the result of the expression minus one.
The expression is only evaluated once, before the loop executes for the first time. Each execution of the
loop creates a new subtransaction or synchronous thread. Typically, the argument to the function
specified in the subtransaction or synchronous thread clause references the loop variable so that each
iteration can do something slightly different (for example, store its results in a different array location).
When execution continues past the cofor statement, the value of the loop variable is equivalent to the
expression's result.

250 Encina Toolkit Executive Guide and Reference  



  cofor
 

 Related Information

concurrent
subThread
subTran
transaction

  Chapter 35. Tran-C Functions and Constructs 251



 commError  
 

 commError

Retrieves the DCE status code associated with an RPC failure.

 Synopsis
#include <tc/tc.h>

long commError()

 Description

The commError function returns the DCE status code associated with an RPC failure that causes a
transaction to abort. Tran-C returns the RPC_FAILURE_CODE abort code to indicate that an RPC failure
aborted the transaction.

The commError function takes no arguments and returns an integer status code. A value of 0 (zero) is
returned if no DCE status code is found. The commError function must be called within an onAbort
clause or from an abort callback. The DCE status code returned by the commError function is valid only
within the onAbort clause or abort callback from which the function is called.

 Related Information

abortCode
transaction

252 Encina Toolkit Executive Guide and Reference  



  concThread
 

 concThread

Creates an asynchronous thread.

 Synopsis
#include <tc/tc.h>

void concThread(
IN void (Gfn)(voidG),
IN void Garg)

 Parameters
fn Identifies a function to execute on a new thread. The function must be defined with one parameter of

type void*.

arg
Specifies the value passed as an argument to the function identified in the fn parameter.

 Description

The concThread function creates a new asynchronous thread that executes the function specified by the
fn parameter. The new thread created by a concThread function executes concurrently with the calling
thread and vanishes when (and if) the function returns. The thread initially executes outside the scope of
a transaction, but it can begin new transactions.

 Related Information

concurrent
subThread

  Chapter 35. Tran-C Functions and Constructs 253



 concurrent  
 

 concurrent

Runs multiple transactions or threads concurrently.

 Synopsis
#include <tc/tc.h>

concurrent {
subTran or subThread clauses

}
onCommit
 statement

onAbort
 statement

concurrent {
subTran or subThread clauses

} coEnd;

 Description

The concurrent construct creates a predetermined number of transactions and threads that execute
concurrently. Using the concurrent construct outside the scope of a transaction creates concurrent
top-level transactions and nontransactional threads.

A concurrent construct consists of a concurrent clause terminated by either the onCommit and onAbort
clauses or by the coEnd keyword. The coEnd keyword can be used if it is unnecessary to determine if
the concurrent construct committed or aborted as a whole. Refer to the documentation for the
transaction construct for more information on the onCommit and onAbort clauses.

The concurrent clause can contain one or more statements, each of which creates a subtransaction
(subTran construct) or a thread (subThread construct); the same concurrent clause can contain both
subTran and subThread constructs. The number of transactions and threads created is determined by
the number of subTran and subThread constructs used within the concurrent clause.

 Nested Transactions

If the concurrent construct is used within the scope of a transaction, concurrent nested transactions are
created and concurrent threads execute within the scope of the containing transaction.

 Related Information

cofor
subThread
subTran
transaction

254 Encina Toolkit Executive Guide and Reference  



  currentFunctionName
 

 currentFunctionName

Returns the name of the current function.

 Synopsis
#include <tc/tc.h>

char GcurrentFunctionName()

 Description

The currentFunctionName function returns the name of the function currently executing in a Tran-C
application; the name returned is the name specified as an argument to the inFunction function. If no
name is set for the current function, the currentFunctionName function returns a default name defined by
the TC_UNKNOWN_FUNCTION constant.

The string returned by the currentFunctionName function remains valid for the lifetime of the application
and must not be de-allocated.

 Related Information

currentModuleName
inFunction
inModule

  Chapter 35. Tran-C Functions and Constructs 255



 currentModuleName  
 

 currentModuleName

Returns the name of the current module.

 Synopsis
#include <tc/tc.h>

char GcurrentModuleName()

 Description

The currentModuleName function returns the name of the module currently executing in a Tran-C
application; the name returned is the name specified as an argument to the inModule function. A module
must be declared at the beginning of each source file that contains any Tran-C transaction constructs.

The string returned by the currentModuleName function remains valid for the lifetime of the application
and must not be de-allocated.

 Related Information

currentFunctionName
inFunction
inModule

256 Encina Toolkit Executive Guide and Reference  



  exitTC
 

 exitTC

Exits an application.

 Synopsis
#include <tc/tc.h>

void exitTC(
IN int status)

 Parameters
status

Specifies the status value returned by the application on termination.

 Description

The exitTC function terminates a Tran-C application. If the application is a server, it also stops the server
from accepting new RPCs. Before terminating an application, the exitTC function aborts all unprepared
transactions and waits for all prepared transactions to complete. If any prepared transaction cannot be
completed, the exitTC function times out and the application is terminated. Call the quiesceTC function
before exitTC to allow all outstanding transactions involved with the application to complete.

The exitTC function takes an integer value as an argument; the value specified is the status returned by
the application when it is terminated. Calls to the exitTC function never return.

 Related Information

exitTConInterrupt
quiesceTC

  Chapter 35. Tran-C Functions and Constructs 257



 exitTConInterrupt  
 

 exitTConInterrupt

Initializes an application to handle program interrupts.

 Synopsis
#include <tc/tc.h>

void exitTConInterrupt(
IN int status)

 Parameters
status

Specifies the status value returned by the application on termination.

 Description

The exitTConInterrupt function initializes an application to handle program interrupts. Program interrupts
are system-specific signals; for example, on UNIX platforms, the SIGHUP, SIGINT, and SIGTERM signals are
considered interrupts. An application can use the exitTConInterrupt function to ensure that it terminates
gracefully when a program interrupt occurs.

After an application calls the exitTConInterrupt function, the application exits automatically (via the
exitTC function) whenever it is interrupted. The exitTConInterrupt function must be called after Tran-C is
initialized and before any transactional work is done.

The exitTConInterrupt function takes an integer value, status, as an argument. The value specified for
the status parameter is the status returned by the application when it is terminated by a program interrupt.

 Notes

Use of this function in a server application is usually unnecessary. If a server application exits due to a
program interrupt, restarting the server causes any incomplete work to be recovered automatically.

 Related Information

exitTC
quiesceTC

258 Encina Toolkit Executive Guide and Reference  



  getAbortData
 

 getAbortData

Retrieves abort data stored for a transaction.

 Synopsis
#include <tc/tc.h>

void getAbortData(
OUT void GGdataPP,
OUT unsigned long GlengthP)

 Parameters
dataPP

Specifies a structure containing abort-specific data, including the module and function name, an abort
string if defined, and other information about an abort reason.

lengthP
Specifies the length in bytes of the data in the dataPP parameter.

 Description

The getAbortData function can be used to retrieve the abort-specific data stored for a transaction with the
setAbortData function. The getAbortData function returns a pointer to a pointer to the abort-specific data
in the dataPP parameter and a pointer to the length of that data in the lengthP parameter. The structure
containing the data is of type encina_abortReason_t. See the documentation for the setAbortData
function for more information.

The getAbortData function can be called only in the onAbort clause of a transaction or in an abort
callback. The data returned is valid only for the duration of the onAbort clause of the transaction
statement or the abort callback.

 Related Information

encina_abortReason_t
setAbortData

  Chapter 35. Tran-C Functions and Constructs 259



 getCompletedTid  
 

 getCompletedTid

Returns the identity of the most recently completed transaction.

 Synopsis
#include <tc.h>

tran_tid_t getCompletedTid()

 Description

The getCompletedTid function returns the transaction identifier (TID) of a completed transaction. A
completed transaction is one that is aborted or committed. The getCompletedTid function can be called
only within the onCommit or onAbort clause of a transaction construct, and it returns the identifier of the
transaction associated with that construct. Calling the getCompletedTid function outside a transaction's
onCommit or onAbort clause generates a fatal runtime error.

 Related Information

getContainingTid
getTid
tran_tid_t
transaction

260 Encina Toolkit Executive Guide and Reference  



  getContainingTid
 

 getContainingTid

Returns the identity of the transaction that contains the current transaction.

 Synopsis
#include <tc.h>

tran_tid_t getContainingTid()

 Description

The getContainingTid function returns the transaction identifier (TID) of the transaction that contains the
current transaction. If the current transaction is a nested transaction, the TID of the parent of the nested
transaction is returned. If the current transaction has no parent transaction, the function returns the
TRAN_TID_NULL constant.

The getContainingTid function can be called from anywhere within the scope of a transaction. Note that
within the onCommit or onAbort clause of a transaction construct, the current transaction is the parent (if
any) of the transaction that committed or aborted.

 Related Information

getCompletedTid
getTid
tran_tid_t
transaction

  Chapter 35. Tran-C Functions and Constructs 261



 getTid  
 

 getTid

Returns the identity of the current transaction.

 Synopsis
#include <tc.h>

tran_tid_t getTid()

 Description

The getTid function returns the transaction identifier (TID) of the current transaction. The getTid function
can be called only within the scope of a transaction. If this function is called within the onCommit or
onAbort clause of a transaction construct or outside the scope of a transaction, the constant
TRAN_TID_NULL is returned.

 Related Information

getCompletedTid
getContainingTid
tran_tid_t
transaction

262 Encina Toolkit Executive Guide and Reference  



  inFunction
 

 inFunction

Sets a name identifying a function in Tran-C.

 Synopsis
#include <tc/tc.h>

void inFunction(
IN char GfunctionName)

 Parameters
functionName

Specifies a character string that names the current function.

 Description

The inFunction function sets a name used to identify a function in a Tran-C application. The inFunction
function is typically used to name functions that abort a transaction; after an abort occurs, the function
name can be retrieved in the onAbort clause of a transaction to determine which function caused the
abort. The inFunction function should be called at the beginning of a function after the variable
declarations.

The function name can be retrieved using the abortFunctionName function in the onAbort clause of a
transaction or the currentFunctionName function within the scope of the function. If no function name is
set, the name defaults to the string defined for the TC_UNKNOWN_FUNCTION constant.

 Related Information

abortFunctionName
currentFunctionName
inModule

  Chapter 35. Tran-C Functions and Constructs 263



 initTC  
 

 initTC

Initializes the Tran-C runtime system.

 Synopsis
#include <tc/tc.h>

void initTC()

 Description

The initTC function initializes the Tran-C runtime system. Tran-C must be initialized before any Tran-C
statements are executed.

For applications that use only transactional RPCs to contact remote servers and do not use any external
services (such as communication or recovery services) calling the initTC function is the only Tran-C
initialization required. For applications that use external services, it may be necessary to initialize Tran-C
in stages, using the preInitTC and postInitTC functions.

 Related Information

initTCWithTRPC
postInitTC
preInitTC

264 Encina Toolkit Executive Guide and Reference  



  initTCWithTRPC
 

 initTCWithTRPC

Initializes the transactional RPC service and the Tran-C runtime system.

 Synopsis
#include <tc/tc_trpc.h>

void initTCWithTRPC()

 Description

The initTCWithTRPC function initializes both the Transactional Remote Procedure Call (TRPC) Service
and the Tran-C runtime system. This function is useful if the application uses TRPC but does not use
other external services (which require the application to be initialized in stages). Calling the
initTCWithTRPC function is equivalent to calling the tc_InitTRPC function followed by the initTC function.

 Related Information

initTC
tc_InitTRPC

  Chapter 35. Tran-C Functions and Constructs 265



 inModule  
 

 inModule

Sets a name identifying a module in Tran-C.

 Synopsis
#include <tc/tc.h>

void inModule(
IN char GmoduleName)

 Parameters
moduleName

Specifies a character string that names the current module.

 Description

The inModule function sets a name used to identify a module in a Tran-C application. The term module
is typically used to refer to a collection of related functions. In Tran-C, a module refers to the functions
contained in a Tran-C source file.

Every source file that contains any Tran-C transaction construct or a call to the abort function must
register a module name with the inModule function. The inModule function must be called at the
beginning of the source file, outside of any function declaration. The functions declared in the source file
execute within the scope of the module registered for that file. If a function executing within the scope of
a module aborts a transaction, the module name can be retrieved in the onAbort clause to determine the
source of the abort.

To determine which module caused an abort, the module name can be retrieved by calling the
abortModuleName function in the onAbort clause of the transaction. The currentModuleName function
retrieves the module name anywhere within the scope of the module.

 Related Information

abortModuleName
currentModuleName
inFunction

266 Encina Toolkit Executive Guide and Reference  



  inTransaction
 

 inTransaction

Determines if the calling thread is within a transaction.

 Synopsis
#include <tc/tc.h>

int inTransaction()

 Description

The inTransaction function determines if the calling thread is executing within the scope of a transaction.
A thread executing within the scope of a transaction has a valid transaction identifier (TID) associated with
it. The getTid function can be used to obtain the TID.

 Return Values

If the thread executing the inTransaction function has a valid TID associated with it, the function returns a
nonzero (TRUE) value. If the thread does not have a valid TID associated with it, the function returns 0
(FALSE).

 Related Information

getTid

  Chapter 35. Tran-C Functions and Constructs 267



 inWrapEachTrpc  
 

 inWrapEachTrpc

Determines if the calling thread is within a scope in which server-side transactions can be created.

 Synopsis
#include <tc/tc.h>

int inWrapEachTrpc()

 Description

The inWrapEachTrpc function determines if the calling thread is executing within the scope of a
wrapEachTrpc construct. Transactional RPCs (TRPCs) made within this scope cause transactions to be
created on the server; these transactions are known as server-side transactions. See the
documentation for the wrapEachTrpc construct for more information.

 Return Values

If the thread that calls the inWrapEachTrpc function is executing within the scope of a wrapEachTrpc
construct, the inWrapEachTrpc function returns a nonzero (TRUE) value. If the thread is not executing
within the scope of a wrapEachTrpc construct, the function returns 0 (FALSE).

 Related Information

trpcPermitted
wrapEachTrpc

268 Encina Toolkit Executive Guide and Reference  



  postInitTC
 

 postInitTC

Completes the initialization of Tran-C in a two-stage initialization.

 Synopsis
#include <tc/tc.h>

void postInitTC()

 Description

The postInitTC function completes the initialization of Tran-C and other underlying services. Typically,
this function is used in conjunction with the preInitTC function, which begins the initialization of Tran-C.
These two functions allow Tran-C to be initialized in stages so that external services, such as
communication or recovery services, can be initialized and callbacks can be registered for them before the
initialization of Tran-C is final. Once Tran-C is fully initialized, external services normally cannot be added.

The preInitTC function must be called to begin the initialization of Tran-C. Then, external components
can be initialized. After all external components are initialized, the postInitTC function must be called to
complete the initialization of Tran-C. This function executes any registered application callbacks and
notifies the Transaction Service that the application's initialization is complete.

If the application does not require explicit initialization of external services, the initTC function can be
called to initialize Tran-C.

 Notes

An application that initializes external services must terminate those services explicitly before calling the
Tran-C exitTC function. Tran-C cannot determine which services were initialized or how to terminate
them.

 Related Information

initTC
preInitTC
initTCWithTRPC
tc_initTRPC

  Chapter 35. Tran-C Functions and Constructs 269



 preInitTC  
 

 preInitTC

Begins the initialization of Tran-C in a two-stage initialization.

 Synopsis
#include <tc/tc.h>

void preInitTC()

 Description

The preInitTC function begins the initialization of Tran-C and other underlying services. Typically, this
function is used in conjunction with the postInitTC function, which completes the initialization of Tran-C.
These two functions allow Tran-C to be initialized in stages so that external services, such as
communication or recovery services, can be initialized and callbacks can be registered for them before the
initialization of Tran-C is final. Once Tran-C is fully initialized, external services normally cannot be added.

The preInitTC function establishes the low-level services used internally by Tran-C and the Transaction
Service. After preInitTC is called, calls to initialize external components or register callbacks for them can
be made as necessary. For example, if the application uses an RPC mechanism, it must be initialized at
this stage. (The Transactional RPC Service can be initialized by calling the tc_initTRPC function). After
all external components are initialized, the postInitTC function must be called to complete the initialization
of Tran-C.

If the application does not require explicit initialization of external services, the initTC function can be
called to initialize Tran-C.

 Notes

An application that initializes external services must terminate those services explicitly before calling the
Tran-C exitTC function. Tran-C cannot determine which services were initialized or how to terminate
them.

 Related Information

initTC
postInitTC
initTCWithTRPC
tc_initTRPC

270 Encina Toolkit Executive Guide and Reference  



  quiesceTC
 

 quiesceTC

Waits for outstanding transactions to complete.

 Synopsis
#include <tc/tc.h>

void quiesceTC()

 Description

The quiesceTC function blocks while waiting for outstanding transactions to complete (abort or commit).
When all outstanding transactions have completed, the function returns. If any outstanding transaction
does not complete within a reasonable period of time, the quiesceTC function times out and returns.

The quiesceTC function can be used to allow all of the outstanding transactions in an application to
complete in an orderly manner before the application is terminated with the exitTC function. If quiesceTC
is not called before exitTC, the exitTC function aborts unprepared transactions before terminating the
application.

Calling this function in a server application also stops the server from accepting new requests by aborting
new transactions. New transactions are aborted with SERVER_SHUTDOWN_CODE as the abort code.

 Related Information

exitTC
exitTConInterrupt

  Chapter 35. Tran-C Functions and Constructs 271



 registerApplCallback  
 

 registerApplCallback

Registers a callback function for an application.

 Synopsis
#include <tc/tc.h>

void registerApplCallback(
IN applCallback_t callbackType,
IN unsigned int (Gcallback)(IN void G),
IN void GcallbackArg)

 Parameters
callbackType

Specifies the event that invokes the callback, either application initialization (APPL_INIT_CALLBACK) or
application termination (APPL_TERM_CALLBACK).

callback
Specifies the callback function to be registered.

callbackArg
Specifies an argument to be passed to the callback function.

 Description

The registerApplCallback function registers a callback function to be invoked during either the
initialization or termination of an application. A callback must be registered before the event that invokes it
occurs. For example, an initialization callback must be registered before Tran-C is initialized.

The callback function specified in the callback parameter must take one argument and return an integer
value. The callback can return the value 0 (zero) to indicate an error, which is handled by generating a
runtime error. A return value other than 0 (zero) is treated as the successful execution of the callback.
Arguments required by the callback function are specified using the callbackArg parameter.

Application initialization callbacks are invoked automatically during the initialization of the Transaction
Service. Initialization callbacks are useful for initializing services that must be initialized after the
Transaction Service begins to be initialized and before the time when Transaction Service is fully ready for
use.

Application termination callbacks are provided to allow components to perform any termination tasks
before the application terminates (for example, unregistering the server from the Directory Service).

 Related Information

applCallback_t
registerTranCallback

272 Encina Toolkit Executive Guide and Reference  



  registerTranCallback
 

 registerTranCallback

Registers a callback function for a transaction.

 Synopsis
#include <tc/tc.h>

void registerTranCallback(
IN tranCallback_t callbackType,
IN void (Gcallback)(IN voidG),
IN void GcallbackArg)

 Parameters
callbackType

Specifies the transaction event that invokes the callback. The event can be an abort
(TRAN_ABORT_CALLBACK), a commit (TRAN_COMMIT_CALLBACK), or a prepare (TRAN_PREPARE_CALLBACK).

callback
Specifies the callback function to be registered.

callbackArg
Specifies an argument to be passed to the callback function.

 Description

The registerTranCallback function registers a callback function to be invoked during the abort, commit, or
prepare phase of the current transaction. A callback must be registered before the event that invokes it
occurs. For example, an abort callback must be registered before the current transaction is aborted. It is
illegal to call this function outside the scope of a transaction.

The callback function specified in the callback parameter must take one argument and return no value.
Arguments required by the callback are specified using the callbackArg parameter.

Commit callbacks are invoked when the transaction commits and abort callbacks are invoked when the
transaction aborts. When either a commit or abort callback is invoked, the callback executes outside the
scope of a transaction. The transaction identifier (TID) for the completed transaction can be retrieved
within the commit or abort callback (using the getCompletedTid function). The reason for an aborted
transaction can be retrieved in the abort callback.

Prepare callbacks are invoked when the application is informed that the transaction is entering the first
phase of the two-phase commit protocol (the transaction is preparing). When a prepare callback is
invoked, it executes within the scope of the transaction being prepared. By using a prepare callback, the
application developer can influence the outcome of the transaction (by aborting it) or perform further work
on behalf of the transaction.

  Chapter 35. Tran-C Functions and Constructs 273



 registerTranCallback  
 

 Nested Transactions

The behavior of a commit callback differs from that of an onCommit clause in a nested transaction. A
nested transaction's onCommit clause executes when the nested transaction commits, but a commit
callback is not invoked until the nested transaction's family commits.

A prepare callback cannot be registered on behalf of a nested subtransaction. The two-phase commit
protocol is used for top-level transactions only.

 Related Information

getCompletedTid
tranCallback_t
transaction
registerApplCallback

274 Encina Toolkit Executive Guide and Reference  



  registerTRPCCallbacks
 

 registerTRPCCallbacks

Registers callbacks TRPC requires.

 Synopsis
#include <tc/tc_trpc.h>

void registerTRPCCallbacks()

 Description

The registerTRPCCallbacks function registers Tran-C callback functions required by the Transactional
Remote Procedure Call (TRPC) service. The registered callbacks manage the communication of
transactional information when transactional RPCs are made. These callbacks must be registered before
any transactional RPCs are made.

The registerTRPCCallbacks function provides an alternate method for initializing Tran-C to use
transactional RPCs. This function can be used instead of either tc_InitTRPC or initTCWithTRPC, but if it
is used, TRPC must be initialized and terminated explicitly. The trpc_Init function must be called before
calling registerTRPCCallbacks. The application must terminate TRPC after it is no longer needed by the
application with the trpc_Terminate function.

 Related Information

initTCWithTRPC
tc_initTRPC
trpc_Init
trpc_Terminate

  Chapter 35. Tran-C Functions and Constructs 275



 resumeTran  
 

 resumeTran

Resumes a suspended transaction.

 Synopsis
#include <tc.h>

resumeTran(IN tran_tid_t tid)
 statement
 onCommit
 statement
 onAbort
 statement

resumeTran(IN tran_tid_t tid)
 statement
suspend(OUT tran_tid_t GsuspendedTid)

 statement
 onAbort
 statement

 Parameters
tid Specifies the transaction identifier (TID) of the suspended transaction to resume.

suspendedTid
Returns the transaction identifier of the suspended transaction.

 Description

The resumeTran construct resumes execution of a suspended transaction. The transaction to be
resumed is specified by passing its identity as the tid argument in the resumeTran clause.

The resumeTran construct consists of a resumeTran clause, an onCommit or suspend clause, and an
onAbort clause. Each clause contains a statement, which can be a compound statement (a collection of
statements in brackets). Each resumeTran construct must contain an onAbort clause. The onCommit
and suspend clauses are optional and, if specified, must precede the onAbort clause.

When a resumeTran statement is executed, the suspended transaction resumes and statements in the
resumeTran clause execute under the scope of that transaction. If the transaction is neither aborted
before the end of the resumeTran clause nor suspended with a suspend clause, an attempt is made to
commit the transaction when all the statements in the resumeTran clause complete.

If the transaction commits successfully, the statement specified in the onCommit clause (if there is an
onCommit clause) is executed. If the suspend clause is used to suspend the transaction instead of
committing it, an identifier for the transaction is returned in the suspendedTid parameter. This identifier
can be passed as an argument to a resumeTran construct to resume the transaction. If the transaction is
suspended successfully, the statement in the suspend clause is executed.

If the transaction is aborted before the end of the resumeTran clause or the commit is unsuccessful,
control is transferred to the onAbort clause and the statements in the onAbort clause are executed. If
the transaction is aborted while it is suspended, the onAbort clause executes when the suspended
transaction resumes.

276 Encina Toolkit Executive Guide and Reference  



  resumeTran
 

When the transaction is committed successfully or aborted, the transaction is said to have completed.
The statements in the onCommit or onAbort clause execute after the transaction has completed.

 Nested Transactions

If a suspended transaction is resumed within the scope of another transaction, the resumed transaction
behaves as a nested top-level transaction. See the topLevel construct for more information.

 Notes

It is illegal to transfer control (for example, using the C language goto statement) out of any of the
transaction clauses.

The pointer returned by the suspend clause can be used only once to resume a transaction. Using the
pointer more than once results in a fatal runtime error.

 Related Information

abort
topLevel
tran_tid_t
transaction

  Chapter 35. Tran-C Functions and Constructs 277



 setAbortData  
 

 setAbortData

Adds abort data to a transaction's abort reason.

 Synopsis
#include <tc/tc.h>

void setAbortData(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a variable-length block of abort data to add to the abort reason of the current transaction.

length
Specifies the length in bytes of the data in the dataP parameter.

 Description

The setAbortData function stores additional data with the Tran-C abort data contained in an abort reason.
Additional data can only be added to the abort reason for the current transaction, and the setAbortData
function should be called immediately before calling a function that explicitly aborts the transaction. The
data set with the setAbortData function can be retrieved with the getAbortData function.

By default, Tran-C stores all the necessary information that is specific to an abort in the abort data of each
abort reason. The stored information includes the names of the module and function in which the abort
originated, and an abort reason string if one is defined. The setAbortData function allows you to store
any additional information related to the abort that might be required by your application.

The setAbortData function takes a pointer to the abort-specific data in the dataP parameter and the
length of that data in the length parameter. The abort-specific data can be of any form, but data that is
platform-specific must be marshalled correctly because the data is copied exactly.

 Notes

Tran-C limits the length of the abort data for an abort reason to no more than
ENCINA_MAX_STATUS_STRING_SIZE bytes. If the size of the entire abort data (the length of the abort data
supplied by Tran-C plus the length of the data in the dataP parameter) exceeds this limit, the data added
with the setAbortData function is truncated.

 Related Information

encina_abortReason_t
getAbortData

278 Encina Toolkit Executive Guide and Reference  



  subThread
 

 subThread

Creates a synchronous thread of control.

 Synopsis
#include <tc/tc.h>

subThread(
IN void (Gfn)(void G),
IN void Garg)

 Parameters
fn Specifies a function to execute on a new thread. The function must be defined with one parameter of

type void*.

arg
Specifies the value passed as an argument to the function specified in the fn parameter.

 Description

The subThread function creates a new synchronous thread that executes the function specified by the fn
parameter. An argument required by the function to be executed can be specified using the arg
parameter. The new thread executes within the scope of the current transaction if one exists.

The subThread function is typically used to create multiple threads of control that execute concurrently
with each other but synchronously with the calling thread (that is, execution of the calling thread waits for
the new threads to complete). The concurrent or cofor construct can be used to execute synchronous
threads concurrently:

� Within a concurrent construct, each subThread call creates a new thread that executes the function
specified by that subThread call.

� Within a cofor construct, one subThread call creates a variable number of threads, each executing
the function specified by the subThread call.

If the subThread function is called in a concurrent or cofor construct that is executing within the scope
of a transaction, the synchronous threads all execute under the scope of that transaction. See the
documentation for the concurrent and cofor constructs for more information on creating concurrent
threads.

 Related Information

cofor
concThread
concurrent
subTran

  Chapter 35. Tran-C Functions and Constructs 279



 subTran  
 

 subTran

Creates a synchronous thread executed as a transaction.

 Synopsis
#include <tc/tc.h>

subTran
(IN void (Gfn)(void G), IN void Garg)

onCommit
 statement
onAbort
 statement

 Parameters
fn Specifies a function to execute on a new thread and within the scope of a new transaction. The

function must be defined with one parameter of type void* and no return value.

arg
Specifies the value passed as an argument to the function in the fn parameter.

 Description

The subTran construct creates a new synchronous thread that executes the function specified by the fn
parameter within the scope of a new transaction. An argument required by the function to be executed
can be specified using the arg parameter.

The subTran construct consists of a subTran clause, an optional onCommit clause, and an onAbort
clause. If an onCommit clause is used, it must precede the onAbort clause. The subTran clause must
contain a pointer to a function to execute and a single argument to that function. The onCommit and
onAbort clauses each contain a statement, which can be a compound statement (a collection of
statements in brackets).

The subTran construct is typically used to create multiple subtransactions that execute concurrently with
each other but synchronously with the calling thread (that is, execution of the calling thread waits for the
subtransactions to complete). The concurrent or cofor construct can be used to execute synchronous
threads concurrently:

� Within the concurrent construct, each subTran construct creates a new transaction that executes the
function specified in the subTran clause.

� Within the cofor construct, one subTran construct creates a variable number of transactions, each
executing the function specified in the subTran clause.

In both cases, only the functions are executed concurrently; execution of the onCommit or onAbort
clause takes place after all the concurrent transactions have completed. See the documentation for the
concurrent and cofor constructs for more information on creating concurrent transactions.

280 Encina Toolkit Executive Guide and Reference  



  subTran
 

 Nested Transactions

If concurrent transactions are created in a concurrent or cofor construct that is executed within the scope
of a transaction, the concurrent transactions are created as subtransactions that execute under the scope
of that transaction.

 Related Information

cofor
concurrent
subThread
transaction

  Chapter 35. Tran-C Functions and Constructs 281



 tc_DumpState  
 

 tc_DumpState

Dumps the state of the current transaction.

 Synopsis
#include <tc/tc.h>

void tc_DumpState()

 Description

The tc_DumpState function dumps the state of the current transaction (if one exists) executing within the
Tran-C runtime. Calling this function within the scope of a transaction that was created using Tran-C
provides the following state information for that transaction:

� The transaction identifier

� The type of transaction (nested or top-level)

� The transaction state (running, aborted, or committed)

The output from state dumps is controlled by Encina's tracing facility. You can use either the
administrative or programmatic interfaces to format and redirect trace output.

 Output

The following is an example of the output produced by the tc_DumpState function:

1 95/1B/26 2c38B419 D Transactional-C state dump
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx1BBBB, Top-level, status: TC_STATE_RUNNING
1 95/1B/26 2c38B419 D Transactional-C state dump
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx1BBBB, Top-level, status: TC_STATE_RUNNING
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx1, Nested, status: TC_STATE_RUNNING
1 95/1B/26 2c38B419 D Transactional-C state dump
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx1BBBB, Top-level, status: TC_STATE_RUNNING
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx1, Nested, status: TC_STATE_COMMITTEDG
1 95/1B/26 2c38B419 D Transactional-C state dump
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx2, Top-level, status: TC_STATE_RUNNING
1 95/1B/26 2c38B419 D Transactional-C state dump
1 95/1B/26 2c3c4819 D tc_tranDB_t: tid: Bx2, Top-level, status: TC_STATE_ABORTEDG

In addition to the output specific to each transaction, each line of output also includes the thread ID, date,
trace ID, and trace class code (in this case, the code used for state dumps, D).

282 Encina Toolkit Executive Guide and Reference  



  tc_InitTRPC
 

 tc_InitTRPC

Initializes an application to use transactional RPCs.

 Synopsis
#include <tc/tc_trpc.h>

void tc_InitTRPC()

 Description

The tc_InitTRPC function initializes an application to use the Transactional Remote Procedure Call
Service (TRPC). This function does not require Tran-C to be initialized before it is called. If your Tran-C
application uses TRPC but does not use other external services, you can call the tc_InitTRPC function
followed by the initTC function. Alternately, you can call a single function, initTCWithTRPC, to initialize
both Tran-C and TRPC.

 Related Information

initTC
initTCWithTRPC

  Chapter 35. Tran-C Functions and Constructs 283



 tc_RestoreTranContext  
 

 tc_RestoreTranContext

Restores a saved Tran-C context.

 Synopsis
#include <tc/tc.h>

void tc_RestoreTranContext(
IN void GcontextP)

 Parameters
contextP

Specifies the saved Tran-C context to restore.

 Description

The tc_RestoreTranContext function restores a previously saved Tran-C context and ends the current
context. The current context must have no pending transactions when the previous context is restored.
Restoring the same context more than once generates a fatal error.

The contextP parameter is used to specify the context to restore, which must be the context returned by a
matching tc_SaveTranContext function. When the current context ends, the calling thread continues
execution of the restored context from the point at which it was saved. See the documentation for the
tc_SaveTranContext function for more information.

 Related Information

tc_SaveTranContext

284 Encina Toolkit Executive Guide and Reference  



  tc_SaveTranContext
 

 tc_SaveTranContext

Saves the current Tran-C context.

 Synopsis
#include <tc/tc.h>

void tc_SaveTranContext(
OUT void GGcontextPP)

 Parameters
contextPP

Returns the current Tran-C context.

 Description

The tc_SaveTranContext function saves the current context of the thread that executes the function,
begins a new execution environment, and returns the saved context. The saved context is returned in the
contextPP parameter and can be restored with the tc_RestoreTranContext function.

A new Tran-C environment is created when the tc_SaveTranContext function returns. The new
environment is independent of the saved context and executes outside the scope of any transaction;
therefore, any transactional work that is done within the new environment cannot affect transactions
associated with the saved context. For example, if the tc_SaveTranContext function is called within the
scope of a transaction, you cannot call the abort function in the newly created environment to abort the
transaction in the saved context—you must restore the previous context to abort the transaction.

An application must adhere to the following rules when saving and restoring contexts:

� An application can call the tc_SaveTranContext function repeatedly, but the application must call the
tc_RestoreTranContext function with the saved contexts in the opposite order from which they were
obtained. That is, contexts must be saved and restored in a stack discipline. If the application does
not follow this discipline, the results are undefined.

� An application must never restore the same context more than once.

� A saved context must not be restored while transactions are pending in the current context (that is, the
context being ended).

 Related Information

tc_RestoreTranContext

  Chapter 35. Tran-C Functions and Constructs 285



 topLevel  
 

 topLevel

Creates a top-level transaction.

 Synopsis
#include <tc.h>

topLevel
 statement
 onCommit
 statement
 onAbort
 statement

topLevel
 statement
suspend(OUT void GsuspendedTid)

 statement
 onAbort
 statement

 Parameters
suspendedTid

Returns the transaction identifier (TID) of the suspended transaction.

 Description

The topLevel construct creates a new transaction that executes outside the transactional scope of any
other transaction. The topLevel construct consists of a topLevel clause, an onCommit or suspend
clause, and an onAbort clause. Each clause contains a statement, which can be a compound statement
(a collection of statements in brackets). The topLevel construct must contain an onAbort clause. The
onCommit and suspend clauses are optional and, if specified, must precede the onAbort clause.

If the topLevel construct is not used within the scope of another transaction, the behavior of the created
transaction is identical to that of a non-nested transaction created with the transaction construct. See the
transaction construct for more information.

 Nested Transactions

If the topLevel construct is used to create a transaction within the scope of another transaction, the new
transaction behaves as a nested top-level transaction. Nested top-level transactions commit or abort
independently of their parent transactions, but the execution of the parent transaction waits for the nested
top-level transaction to complete.

It is illegal to suspend the execution of a nested top-level transaction.

286 Encina Toolkit Executive Guide and Reference  



  topLevel
 

 Related Information

 abort
 resumeTran
 transaction

  Chapter 35. Tran-C Functions and Constructs 287



 tranMemAlloc  
 

 tranMemAlloc

Allocates transactional memory.

 Synopsis
#include <tc/tc.h>

void GtranMemAlloc(
IN unsigned long size)

 Parameters
size

Specifies the size in bytes of the memory to be allocated.

 Description

The tranMemAlloc function allocates memory within a transaction. The amount of memory to be
allocated is specified in the size parameter. This function aborts the containing transaction with the
MEMORY_EXHAUSTED_CODE abort code if the amount of memory requested cannot be allocated. It is illegal to
call the tranMemAlloc function outside the scope of a transaction.

The allocated memory is de-allocated automatically if the transaction aborts. If the transaction within
which the memory is allocated commits, the memory must be de-allocated explicitly with the tranMemFree
function.

 Nested Transactions

A nested transaction that commits with respect to its parent transaction passes the allocated memory to its
parent. If the parent aborts, the transactional memory is de-allocated. If the parent commits, the
transactional memory must be de-allocated with the tranMemFree function.

 Notes

Tran-C provides the tranMemAlloc function as a substitute for the C malloc function. Memory allocated
during a transaction using the malloc function is not de-allocated automatically if that transaction aborts.
Memory allocated with the tranMemAlloc function must not be de-allocated using the C free function.

 Return Values

The tranMemAlloc function returns a pointer to the allocated memory.

 Related Information

tranMemFree

288 Encina Toolkit Executive Guide and Reference  



  tranMemFree
 

 tranMemFree

De-allocates transactional memory.

 Synopsis
#include <tc/tc.h>

void tranMemFree(
IN void Gaddr)

 Parameters
addr

Specifies the address of the memory to be de-allocated.

 Description

The tranMemFree function de-allocates memory that was allocated within a transaction with the
tranMemAlloc function. The memory to de-allocate is specified in the addr parameter.

The allocated memory is de-allocated automatically if the transaction within which the memory is allocated
aborts. If the transaction commits, the memory must be de-allocated explicitly with the tranMemFree
function.

 Nested Transactions

A nested transaction that commits with respect to its parent transaction passes the allocated memory to its
parent. If the parent aborts, the transactional memory is de-allocated. If the parent commits, the
transactional memory must be de-allocated with the tranMemFree function.

 Notes

Tran-C provides the tranMemFree function as a substitute for the C free function. Memory allocated with
the C malloc function must not be de-allocated using the tranMemFree function.

 Related Information

tranMemAlloc

  Chapter 35. Tran-C Functions and Constructs 289



 tranMutexInit  
 

 tranMutexInit

Initializes a transactional mutex.

 Synopsis
#include <tc/tc.h>

void tranMutexInit(
IN tranMutex_t GmutexP)

 Parameters
mutexP

Specifies the transactional mutex to initialize.

 Description

The tranMutexInit function initializes the transactional mutex specified by the mutexP variable. A
transactional mutex can be used for short-term mutual exclusion of internal data structures within the
scope of a transaction. A transactional mutex can be initialized outside the scope of a transaction.

After the mutex is initialized, the application can use the mutex to lock and unlock data within the scope of
a transaction. When the application no longer needs the mutex, it should terminate the mutex with the
tranMutexTerminate function. See the documentation for the tranMutexLock function for more
information.

A mutex should be initialized only once. Initializing the same mutex more than once can allow different
threads to modify the same data or execute the same critical section of code. If the application is
designed so that the function might be called more than once, the tranMutexInitOnce function should be
used instead.

 Related Information

tranMutex_t
tranMutexInitOnce
tranMutexLock
tranMutexTerminate
tranMutexTryLock
tranMutexUnlock

290 Encina Toolkit Executive Guide and Reference  



  tranMutexInitOnce
 

 tranMutexInitOnce

Initializes a transactional mutex and prevents reinitialization.

 Synopsis
#include <tc/tc.h>

void tranMutexInitOnce(
IN tranMutex_t GmutexP)

 Parameters
mutexP

Specifies a transactional mutex to initialize.

 Description

The tranMutexInitOnce function initializes a transactional mutex specified by the mutexP variable and
guarantees that the mutex is initialized only once. A transactional mutex can be used for short-term
mutual exclusion of internal data structures within the scope of a transaction. A transactional mutex can
be initialized outside the scope of a transaction.

After the mutex is initialized, the application can use the mutex to lock and unlock data within the scope of
a transaction. When the application no longer needs the mutex, it should terminate the mutex with the
tranMutexTerminate function. See the documentation for the tranMutexLock function for more
information.

The tranMutexInitOnce function initializes the mutex only once regardless of how may times the function
is called. Preventing reinitialization guarantees that different threads cannot modify the same data or
execute the same critical section of code. The tranMutexInit function can be used instead if the
application never initializes the mutex more than once.

 Related Information

tranMutex_t
tranMutexInit
tranMutexLock
tranMutexTerminate
tranMutexTryLock
tranMutexUnlock

  Chapter 35. Tran-C Functions and Constructs 291



 tranMutexLock  
 

 tranMutexLock

Locks a transactional mutex.

 Synopsis
#include <tc/tc.h>

void tranMutexLock(
IN tranMutex_t GmutexP)

 Parameters
mutexP

Specifies the transactional mutex to lock.

 Description

The tranMutexLock function locks a transactional mutex for the calling thread and associates the mutex
with the current transaction. Other threads are prevented from locking the same mutex and, therefore,
from accessing the data protected by the mutex. If the mutex specified by the mutexP parameter is
already locked, this function blocks until the mutex is available. Tran-C also provides a
tranMutexTryLock function that does not block if the mutex is unavailable.

Because the tranMutexLock function associates the mutex with the current transaction, it must be called
within the scope of a transaction. Transactional mutexes are unlocked automatically when the transaction
aborts or commits. The tranMutexUnlock function can be used to unlock a mutex explicitly if necessary.

 Nested Transactions

When using a mutex within a single thread, a nested transaction can interfere with an ancestor because
mutexes are not transaction dependent. A transactional mutex associated with a subtransaction is not
inherited by its parent and does not prevent subtransactions running in the same thread from accessing
the locked data.

 Related Information

tranMutex_t
tranMutexInit
tranMutexInitOnce
tranMutexTerminate
tranMutexTryLock
tranMutexUnlock

292 Encina Toolkit Executive Guide and Reference  



  tranMutexTerminate
 

 tranMutexTerminate

Ends a transactional mutex.

 Synopsis
#include <tc/tc.h>

void tranMutexTerminate(
IN tranMutex_t GmutexP)

 Parameters
mutexP

Specifies the transactional mutex to terminate.

 Description

The tranMutexTerminate function terminates the transactional mutex specified by the mutexP variable. A
mutex cannot be locked or unlocked after it is terminated. The tranMutexTerminate function must be
called within the scope of a transaction.

 Related Information

tranMutex_t
tranMutexInit
tranMutexInitOnce
tranMutexLock
tranMutexTryLock
tranMutexUnlock

  Chapter 35. Tran-C Functions and Constructs 293



 tranMutexTryLock  
 

 tranMutexTryLock

Locks a transactional mutex if available.

 Synopsis
#include <tc/tc.h>

int tranMutexTryLock(
IN tranMutex_t GmutexP)

 Parameters
mutexP

Specifies the transactional mutex to lock.

 Description

The tranMutexTryLock function locks the transactional mutex for the calling thread if the mutex is not
already locked and associates the mutex with the current transaction. Other threads are prevented from
locking the same mutex and, therefore, from accessing the data protected by the mutex. If the mutex
specified by the mutexP parameter is already locked, the function returns without locking the mutex.
Tran-C also provides the tranMutexLock function, which blocks until the requested mutex is available.

Because the tranMutexTryLock function associates the mutex with the current transaction, it must be
called within the scope of a transaction. Transactional mutexes are unlocked automatically when the
transaction aborts or commits. The tranMutexUnlock function can be used to unlock a mutex explicitly if
necessary.

 Return Values

If the mutex specified by the mutexP parameter is already locked, the function returns 0 (FALSE) to
indicate that the mutex is not available. Otherwise, the function returns a nonzero (TRUE) value.

 Related Information

tranMutex_t
tranMutexInit
tranMutexInitOnce
tranMutexLock
tranMutexTerminate
tranMutexUnlock

294 Encina Toolkit Executive Guide and Reference  



  tranMutexUnlock
 

 tranMutexUnlock

Unlocks a transactional mutex.

 Synopsis
#include <tc/tc.h>

void tranMutexUnlock(
IN tranMutex_t GmutexP)

 Parameters
mutexP

Specifies the transactional mutex to unlock.

 Description

The tranMutexUnlock function unlocks the transactional mutex specified by the mutexP parameter for the
calling thread. Because a locked mutex is associated with a transaction, the tranMutexUnlock function
must be called within the scope of the transaction with which the mutex is associated.

A transactional mutex is unlocked automatically when the transaction associated with the locked mutex
aborts or commits. The tranMutexUnlock function can be used to unlock a mutex explicitly if necessary.

 Related Information

tranMutex_t
tranMutexInit
tranMutexInitOnce
tranMutexLock
tranMutexTerminate
tranMutexTryLock

  Chapter 35. Tran-C Functions and Constructs 295



 transaction  
 

 transaction

Creates a transaction.

 Synopsis
#include <tc/tc.h>

transaction
 statement
 onCommit
 statement
 onAbort
 statement

transaction
 statement
suspend(OUT void GsuspendedTid)

 statement
 onAbort
 statement

 Parameters
suspendedTid

Returns the transaction identifier (TID) for the suspended transaction.

 Description

The transaction construct creates a new transaction. A transaction can be used to make one or more
requests that query, modify, or add information at a given source, such as a centralized database. The
transaction either commits or aborts based on the success of the requests.

The transaction construct consists of a transaction clause, an onCommit or suspend clause, and an
onAbort clause. Each clause contains a statement, which can be a compound statement (a collection of
statements in brackets). Each transaction construct must contain an onAbort clause. The onCommit
and suspend clauses are optional and, if specified, must precede the onAbort clause.

When a transaction construct is executed, a transaction is created and the statements in the transaction
clause execute under the scope of that transaction. If the transaction is neither aborted before the end of
the transaction clause nor suspended with a suspend clause, an attempt is made to commit the
transaction when execution reaches the end of the transaction clause. If the transaction commits
successfully, the statement specified in the onCommit clause (if there is an onCommit clause) is
executed.

If the suspend clause is used to suspend the transaction instead of committing it, an identifier for the
transaction is returned in the suspendedTid parameter. This identifier can be passed as an argument to
the resumeTran construct to resume the transaction. If the transaction is suspended successfully, the
statement in the suspend clause is executed.

If the transaction is aborted before the end of the transaction clause or the commit is unsuccessful,
control is transferred to the onAbort clause and the statements in the onAbort clause are executed. If
the transaction is aborted while it is suspended, the onAbort clause executes when the suspended
transaction resumes.

296 Encina Toolkit Executive Guide and Reference  



  transaction
 

When the transaction is committed successfully or aborted, the transaction is said to have completed.
The statements in the onCommit and onAbort clauses execute after the transaction has completed.

 Nested Transactions

If a transaction is created within the scope of another transaction, the new transaction behaves as a
nested transaction. A nested transaction commits with respect to its parent transaction; that is, if a nested
transaction commits, the effects of the commit are not permanent until the parent transaction commits. If
the parent transaction aborts, the nested transaction is also aborted.

It is illegal to suspend the execution of a nested transaction.

 Notes

It is illegal to transfer control (for example, using the C language goto statement) out of any of the
transaction clauses.

The pointer returned by the suspend clause can be used only once to resume a transaction. Using the
pointer more than once results in a fatal runtime error.

 Related Information

abort
resumeTran
topLevel

  Chapter 35. Tran-C Functions and Constructs 297



 trpcPermitted  
 

 trpcPermitted

Determines if a transactional RPC is permitted within the current context.

 Synopsis
#include <tc/tc.h>

int trpcPermitted()

 Description

The trpcPermitted function determines if a transactional RPC (TRPC) is permitted within the current
context. A TRPC can be made if the calling thread is executing within either the scope of a transaction or
a wrapEachTrpc construct. TRPCs made within the scope of a wrapEachTrpc construct cause
transactions to be created on the server; see the documentation for the wrapEachTrpc construct for more
information.

 Return Values

The trpcPermitted function returns 0 (zero) if a transactional RPC is permitted; otherwise, the function
returns a nonzero value.

 Related Information

inTransaction
inWrapEachTrpc
wrapEachTrpc

298 Encina Toolkit Executive Guide and Reference  



  useAbortFormat
 

 useAbortFormat

Specifies the scope of an abort formatting function.

 Synopsis
#include <tc/tc.h>

void useAbortFormat(
IN char GformatUuidString)

 Parameters
formatUuidString

Specifies a UUID (in string form) that identifies a function used to format abort reasons.

 Description

The useAbortFormat function sets the scope of a function used to format abort reasons. If the abort
string for an aborted transaction is retrieved within the scope set by the useAbortFormat function, the
formatting function identified by the formatUuidString parameter is used to format the abort string;
otherwise, a default formatting function is used.

The formatting function must have an associated UUID, which provides a unique identifier for the function.
The encina_RegisterAbortFormatter function can be used to associate a function with a format UUID
and to register the function with the application.

The scope in which the useAbortFormat function is called defines the scope of the formatting function.
That is, if it is called at the beginning of a file, the scope is file wide; if it is called at the beginning of a
function definition, the scope is local to that function.

 Related Information

abortFormat
abortReason
encina_RegisterAbortFormatter

  Chapter 35. Tran-C Functions and Constructs 299



 watchNamedTran  
 

 watchNamedTran

Sets a time limit and expiration callback for a specified transaction.

 Synopsis
#include <tc/tc.h>

unsigned int watchNamedTran(
IN tran_tid_t tid
IN void (Gcallback)(IN tran_tid_t, IN void G),
IN void GcallbackArg,
IN unsigned int timePeriod,
IN boolean_t disallowReset,
IN boolean_t familyWatch)

 Parameters
tid Specifies the transaction identifier (TID) of the transaction to watch.

callback
Specifies the function that is invoked when the time limit set on the transaction specified in the tid
parameter expires.

callbackArg
Specifies the argument passed to the callback function specified in the callback parameter.

timePeriod
Specifies the number of seconds after which the callback function is executed. A value of 0 (zero)
cancels a time limit set previously.

disallowReset
Indicates if the time limit can be changed. A nonzero value (TRUE) specifies that the time limit cannot
be reset or canceled.

familyWatch
Indicates if the time limit depends on the status of other transactions in the same transaction family. A
nonzero value (TRUE) specifies that the callback function is not executed if other transactions in the
family have the same callback pending.

 Description

The watchNamedTran function sets a “watch” on a specified transaction and registers a callback function
that is executed when a time limit expires. A watch can be used to monitor a transaction and make sure
that it completes in a reasonable amount of time. Multiple watches can be set on the same transaction if
the callback and argument registered are different for each watch. The watchNamedTran function can be
used only with transactions created using Tran-C constructs.

The function allows an expiration callback and argument to be registered for a transaction, along with a
time (in seconds) after which the callback is executed. A watch that has been set previously can be
overridden by a subsequent call to watchNamedTran with the same callback and argument; it can be
canceled by specifying a time period of 0 (zero). In both cases, if the disallowReset argument is TRUE
when the watch is initially set, then subsequent calls are ignored and the existing watch is unaffected.

The familyWatch argument can be used to control the behavior of the watch when an identical watch (that
is, one with the same callback and argument) is set on other transactions in the same family. If the value

300 Encina Toolkit Executive Guide and Reference  



  watchNamedTran
 

TRUE is specified for familyWatch, the callback is not delivered when the time limit expires if other
transactions from the same transaction family have an identical watch pending.

 Expiration Callback

The watchNamedTran function registers a callback function that is executed automatically when the
specified time period has elapsed unless the callback is canceled. When the expiration callback is
invoked, it executes outside the scope of the transaction, and the watch on the transaction is canceled.
Typically, the callback is used to abort the transaction in order to free resources and make data accessible
to other transactions.

The callback function must be defined to take two arguments and return no value. The value of the tid
parameter is passed as the first argument. The value of the callbackArg parameter is passed as the
second argument.

 Nested Transactions

If a watch is set on a nested transaction, the expiration callback is invoked (if it is not canceled) when the
transaction family commits or the nested transaction or its ancestor aborts.

 Notes

Encina automatically sets a default time limit on all transactions so that the server does not wait
indefinitely for a transaction initiated at a client to complete. If the default time limit is not disabled and a
time limit is specified with the watchNamedTran function, the shorter time limit takes precedence.

 Return Values

The function returns 0 (zero) the first time a watch is set on a transaction. If a watch is canceled, the
number of seconds remaining in the time period is returned. If the disallowReset parameter is set to TRUE
when a watch is set initially, subsequent attempts to cancel that watch return 0 (zero), reflecting the fact
that the watch cannot be canceled.

 Related Information

tran_tid_t
watchTran

  Chapter 35. Tran-C Functions and Constructs 301



 watchTran  
 

 watchTran

Sets a time limit and expiration callback for the current transaction.

 Synopsis
#include <tc/tc.h>

unsigned int watchTran(
IN void (Gcallback)(IN tran_tid_t, IN void G),
IN void GcallbackArg,
IN unsigned int timePeriod,
IN boolean_t disallowReset,
IN boolean_t familyWatch)

 Parameters
callback

Specifies the function that is invoked when the time limit set on the transaction expires.

callbackArg
Specifies the argument passed to the callback function in the callback parameter.

timePeriod
Specifies the number of seconds after which the callback function is executed. A value of 0 (zero)
cancels a time limit set previously.

disallowReset
Indicates if the time limit can be changed. A nonzero value (TRUE) specifies that the time limit cannot
be reset or canceled.

familyWatch
Indicates if the time limit depends on the status of other transactions in the same transaction family. A
nonzero value (TRUE) specifies that the callback function is not executed if other transactions in the
family have the same callback pending.

 Description

The watchTran function sets a “watch” on the current transaction and registers a callback function that is
executed when a time limit expires. A watch can be used to monitor a transaction and make sure that it
completes in a reasonable amount of time. Multiple watches can be set on the same transaction if the
callback and argument registered is different for each watch.

The function allows an expiration callback and argument to be registered for a transaction, along with a
time (in seconds) after which the callback is executed. A watch that has been set previously can be
overridden by a subsequent call with the same callback and argument, or it can be canceled by specifying
a time period of 0 (zero). In both cases, if the disallowReset argument is TRUE when the watch is initially
set, then subsequent calls are ignored and the existing watch is unaffected.

The familyWatch argument can be used to control the behavior of the watch when an identical watch (that
is, one with the same callback and argument) is set on other transactions in the same family. If the value
TRUE is specified for familyWatch, the callback is not delivered when the time limit expires if other
transactions from the same transaction family have an identical watch pending.

302 Encina Toolkit Executive Guide and Reference  



  watchTran
 

 Expiration Callback

The watchTran function registers a callback function that is executed automatically when the specified
time period has elapsed unless the callback is canceled. When the expiration callback is invoked, it
executes outside the scope of the transaction, and the watch on the transaction is canceled. Typically, the
callback is used to abort the transaction in order to free resources and make data accessible to other
transactions.

The callback function must be defined to take two arguments and return no value. The transaction
identifier of the current transaction is passed as the first argument. The value of the callbackArg
parameter is passed as the second argument.

 Nested Transactions

If a watch is set on a nested transaction, the expiration callback is invoked (if it is not canceled) when the
transaction family commits or the nested transaction or its ancestor aborts.

 Notes

Encina automatically sets a default time limit on all transactions so that the server does not wait
indefinitely for a transaction initiated at a client to complete. If the default time limit is not disabled and a
time limit is specified with the watchTran function, the shorter time limit takes precedence.

 Return Values

The function returns 0 (zero) the first time a watch is set on a transaction. If a watch is canceled, the
number of seconds remaining in the time period is returned. If the disallowReset parameter is set to TRUE
when a watch is set initially, subsequent attempts to cancel that watch return 0 (zero), reflecting the fact
that the watch cannot be canceled.

 Related Information

watchNamedTran

  Chapter 35. Tran-C Functions and Constructs 303



 wrapEachTrpc  
 

 wrapEachTrpc

Defines a scope for server-side transactions.

 Synopsis
#include <tc/tc.h>

wrapEachTrpc
 statement
 onCommit
 statement
 onAbort
 statement

 Description

The wrapEachTrpc construct defines a scope in which server-side transactions can be created. A
server-side transaction is a transaction that is initiated by the client but created and ended at the server.
A client application can use the wrapEachTrpc construct to define an execution scope; each transactional
RPC made from within this scope is “wrapped” in a separate top-level server-side transaction that lasts for
the duration of the RPC. Nontransactional RPCs called within the wrapping scope are not executed as
server-side transactions.

The wrapEachTrpc construct consists of a wrapEachTrpc clause, an onCommit clause, and an onAbort
clause. Each clause contains a statement, which can be a compound statement (a collection of
statements in brackets). Each wrapEachTrpc construct must contain an onAbort clause. The
onCommit clause is optional and, if specified, must precede the onAbort clause.

One or more transactional RPCs can be called within the same wrapEachTrpc construct. If multiple
transactional RPCs are called, they are executed sequentially. If all of the server-side transactions commit
successfully, control is transferred to the onCommit clause (if one exists). If one of the server-side
transactions is aborted, control is transferred to the onAbort clause and any remaining transactional RPCs
are not executed.

 Nested Transactions

A wrapEachTrpc construct can be nested within transaction constructs, and transaction constructs can be
nested within a wrapEachTrpc construct.

 Notes

The transaction identifier for the server-side transaction is available only in the server manager function
executing the server-side transaction. The getTid function can be used in the server manager function to
get the transaction identifier.

304 Encina Toolkit Executive Guide and Reference  



  wrapEachTrpc
 

 Related Information

inWrapEachTrpc
inWrappedTran
transaction

  Chapter 35. Tran-C Functions and Constructs 305



 wrapEachTrpc  
 

306 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 36. Tran-C Data Types

Tran-C exports several data types for use in transactional applications. These data types are used in
defining callback functions and in controlling access to shared data and resources.

Tran-C applications can define callback functions that are invoked automatically when specific events
occur, either within an application or within a transaction. The following data types support the use of
application callbacks and transaction callbacks in Tran-C:

 � applCallback_t

 � tranCallback_t

Tran-C also provides functions for using mutual exclusion facilities, or mutexes, in transactional
applications. The following data type supports the use of transactional mutexes in Tran-C:

 � tranMutex_t

In addition to the data types Tran-C exports, the Tran-C constructs and functions use other Encina and
DCE data types. For example, TRAN, which is one of the lower-level components of Encina, exports the
tran_tid_t data type, which is used for transaction identifiers. See the appropriate Encina or DCE
documentation for information on data types Tran-C does not export.

 Copyright IBM Corp. 1989, 2001  307



 applCallback_t  
 

 applCallback_t

Defines event types for application callbacks.

 Synopsis
typedef enum {
 APPL_INIT_CALLBACK,
 APPL_TERM_CALLBACK
} applCallback_t;

 Enumerated Constants
APPL_INIT_CALLBACK Specifies an application initialization event.

APPL_TERM_CALLBACK Specifies an application termination event.

 Description

The applCallback_t enumerated type defines values that are used to specify the event that invokes a
callback for an application. The events that can invoke a callback include initialization of an application
and termination of an application. The callback function to be invoked, and the event that invokes it, can
be set using the registerApplCallback function. The registerApplCallback function must be called
before the specified event occurs.

 Related Information

registerApplCallback
registerTranCallback

308 Encina Toolkit Executive Guide and Reference  



  tranCallback_t
 

 tranCallback_t

Defines event types for transaction callbacks.

 Synopsis
typedef enum {
 TRAN_ABORT_CALLBACK,
 TRAN_COMMIT_CALLBACK,
 TRAN_PREPARE_CALLBACK
} tranCallback_t;

 Enumerated Constants
TRAN_ABORT_CALLBACK Specifies a transaction abort event. The callback registered for the abort event

executes immediately after the transaction aborts.

TRAN_COMMIT_CALLBACK Specifies a transaction commit event. The callback registered for the commit
event executes immediately after the transaction commits if the transaction is not
nested; if the transaction is nested, the callback executes when the top-level
ancestor commits.

TRAN_PREPARE_CALLBACK Specifies a transaction prepare event. The callback registered for the prepare
event executes when the prepare phase of the commit process is reached; the
callback is executed within the scope of the current transaction.

 Description

The tranCallback_t enumerated type defines values that are used to specify the transaction event that
invokes a callback. The events that can invoke a callback include aborting, committing, and preparing the
current transaction. The callback function to be invoked, and the event that invokes it, can be set using
the registerTranCallback function. The registerTranCallback function must be called before the
specified event occurs.

 Related Information

registerApplCallback
registerTranCallback

  Chapter 36. Tran-C Data Types 309



 tranMutex_t  
 

 tranMutex_t

Defines a transactional mutex.

 Synopsis
typedef struct { ... } tranMutex_t;

 Description

The tranMutex_t type is an opaque data type that defines a transactional mutex. Within the scope of a
transaction, a transactional mutex provides short-term mutual exclusion of internal data structures; a
transactional mutex is unlocked automatically when the transaction ends. A variable of type tranMutex_t
must be specified when a mutex is initialized, terminated, locked, or unlocked.

 Related Information

tranMutexInit
tranMutexInitOnce
tranMutexLock
tranMutexTerminate
tranMutexTryLock
tranMutexUnlock

310 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 37. ThreadTid Functions

ThreadTid is a library that associates transactions with threads. Unlike TRAN, which allows several
threads to work on behalf of one transaction, ThreadTid allows a thread to work on behalf of only one
transaction at a time. Both TRAN and ThreadTid allow multiple threads to work on behalf of the same
transaction. ThreadTid maintains a stack of transactions for each thread; the current transaction for a
thread is at the top of its stack.

 Header Files
Applications that link with ThreadTid must include the header file threadTid/threadTid.h.

 Functions

The ThreadTid interface exports functions for the following types of operations:

� Setting current transaction of a thread
 – threadTid_Begin
 – threadTid_End
 – threadTid_Lookup
 – threadTid_Resume
 – threadTid_Suspend

� Certifying and decertifying threads
 – threadTid_Certify
 – threadTid_Decertify
 – threadTid_IsCertified

� Dumping state information
 – threadTid_DumpState

 � Registering callbacks
 – threadTid_RegisterCallback
 – threadTid_RegisterTrpcCallbacks

 Copyright IBM Corp. 1989, 2001  311



 threadTid_Begin  
 

 threadTid_Begin

Assigns a transaction identifier to the current thread.

 Synopsis
#include <threadTid/threadTid.h>

int threadTid_Begin (
IN tran_tid_t newTid)

 Parameter
newTid

Specifies the transaction identifier of the new transaction.

 Description

The threadTid_Begin function assigns a transaction identifier to the current thread in an application, and
certifies that thread to execute on behalf of the transaction. If the thread was already executing on behalf
of a transaction at the time of the call, then that transaction is decertified.

Any registered callback functions are executed before threadTid_Begin returns. The two transaction
identifiers, the old one and newTid, and THREAD_TID_BEGIN_EVENT are passed to the callback function as
its parameters.

The function returns FALSE if the thread could not be certified to work on the transaction; TRUE
otherwise.

 Related Information

threadTid_End
threadTid_Lookup
threadTid_Resume
threadTid_Suspend
tran_tid_t

312 Encina Toolkit Executive Guide and Reference  



  threadTid_Begin
 

 Description

When the transaction identifier of a thread is set or updated, all callback functions registered by the
threadTid_RegisterCallback function in the application are called. Three parameters are passed into
callback functions. The first one is the old tid set in the thread. The second one is the new tid at the top
of the stack. The last one is an event indicator that indicates what triggered the callback: begin, end,
suspend, or resume.

  Chapter 37. ThreadTid Functions 313



 threadTid_Certify  
 

 threadTid_Certify

Certifies the current thread to operate on behalf of the current transaction.

 Synopsis
#include <threadTid/threadTid.h>

int threadTid_Certify()

 Description

The threadTid_Certify function certifies the current thread to operate on behalf of the current transaction.
Certification prevents the transaction service from invoking recovery service abort or application
after-resolution procedures.

The function returns TRUE if the transaction is still valid. It returns FALSE if the transaction was already
certified, or if the thread could not be recertified.

 Related Information

threadTid_Decertify
threadTid_IsCertified

314 Encina Toolkit Executive Guide and Reference  



  threadTid_Decertify
 

 threadTid_Decertify

Decertifies the current thread from operating on behalf of the current transaction.

 Synopsis
#include <threadTid/threadTid.h>

int threadTid_Decertify()

 Description

The threadTid_Decertify function decertifies the current thread from operating on behalf of the current
transaction. The transaction service cannot invoke recovery service abort or application after-resolution
procedures until the thread is decertified.

The value returned by a call to the threadTid_Decertify function indicates whether or not the function was
called out of sequence. It returns TRUE if the call was legal, that is, if the previously executed ThreadTid
function was either the threadTid_Begin or the threadTid_Certify function. It returns FALSE if called at
any other time.

 Related Information

threadTid_Begin
threadTid_Certify
threadTid_IsCertified

  Chapter 37. ThreadTid Functions 315



 threadTid_DumpState  
 

 threadTid_DumpState

Dumps state of threadTid.

 Synopsis
void threadTid_DumpState()

 Description

The threadTid_DumpState function dumps the state of threadTid at an application. The format of the
dump consists of the stack of transaction identifiers managed by the thread. The “stack top” entry is the
current active transaction, for instance, in the example output, the transaction with identifier 4.

 Output
1 D threadTid stack bottom
1 D 65536
1 D B
1 D 3
1 D 4
1 D threadTid stack top

316 Encina Toolkit Executive Guide and Reference  



  threadTid_End
 

 threadTid_End

Ends the association between the thread and the transaction identifier, and then restores previous
association.

 Synopsis
#include <threadTid/threadTid.h>

int threadTid_End ()

 Description

The threadTid_End function pops the transaction identifier of the current transaction off the thread's
transaction identifier stack. Any registered callback functions are executed before threadTid_End returns.
The old transaction identifier, TRAN_TID_NULL, and THREAD_TID_END_EVENT are passed to the callback
function as its parameters.

The function returns FALSE if the thread could not be certified to work on the previous transaction or if
there was no previous transaction; it returns TRUE otherwise.

 Related Information

threadTid_Begin
threadTid_Lookup
threadTid_Resume
threadTid_Suspend

  Chapter 37. ThreadTid Functions 317



 threadTid_IsCertified  
 

 threadTid_IsCertified

Determines if the current thread is certified to operate on the current transaction.

 Synopsis
#include <threadTid/threadTid.h>

int threadTid_IsCertified()

 Description

The threadTid_IsCertified function determines if the current thread is certified to operate on the current
transaction. The current transaction and certification status are not affected.

The function returns TRUE if the thread is certified. It returns FALSE if the thread is not certified.

 Related Information

threadTid_Certify
threadTid_Decertify

318 Encina Toolkit Executive Guide and Reference  



  threadTid_Lookup
 

 threadTid_Lookup

Returns the transaction identifier of the current thread in the application.

 Synopsis
#include <threadTid/threadTid.h>

tran_tid_t threadTid_Lookup()

 Description

The threadTid_Lookup function returns the transaction identifier associated with the current thread. If the
threadTid_Begin function has not been called, or if the threadTid_Suspend function has been called,
threadTid_Lookup returns TRAN_TID_NULL.

 Related Information

threadTid_Begin
threadTid_End
threadTid_Resume
threadTid_Suspend
tran_tid_t

  Chapter 37. ThreadTid Functions 319



 threadTid_RegisterCallback  
 

 threadTid_RegisterCallback

Registers a callback.

 Synopsis
#include <threadTid/threadTid.h>

void threadTid_RegisterCallback (
IN void (GthreadTidCallback)(IN tran_tid_t,
 IN tran_tid_t,
 IN threadTid_event_t))

 Parameters
threadTidCallback

Specifies the callback function to be invoked when a thread begins, ends, suspends, or resumes a
transaction.

 Description

The threadTid_RegisterCallback function registers a callback. Any number of callback functions can be
registered at any time.

threadTid Callback: The threadTidCallback parameter points to a function that ThreadTid calls
when any thread in the application modifies its transaction identifier stack with calls to the
threadTid_Begin, threadTid_End, threadTid_Suspend, or threadTid_Resume functions. When the
transaction identifier of a thread is set or updated, all callback functions registered by the
threadTid_RegisterCallback function in the application are called.

The function must be defined to take three arguments and return no value. The current transaction
identifier for the thread is passed as the first argument. The new transaction identifier at the top of the
stack is passed as the second argument. A value indicating which event triggered the callback—begin,
end, suspend, or resume—is passed as the third argument.

 Related Information

threadTid_event_t
threadTid_Begin
threadTid_End
threadTid_RegisterTrpcCallbacks
threadTid_Resume
threadTid_Suspend
tran_tid_t

320 Encina Toolkit Executive Guide and Reference  



  threadTid_RegisterTrpcCallbacks
 

 threadTid_RegisterTrpcCallbacks

Registers TRPC callbacks.

 Synopsis
#include <threadTid/threadTid.h>

unsigned long threadTid_RegisterTrpcCallbacks (
IN unsigned long callbackMask)

 Parameters
callbackMask

Specifies the set of callback functions to be registered.

 Description

The threadTid_RegisterTrpcCallbacks function registers Transactional RPC (TRPC) callbacks for
sending and receiving requests and getting the transaction identifier. The first call to the
threadTid_RegisterTrpcCallbacks function registers the TRPC callbacks in the callbackMask parameter
and returns 0 (zero). Each subsequent call to this function registers any requested callbacks that were not
previously registered and returns a mask of the callbacks that were previously registered.

Specify the set of callbacks for the callbackMask parameter using the following values:

� THREAD_TID_GETTID_CALLBACK — Registers the threadTid_Lookup function as the trpc_CallToGetTid
function.

� THREAD_TID_CLIENT_CALLBACKS — Registers the threadTid_Decertify function as the
trpc_CallBeforeSendingRequest function, and the threadTid_Certify function as the
trpc_CallAfterReceivingReply and the trpc_CallOnClientException functions.

� THREAD_TID_SERVER_CALLBACKS — Registers the threadTid_Begin function as the
trpc_CallAfterReceivingRequest function, and the threadTid_End function as the
trpc_CallBeforeSendingReply and the trpc_CallOnServerException34 functions.

The values for the callbackMask parameter can be ORed together to register multiple callbacks. The
THREAD_TID_ALL_CALLBACKS value registers all the TRPC callbacks.

 Related Information

threadTid_Begin
threadTid_Certify
threadTid_Decertify
threadTid_End
threadTid_Lookup
trpc_CallAfterReceivingReply
trpc_CallAfterReceivingRequest
trpc_CallBeforeSendingReply
trpc_CallBeforeSendingRequest
trpc_CallOnClientException

34 trpc_CallOnServerException is not for ephemeral clients.

  Chapter 37. ThreadTid Functions 321



 threadTid_RegisterTrpcCallbacks  
 

trpc_CallOnServerException
trpc_CallToGetTid

322 Encina Toolkit Executive Guide and Reference  



  threadTid_Resume
 

 threadTid_Resume

Resumes the current thread's suspended transaction.

 Synopsis
#include <threadTid/threadTid.h>

int threadTid_Resume ()

 Description

The threadTid_Resume function resumes the current thread's suspended transaction by popping
TRAN_TID_NULL off its transaction identifier stack. The transaction identifier of the suspended transaction
is returned. The previously suspended transaction is recertified at this time.

Any registered callback functions are executed before threadTid_Resume returns. The old transaction
identifier, TRAN_TID_NULL, and THREAD_TID_RESUME_EVENT are passed to the callback function as its
parameters.

The function returns FALSE if the thread could not be certified to work on the previous transaction; TRUE
otherwise.

 Related Information

threadTid_Begin
threadTid_End
threadTid_Lookup
threadTid_Suspend

  Chapter 37. ThreadTid Functions 323



 threadTid_Suspend  
 

 threadTid_Suspend

Suspends the transaction of the current thread.

 Synopsis
#include <threadTid/threadTid.h>

void threadTid_Suspend ()

 Description

The threadTid_Suspend function suspends the current thread's transaction by pushing TRAN_TID_NULL on
top of its transaction identifier stack. The transaction identifier of the suspended transaction is returned.
The threadTid_Suspend function decertifies the thread from executing on behalf of the transaction.

Any registered callback functions are executed before threadTid_Suspend returns. The old transaction
identifier, TRAN_TID_NULL, and THREAD_TID_SUSPEND_EVENT are passed to the callback function as its
parameters.

 Related Information

threadTid_Begin
threadTid_End
threadTid_Lookup
threadTid_Resume

324 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 38. ThreadTid Data Types

The ThreadTid interface defines one data type that supports the use of callbacks in ThreadTid:

 � threadTid_event_t

 Copyright IBM Corp. 1989, 2001  325



 threadTid_event_t  
 

 threadTid_event_t

Defines callback events.

 Synopsis
enum {
THREAD_TID_BEGIN_EVENT,
THREAD_TID_END_EVENT,
THREAD_TID_SUSPEND_EVENT,
THREAD_TID_RESUME_EVENT
} threadTid_event_t;

 Description

The threadTid_event_t data type is used to enumerate the events that can cause a ThreadTid callback to
be invoked.

 Related Information

threadTid_RegisterCallback

326 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 39. TRAN Functions

TRAN is a tool for building distributed transactional applications. TRAN provides functions for grouping
operations into transactions. It also supervises other modules to ensure that each transaction is executed
independently of other transactions and, once completed, a transaction's effects are permanent.

 Header Files

Applications that link with TRAN must include the header file tran/tran.h.

 Initialization Functions

The TRAN interface exports the following functions for application initialization and termination:

 � tran_Init
 � tran_Ready
 � tran_StandardEnvironment
 � tran_Terminate

Transaction Identification Functions

The TRAN interface exports the following functions for describing, identifying, and comparing transaction
identifiers:

 � tran_TidArrayDestroy
 � tran_TidEqual
 � tran_TidHash
 � tran_TidIsDescendent
 � tran_TidIsRelated
 � tran_TidIsTopLevel
 � tran_TidKnownDescendents
 � tran_TidParent
 � tran_TidTopAncestor
 � tran_TidToString

Application Interface Functions

The TRAN application interface allows applications to begin, commit, and abort transactions. It also allows
applications to determine the outcomes of transactions. This interface exports functions for the following
types of application interface operations:

� Beginning and ending transactions
 – tran_Abort
 – tran_AbortFamily
 – tran_Begin
 – tran_End

� Getting application status
 – tran_ApplIsRecoverable
 – tran_ListTransactions

� Getting transaction state

 Copyright IBM Corp. 1989, 2001  327



  
 

 – tran_GetGlobalState
 – tran_GetLocalState
 – tran_GetRelativeCommitState

� Registering application callbacks
 – tran_CallAfterCWRT
 – tran_CallAfterFinished
 – tran_CallAfterResolution
 – tran_CallAfterRestart
 – tran_CallBeforeAbort
 – tran_CallBeforePrepare
 – tran_CallDuringRestart
 – tran_CallTransactionallyBeforePrepare

� Using application properties
 – tran_PropertyAdd
 – tran_PropertyRetrieve

� Selecting transaction coordinators
 – tran_GetCoordinator
 – tran_SelectivelyCoordinate
 – tran_SetCoordinator

� Interpreting abort data
 – tran_AbortDataToReason
 – tran_AbortReason

 � Securing communication
 – tran_Secure

 � Preparing transactions
 – tran_DeferCommit
 – tran_Prepare
 – tran_PrePrepare
 – tran_ProvideOutcome

� Controlling outcome delivery
 – tran_DelayAbort
 – tran_ProlongFinish
 – tran_ProlongResolution
 – tran_RequestPromptFinish
 – tran_RequireCompleteOutcome
 – tran_RequireDistributedOutcome
 – tran_SetEphemeralOutcomeDeliveryLimit
 – tran_SetEphemeralOutcomeRequirementLimit

� Declaring last call
 – tran_DeclareLastCall

� Reserving transaction identifiers
 – tran_Reserve

Communications Service Interface Functions

A communications service is a module within an application that manages transactional communication
with other applications. A communications service provides the mechanism for invoking services in
another application; RPCs are one such mechanism. TRAN provides an interface to the communications
service for making RPCs transactional. The TRAN communication interface exports the following
functions:

 � tran_CommBlockFunctions
 � tran_CommIdentifyBlindRequest

328 Encina Toolkit Executive Guide and Reference  



  
 

 � tran_CommInit
 � tran_CommProvideAddressInfo
 � tran_CommReceived
 � tran_CommReceivedReply
 � tran_CommReceivedRequest
 � tran_CommSendingBlindRequest
 � tran_CommSendingReply
 � tran_CommSendingRequest
 � tran_CommServiceAlwaysSendsReply
 � tran_CommServicePromisesToMatchReplies

Recovery Service Interface Functions

A recovery service is a module within an application that manages recoverable storage. TRAN provides
an interface that a recovery service must use during application restart to allow TRAN to resume commit
processing for existing transactions. TRAN also provides features to aid a sophisticated recovery service
in minimizing logging. The TRAN recovery service interface exports the following functions:

 � tran_RecAcknowledge
 � tran_RecBlockFunctions
 � tran_RecDynamicallyRegisters
 � tran_RecExplicitlyAcknowledges
 � tran_RecInit
 � tran_RecMustForceGroup
 � tran_RecReadOnly
 � tran_RecRefuse
 � tran_RecRegister
 � tran_RecReplay
 � tran_RecUsingForceGroup

Administrative Interface Functions

The TRAN administrative interface provides functions to force heuristic transaction outcomes and to record
and report heuristic decisions made by other participants. This interface exports the following functions:

 � tran_CallOnHeuristicDamage
 � tran_DeclareReportableHeuristicDecisions
 � tran_ForceHeuristicOutcome
 � tran_ForciblyFinish
 � tran_RecordHeuristicOutcome
 � tran_RequireHeuristicDamageReporting

Application Environment Functions

TRAN depends on several basic environment services: identification, synchronization, scheduling, memory
management, time, and termination. An application must register functions to implement these services
before it initializes any TRAN interfaces. The TRAN application environment interface exports the
following functions:

 � tran_Alarm
 � tran_SpecialEnvironment

  Chapter 39. TRAN Functions 329



  
 

 Diagnostic Functions

The TRAN interface exports the following diagnostic function:

 � tran_DumpState

 Special-Purpose Functions

TRAN uses special-purpose data types to simplify the specification of TRAN interface functions. The
TRAN interface exports functions for the following types of special purpose operations:

� Determining an application identifier
 – tran_ApplIdLocal

 � Creating objects
 – tran_AddressCreate
 – tran_AddressFamilyCreate
 – tran_ApplIdCreate
 – tran_ForceGroupIdCreate
 – tran_LogRecordCreate
 – tran_MessageCreate
 – tran_PropertyKeyCreate
 – tran_PropertyValueCreate
 – tran_SecurityKeyCreate

 � Constructing objects
 – tran_AddressCons
 – tran_AddressFamilyCons
 – tran_ApplIdCons
 – tran_ForceGroupIdCons
 – tran_LogRecordCons
 – tran_MessageCons
 – tran_PropertyKeyCons
 – tran_PropertyValueCons
 – tran_SecurityKeyCons

 � Copying objects
 – tran_AddressCopy
 – tran_AddressFamilyCopy
 – tran_ApplIdCopy
 – tran_ForceGroupIdCopy
 – tran_LogRecordCopy
 – tran_MessageCopy
 – tran_PropertyKeyCopy
 – tran_PropertyValueCopy
 – tran_SecurityKeyCopy

� Retrieving object data
 – tran_AddressData
 – tran_AddressFamilyData
 – tran_AddressFamilyLength
 – tran_AddressLength
 – tran_ApplIdData
 – tran_ApplIdLength
 – tran_ForceGroupIdData
 – tran_ForceGroupIdLength
 – tran_LogRecordData

330 Encina Toolkit Executive Guide and Reference  



  
 

 – tran_LogRecordLength
 – tran_MessageData
 – tran_MessageLength
 – tran_PropertyKeyData
 – tran_PropertyKeyLength
 – tran_PropertyValueData
 – tran_PropertyValueLength
 – tran_SecurityKeyLength

 � Comparing objects
 – tran_AddressEqual
 – tran_AddressFamilyEqual
 – tran_ApplIdEqual
 – tran_ForceGroupIdEqual
 – tran_MessageIdentical
 – tran_PropertyKeyEqual
 – tran_PropertyValueEqual
 – tran_SecurityKeyEqual

 � Destroying objects
 – tran_AddressDestroy
 – tran_AddressFamilyDestroy
 – tran_ApplIdDestroy
 – tran_ForceGroupIdDestroy
 – tran_LogRecordDestroy
 – tran_MessageDestroy
 – tran_PropertyKeyDestroy
 – tran_PropertyValueDestroy
 – tran_SecurityKeyDestroy

  Chapter 39. TRAN Functions 331



 tran_Abort  
 

 tran_Abort

Aborts a transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Abort(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_Abort function aborts a transaction. Any application that participates in a transaction can call
this function to abort that transaction. The application should supply a reason for aborting the transaction
using the property facility before calling the function. TRAN ensures that all participants in an aborted
transaction are notified of its demise. Any number of participants can abort the same transaction. TRAN
itself can act as a participant to abort a transaction. An application may not be permitted to abort a
transaction once its recovery service has prepared that transaction.

The application should supply its reason for aborting the transaction by registering an abort data property,
and registering the name of that property in the designated abort format property. The abort data property
value should contain an application-specific description of the reason for aborting the transaction. This
description may include an error message (or an encoding of such a message) or debugging information,
or may suggest an alternative way to achieve the transaction's goal. The application can use any
property key to store its abort data; the key should uniquely identify the format of the abort data. This
property key should be converted to a property value and installed under the
TRAN_PROPERTY_KEY_ABORT_FORMAT property. Another application can later retrieve and interpret the abort
data by acquiring the value of the TRAN_PROPERTY_KEY_ABORT_FORMAT property, translating that value to a
property, and then using that key to retrieve the abort data. An application is also free to use additional
properties to convey more detailed information.

In rare situations, TRAN may obscure an abort reason that a user supplied when aborting a transaction.
The following are two examples of this occurring:

� When users abort committed subtransactions, TRAN must abort the first uncommitted ancestor to
recover the subtransaction's work. When this occurs, the abort reason used for the subtransaction is
obscured by an alternative abort reason supplied by TRAN to indicate it had to abort an ancestor of a
committed subtransaction.

� When a server aborts a transaction, and there are communication delays between the client and
server, the client can retrieve a different abort reason from the one used at the server.

Users should not design applications whose correctness requires accurate retrieval of abort reasons. The
relaxed functionality of abort reasons is important for ensuring efficient performance and the ability to
autonomously abort transactions.

TRAN records the application that causes a transaction to abort in a designated abort source property.
The identifier of the application that called tran_Abort (or the identifier of the application associated with
TRAN that discovered a failure) is converted to a property value and stored in the

332 Encina Toolkit Executive Guide and Reference  



  tran_Abort
 

TRAN_PROPERTY_KEY_ABORT_SOURCE property. TRAN does this automatically; the application should not
attempt to store a value for this property.

All participants are eventually notified of a transaction's termination. The tran_Abort function may return
before TRAN notifies any participants, including the application issuing the call. To ensure that local work
on behalf of the transaction has been undone, the application should call tran_End (if it is the beginner) or
register an after-resolution callback (see tran_CallAfterResolution). TRAN does not guarantee notification
within any given time, except for an application that calls tran_Abort. An application (or any of its
communication or recovery services) is responsible for performing time-outs for other transactions as
necessary. This may affect an application in the following way: a client may begin a transaction, make a
call to a server involving a significantly large amount of data, and abort the transaction when the function
returns. Then the client begins another transaction and makes a call to the same server to access some
of the same data with conflicting locks. It is remotely possible that the second transaction may wait or a
watch may timeout due to the first transaction retaining locks during its recovery procedures.

Two forms of notification are provided to participants in an aborted transaction. Recoverable applications
receive an upcall to direct them to undo the effects of the transaction. Callbacks requested by the
application are invoked. See the tran_CallBeforeAbort and tran_CallAfterResolution functions for more
information.

More than one application can abort the same transaction. Each participant receives exactly one set of
notifications for any given transaction. The values of the abort data, format, and source properties are not
guaranteed to be the same for all participants.

TRAN aborts a transaction exactly as any other participant would. TRAN may need to abort a transaction
in the event of a communication or application failure. An abort description, defined by TRAN, describes
the nature of that failure. TRAN uses the TRAN_PROPERTY_KEY_ABORT_DATA property for its abort data, and
sets the TRAN_PROPERTY_KEY_ABORT_FORMAT property to refer to that property. The normal abort
notifications are provided to all participants.

TRAN cannot guarantee to abort a transaction once a recovery service has been asked to prepare that
transaction. If an application asks to abort a prepared transaction, the tran_Abort function returns
TRAN_TID_NOT_VALID. TRAN still attempts to abort the transaction, and does so if it can contact another
application that has not prepared.

Nested Transactions: The application can call tran_Abort only for transactions in which it is a
participant. An application becomes a participant in a transaction only when it begins that transaction (that
is, it calls tran_Begin), when it accepts a request on behalf of that transaction (that is, its communication
service calls tran_CommReceivedRequest), or when a before-prepare callback permits work on that
transaction.

Aborting a transaction may cause other relatives to abort. For example, aborting a transaction implicitly
causes all of its descendants to be aborted. In order to abort an ended subtransaction, TRAN must abort
its parent.

 Note

The Encina Abort Facility provides an alternative interface for setting, retrieving, and formatting abort
reasons.

  Chapter 39. TRAN Functions 333



 tran_Abort  
 

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_AbortFamily
tran_Begin
tran_CallAfterResolution
tran_CallBeforeAbort
tran_End
tran_status_t
tran_tid_t

334 Encina Toolkit Executive Guide and Reference  



  tran_AbortDataToReason
 

 tran_AbortDataToReason

Interprets abort data.

 Synopsis
#include <tran/tran.h>

tran_abort_t
tran_AbortDataToReason(

IN tran_propertyValue_t abortData)

 Parameters
abortData

Specifies the abort data in the property associated with the TRAN_PROPERTY_KEY_ABORT_DATA key.

 Description

The tran_AbortDataToReason function interprets an abort description generated by TRAN. The abort
description appears in the property associated with the TRAN_PROPERTY_KEY_ABORT_DATA key. The property
value is a permanent form that can be stored and transmitted.

 Related Information

tran_abort_t
tran_AbortReason
tran_propertyValue_t

  Chapter 39. TRAN Functions 335



 tran_AbortFamily  
 

 tran_AbortFamily

Aborts all members of a transaction family.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_AbortFamily(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_AbortFamily function aborts all members of a transaction family that have been active in the
application. TRAN uses the abort reason TRAN_ABORT_FAMILY_ABORT for any transactions aborted in this
fashion. An application can use this function to efficiently rid itself of a transaction family. TRAN finishes
the transaction family as soon as possible; in doing so, it prevents any member of the transaction family
from doing work in the application again.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_Abort
tran_Begin
tran_End
tran_status_t
tran_tid_t

336 Encina Toolkit Executive Guide and Reference  



  tran_AbortReason
 

 tran_AbortReason

Interprets abort data.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_AbortReason(
IN tran_tid_t tid
OUT tran_abort_t GabortReasonP)

 Parameters
tid Specifies the transaction identifier of the aborted transaction.

abortReasonP
Returns the abort reason.

 Description

The tran_AbortReason function gets the tran_abort_t form of the abort reason for the transaction, tid.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_abort_t
tran_AbortDataToReason
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 337



 tran_AddressCons  
 

 tran_AddressCons

Creates a new address from existing data.

 Synopsis
#include <tran/tran.h>

tran_address_t tran_AddressCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_AddressCons function creates a new object of type tran_address_t from existing data. The
application provides a generic pointer and a data length to define the contents of the object. The function
stores a reference to the original data rather than copying the data. The application must not de-allocate
or change the data it uses to construct an object until that object is destroyed. TRAN also promises not to
change the data provided. The application can specify that TRAN is responsible for freeing the data by
calling a destructor function when it no longer needs the data. TRAN is permitted to free this memory
whenever it deems appropriate.

 Related Information

tran_address_t
tran_AddressCopy
tran_AddressCreate

338 Encina Toolkit Executive Guide and Reference  



  tran_AddressCopy
 

 tran_AddressCopy

Creates a copy of an address object.

 Synopsis
#include <tran/tran.h>

tran_address_t tran_AddressCopy(
IN tran_address_t object)

 Parameters
object

Specifies an address object to copy.

 Description

The tran_AddressCopy function creates a new object of type tran_address_t from an existing address
object. The application must call the tran_AddressDestroy function when it no longer needs the object.

 Related Information

tran_address_t
tran_AddressCons
tran_AddressCreate
tran_AddressDestroy

  Chapter 39. TRAN Functions 339



 tran_AddressCreate  
 

 tran_AddressCreate

Creates a new address.

 Synopsis
#include <tran/tran.h>

tran_address_t tran_AddressCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_AddressCreate function creates a new object of type tran_address_t. The application provides
a generic pointer and a data length to define the contents of the object. TRAN copies the data; the
application can de-allocate its copy of the data as soon as the function completes. The application must
call the tran_AddressDestroy function when it no longer needs the object.

 Related Information

tran_address_t
tran_AddressCons
tran_AddressCopy
tran_AddressDestroy

340 Encina Toolkit Executive Guide and Reference  



  tran_AddressData
 

 tran_AddressData

Retrieves an address.

 Synopsis
#include <tran/tran.h>

void Gtran_AddressData(
IN tran_address_t object)

 Parameters
object

Specifies the object containing the address.

 Description

The tran_AddressData function retrieves the data contained in an object of type tran_address_t. The
function returns a generic pointer to the data; the tran_AddressLength function returns the valid length of
that data in bytes. The data pointer only remains valid as long as the original object; if the data is
required, the caller should copy the data before the object is destroyed.

 Related Information

tran_address_t
tran_AddressLength

  Chapter 39. TRAN Functions 341



 tran_AddressDestroy  
 

 tran_AddressDestroy

Destroys an address.

 Synopsis
#include <tran/tran.h>

void tran_AddressDestroy(
IN tran_address_t object)

 Parameters
object

Specifies the object containing the address.

 Description

The tran_AddressDestroy function destroys an object of type tran_address_t when it is no longer
needed. Applications must use this function for objects that they create or construct, and for objects that
TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it cannot be
used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_address_t
tran_AddressCons
tran_AddressCopy
tran_AddressCreate

342 Encina Toolkit Executive Guide and Reference  



  tran_AddressEqual
 

 tran_AddressEqual

Determines whether two addresses are equal.

 Synopsis
#include <tran/tran.h>

int tran_AddressEqual(
IN tran_address_t objectOne,
IN tran_address_t objectTwo)

 Parameters
objectOne

Specifies the first object.

objectTwo
Specifies a second object to be compared with the value specified for objectOne.

 Description

The tran_AddressEqual function compares two objects of type tran_address_t to determine whether
they are equal. The function returns 1 (TRUE) if the objects are equal and 0 (FALSE) if the objects differ.

 Related Information

tran_address_t

  Chapter 39. TRAN Functions 343



 tran_AddressFamilyCons  
 

 tran_AddressFamilyCons

Creates a new address family from existing data.

 Synopsis
#include <tran/tran.h>

tran_addressFamily_t tran_AddressFamilyCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed or a null function
pointer if automatic destruction is not desired.

 Description

The tran_AddressFamilyCons function creates a new object of type tran_addressFamily_t from existing
data. The application provides a generic pointer and a data length to define the contents of the object.
The function stores a reference to the original data rather than copying the data. The application must not
de-allocate or change the data it uses to construct an object until that object is destroyed. TRAN also
promises not to change the data provided. The application can specify that TRAN is responsible for
freeing the data by calling a destructor function when it no longer needs the data. TRAN is permitted to
free this memory whenever it deems appropriate.

 Related Information

tran_addressFamily_t
tran_AddressFamilyCopy
tran_AddressFamilyCreate

344 Encina Toolkit Executive Guide and Reference  



  tran_AddressFamilyCopy
 

 tran_AddressFamilyCopy

Creates a copy of an address family object.

 Synopsis
#include <tran/tran.h>

tran_addressFamily_t
tran_AddressFamilyCopy(

IN tran_addressFamily_t object)

 Parameters
object

Specifies an address family object to copy.

 Description

The tran_AddressFamilyCopy function creates a new object of type tran_addressFamily_t from an
existing address family object. The application must call the tran_AddressFamilyDestroy function when
it no longer needs the object.

 Related Information

tran_addressFamily_t
tran_AddressFamilyCons
tran_AddressFamilyCreate
tran_AddressFamilyDestroy

  Chapter 39. TRAN Functions 345



 tran_AddressFamilyCreate  
 

 tran_AddressFamilyCreate

Creates a new address family.

 Synopsis
#include <tran/tran.h>

tran_addressFamily_t
tran_AddressFamilyCreate(

IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_AddressFamilyCreate function creates a new object of type tran_addressFamily_t. The
application provides a generic pointer and a data length to define the contents of the object. TRAN copies
the data; the application can de-allocate its copy of the data as soon as the function completes. The
application must call the tran_AddressFamilyDestroy function when it no longer needs the object.

 Related Information

tran_addressFamily_t
tran_AddressFamilyCons
tran_AddressFamilyCopy
tran_AddressFamilyDestroy

346 Encina Toolkit Executive Guide and Reference  



  tran_AddressFamilyData
 

 tran_AddressFamilyData

Retrieves an address family.

 Synopsis
#include <tran/tran.h>

void Gtran_AddressFamilyData(
IN tran_addressFamily_t object)

 Parameters
object

Specifies the object containing the address family.

 Description

The tran_AddressFamilyData function retrieves the data contained in an object of type
tran_addressFamily_t. The function returns a generic pointer to the data; the
tran_AddressFamilyLength function returns the valid length of that data in bytes. The data pointer only
remains valid as long as the original object; if the data is required, the caller should copy the data before
the object is destroyed.

 Related Information

tran_addressFamily_t
tran_AddressFamilyLength

  Chapter 39. TRAN Functions 347



 tran_AddressFamilyDestroy  
 

 tran_AddressFamilyDestroy

Destroys an address family.

 Synopsis
#include <tran/tran.h>

void tran_AddressFamilyDestroy(
IN tran_addressFamily_t object)

 Parameters
object

Specifies the object containing the address family.

 Description

The tran_AddressFamilyDestroy function destroys an object of type tran_addressFamily_t when it is no
longer needed. Applications must use this function for objects that they create or construct, and for
objects that TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it
cannot be used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_addressFamily_t
tran_AddressFamilyCons
tran_AddressFamilyCopy
tran_AddressFamilyCreate

348 Encina Toolkit Executive Guide and Reference  



  tran_AddressFamilyEqual
 

 tran_AddressFamilyEqual

Determines whether two address families are equal.

 Synopsis
#include <tran/tran.h>

int tran_AddressFamilyEqual(
IN tran_addressFamily_t objectOne,
IN tran_addressFamily_t objectTwo)

 Parameters
objectOne

Specifies the first address family.

objectTwo
Specifies a second address family to be compared with the value specified for objectOne.

 Description

The tran_AddressFamilyEqual function compares two objects of type tran_addressFamily_t to
determine whether they are equal. The function returns 1 (TRUE) if the objects are equal and 0 (FALSE)
if the objects differ.

 Related Information

tran_addressFamily_t

  Chapter 39. TRAN Functions 349



 tran_AddressFamilyLength  
 

 tran_AddressFamilyLength

Retrieves the length of an address family.

 Synopsis
#include <tran/tran.h>

unsigned long tran_AddressFamilyLength(
IN tran_addressFamily_t object)

 Parameters
object

Specifies the object containing the address family.

 Description

The tran_AddressFamilyData function retrieves the data contained in an object of type
tran_addressFamily_t. The function returns the valid length of that data in bytes; the
tran_AddressFamilyData function returns a generic pointer to the data.

 Related Information

tran_addressFamily_t
tran_AddressFamilyData

350 Encina Toolkit Executive Guide and Reference  



  tran_AddressLength
 

 tran_AddressLength

Retrieves the length of an address.

 Synopsis
#include <tran/tran.h>

unsigned long tran_AddressLength(
IN tran_address_t object)

 Parameters
object

Specifies the object containing the address.

 Description

The tran_AddressData function retrieves the data contained in an object of type tran_address_t. The
function returns the valid length of that data in bytes; the tran_AddressData function returns a generic
pointer to the data.

 Related Information

tran_address_t
tran_AddressData

  Chapter 39. TRAN Functions 351



 tran_Alarm  
 

 tran_Alarm

Reports that an alarm has gone off.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Alarm()

 Description

The tran_Alarm function is called when an interval specified by the alarm-set upcall has elapsed. TRAN
checks the time when it is awakened, so spurious calls to tran_Alarm cost only performance.

 Return Values
TRAN_SUCCESS
TRAN_COMM_NOT_INITIALIZED

 Related Information

tran_SpecialEnvironment
tran_status_t

352 Encina Toolkit Executive Guide and Reference  



  tran_ApplIdCons
 

 tran_ApplIdCons

Creates a new application identifier from existing data.

 Synopsis
#include <tran/tran.h>

tran_applId_t tran_ApplIdCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_ApplIdCons function creates a new object of type tran_applId_t from existing data. The
application provides a generic pointer and a data length to define the contents of the object. The function
stores a reference to the original data rather than copying the data. The application must not de-allocate
or change the data it uses to construct an object until that object is destroyed. TRAN also promises not to
change the data provided. The application can specify that TRAN is responsible for freeing the data by
calling a destructor function when it no longer needs the data. TRAN is permitted to free this memory
whenever it deems appropriate.

 Related Information

tran_applId_t
tran_ApplIdCopy
tran_ApplIdCreate

  Chapter 39. TRAN Functions 353



 tran_ApplIdCopy  
 

 tran_ApplIdCopy

Creates a copy of an application identifier object.

 Synopsis
#include <tran/tran.h>

tran_applId_t tran_ApplIdCopy(
IN tran_applId_t object)

 Parameters
object

Specifies an application identifier object to copy.

 Description

The tran_ApplIdCopy function creates a new object of type tran_applId_t from an existing application
identifier object. The application must call the tran_ApplIdDestroy function when it no longer needs the
object.

 Related Information

tran_applId_t
tran_ApplIdCons
tran_ApplIdCreate
tran_ApplIdDestroy

354 Encina Toolkit Executive Guide and Reference  



  tran_ApplIdCreate
 

 tran_ApplIdCreate

Creates a new application identifier.

 Synopsis
#include <tran/tran.h>

tran_applId_t tran_ApplIdCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_ApplIdCreate function creates a new object of type tran_applId_t. The application provides a
generic pointer and a data length to define the contents of the object. TRAN copies the data; the
application can de-allocate its copy of the data as soon as the function completes. The application must
call the tran_ApplIdDestroy function when it no longer needs the object.

 Related Information

tran_applId_t
tran_ApplIdCons
tran_ApplIdCopy
tran_ApplIdDestroy

  Chapter 39. TRAN Functions 355



 tran_ApplIdData  
 

 tran_ApplIdData

Retrieves an application identifier.

 Synopsis
#include <tran/tran.h>

void Gtran_ApplIdData(
IN tran_applId_t object)

 Parameters
object

Specifies the object containing the application identifier.

 Description

The tran_ApplIdData function retrieves the data contained in an object of type tran_applId_t. The
function returns a generic pointer to the data; the tran_ApplIdLength function returns the valid length of
that data in bytes. The data pointer only remains valid as long as the original object; if the data is
required, the caller should copy the data before the object is destroyed.

 Related Information

tran_applId_t
tran_ApplIdLength

356 Encina Toolkit Executive Guide and Reference  



  tran_ApplIdDestroy
 

 tran_ApplIdDestroy

Destroys an application identifier.

 Synopsis
#include <tran/tran.h>

void tran_ApplIdDestroy(
IN tran_applId_t object)

 Parameters
object

Specifies the object containing the application identifier.

 Description

The tran_ApplIdDestroy function destroys an object of type tran_applId_t when it is no longer needed.
Applications must use this function for objects that they create or construct, and for objects that TRAN
provides in interface functions, upcalls, and callbacks. Once an object is destroyed it cannot be used, nor
can any pointers to its contents acquired using the data access functions.

 Related Information

tran_applId_t
tran_ApplIdCons
tran_ApplIdCopy
tran_ApplIdCreate

  Chapter 39. TRAN Functions 357



 tran_ApplIdEqual  
 

 tran_ApplIdEqual

Determines whether two application identifiers are equal.

 Synopsis
#include <tran/tran.h>

int tran_ApplIdEqual(
IN tran_applId_t objectOne,
IN tran_applId_t objectTwo)

 Parameters
objectOne

Specifies the first object.

objectTwo
Specifies a second object to be compared with the value specified for objectOne.

 Description

The tran_ApplIdEqual function compares two objects of type tran_applId_t to determine whether they
are equal. The function returns 1 (TRUE) if the objects are equal, and 0 (FALSE) if the objects differ.

 Related Information

tran_applId_t

358 Encina Toolkit Executive Guide and Reference  



  tran_ApplIdLength
 

 tran_ApplIdLength

Retrieves the length of an application identifier.

 Synopsis
#include <tran/tran.h>

unsigned long tran_ApplIdLength(
IN tran_applId_t object)

 Parameters
object

Specifies the object containing the application identifier.

 Description

The tran_ApplIdLength function retrieves the data contained in an object of type tran_applId_t. The
function returns the valid length of that data in bytes; the tran_ApplIdData function returns a generic
pointer to the data.

 Related Information

tran_applId_t
tran_ApplIdData

  Chapter 39. TRAN Functions 359



 tran_ApplIdLocal  
 

 tran_ApplIdLocal

Returns the identifier for this application.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ApplIdLocal(
OUT tran_applId_t Gself)

 Parameters
self

Returns the identifier for this application.

 Description

The tran_ApplIdLocal function is called to determine its own application identifier. The application
identifier may not be known until the application has called the tran_Ready function; it is available within
during-restart callbacks.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY

 Related Information

tran_applId_t
tran_CallDuringRestart
tran_Ready
tran_status_t

360 Encina Toolkit Executive Guide and Reference  



  tran_ApplIsRecoverable
 

 tran_ApplIsRecoverable

Inquires whether the local application is recoverable.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ApplIsRecoverable(
OUT int GisRecoverableOut)

 Parameters
isRecoverableOut

Returns TRUE if the local application is recoverable; otherwise, returns FALSE.

 Description

The tran_ApplIsRecoverable function is called to determine whether the local application contains at
least one recovery service. After initializing all mandatory components, an application can call this
function to determine if a recovery service needs to be registered in order to ensure that the application is
recoverable.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED

 Related Information

tran_ListTransactions
tran_status_t

  Chapter 39. TRAN Functions 361



 tran_Begin  
 

 tran_Begin

Begins a new transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Begin(
IN tran_tid_t parentTid,
OUT tran_tid_t GchildTidP)

 Parameters
parentTid

Specifies the parent transaction, or TRAN_TID_NULL to begin a top-level transaction.

childTidP
Returns the child's transaction identifier.

 Description

The tran_Begin function begins a new transaction and assigns it a transaction identifier. The application
can set the parentTid parameter to TRAN_TID_NULL to begin a top-level transaction.

Nested Transactions: The application can specify a parent to begin a subtransaction. The parent
transaction must be active in this application.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_NESTING_DISABLED
TRAN_TID_NOT_VALID

 Related Information

tran_Abort
tran_AbortFamily
tran_End
tran_status_t
tran_tid_t

362 Encina Toolkit Executive Guide and Reference  



  tran_CallAfterCWRT
 

 tran_CallAfterCWRT

Requests a callback after one transaction commits with respect to another.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallAfterCWRT(
IN tran_tid_t target,
IN tran_tid_t questioner,
IN void (GcallbackAfterCWRT)(IN tran_tid_t,

 IN tran_tid_t,
IN void G,

 IN tran_relativeCommitState_t),
IN void Garg)

 Parameters
target

Specifies the transaction whose status is being queried.

questioner
Specifies the transaction with respect to which the query is done.

callbackAfterCWRT
Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallAfterCWRT function requests that the relative-commitment callback be executed when the
target parameter commits with respect to (CWRT) the questioner parameter. The target and questioner
must be different members of the same transaction family. This procedure also is executed if either
transaction aborts or if questioner commits to its parent. Each relative-commitment callback is executed
exactly once, when the first of these events occurs. If more than one callback is registered for the same
pair of transactions, the callbacks are all invoked in an unspecified order.

Relative-commitment Callback: The callbackAfterCWRT parameter points to a function that
TRAN invokes after one transaction commits with respect to another. This function must be defined to
take four arguments and return no value. The value of the target parameter is passed as the first
argument, the value of the questioner parameter is passed as the second, and the value of the arg
parameter is passed as the third. The result of the query is passed as the fourth argument. See
tran_relativeCommitState_t for a description of the relative commit state types TRAN defines.

  Chapter 39. TRAN Functions 363



 tran_CallAfterCWRT  
 

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_CallAfterFinished
tran_CallAfterResolution
tran_CallAfterRestart
tran_CallBeforeAbort
tran_CallBeforePrepare
tran_CallDuringRestart
tran_CallTransactionallyBeforePrepare
tran_relativeCommitState_t
tran_tid_t

364 Encina Toolkit Executive Guide and Reference  



  tran_CallAfterFinished
 

 tran_CallAfterFinished

Requests a callback after all communication and recovery functions have been completed.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallAfterFinished(
IN tran_tid_t tid,
IN void (GcallbackAfterFinished)(IN tran_tid_t, IN void G),
IN void Garg)

 Parameters
tid Specifies the transaction identifier.

callbackAfterFinished
Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallAfterFinished function requests that the after-finished callback be executed after all
communication and recovery functions associated with the transaction identified by the tid parameter have
been completed. A new callback can be registered at any time before all existing callbacks have returned.
Once all callbacks for a transaction have been completed, this function returns the TRAN_TID_NOT_VALID
status code, and the callback function is not executed. Each after-finished callback is invoked exactly
once. If more than one callback is registered for the same transaction, the callbacks are all invoked in an
unspecified order.

After-finished Callback: The callbackAfterFinished parameter points to a function that TRAN
invokes after a transaction is finished. This function must be defined to take two arguments and return no
value. The value of tid is passed as the first argument, and the value of arg is passed as the second.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_CallAfterCWRT
tran_CallAfterResolution
tran_CallAfterRestart
tran_CallBeforeAbort
tran_CallBeforePrepare
tran_CallDuringRestart
tran_CallTransactionallyBeforePrepare
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 365



 tran_CallAfterResolution  
 

 tran_CallAfterResolution

Requests a callback after a transaction's outcome is determined.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallAfterResolution(
IN tran_tid_t tid,
IN void (GcallbackAfterResolution)(IN tran_tid_t, IN void G),
IN void Garg)

 Parameters
tid Specifies the transaction identifier.

callbackAfterResolution
Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallAfterResolution function requests that the after-resolution callback be executed after the
outcome of the top-level transaction identified by the tid parameter is determined and the recovery service
has acted upon that outcome. If the transaction's outcome has already been determined,
tran_CallAfterResolution returns the TRAN_TID_NOT_VALID status code and the callback is not executed.

Each after-resolution callback is invoked exactly once. If more than one callback is registered for the
same transaction, the callbacks are all invoked in an unspecified order.

After-resolution Callback: The callbackAfterResolution parameter points to a function that TRAN
invokes after a transaction resolution. This function must be defined to take two arguments and return no
value. The value of tid is passed as the first argument, and the value of arg is passed as the second.

Nested Transactions: A subtransaction is considered resolved when it or one of its ancestors
aborts or when the top-level transaction commits.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

366 Encina Toolkit Executive Guide and Reference  



  tran_CallAfterResolution
 

 Related Information

tran_CallAfterCWRT
tran_CallAfterFinished
tran_CallAfterRestart
tran_CallBeforeAbort
tran_CallBeforePrepare
tran_CallDuringRestart
tran_CallTransactionallyBeforePrepare
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 367



 tran_CallAfterRestart  
 

 tran_CallAfterRestart

Requests a callback after restart.

 Synopsis
#include <tran/tran.h>

tran_status_t
tran_CallAfterRestart(

IN void G(callbackAfterRestart)(IN void G),
IN pointer_t Garg)

 Parameters
callbackAfterRestart

Specifies the callback procedure.

arg
Specifies the pointer to an argument for the callback procedure.

 Description

The tran_CallAfterRestart function requests that the after-restart callback be executed when the
tran_Ready function is about to return. The application is considered ready within the callback; all TRAN
interface functions can be used.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

After-restart Callback: The callbackAfterRestart parameter points to a function that TRAN invokes
after a restart. This function must be defined to take one argument and return no value. The value of arg
is passed as the only argument.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED

 Related Information

tran_CallAfterCWRT
tran_CallAfterFinished
tran_CallAfterResolution
tran_CallBeforeAbort
tran_CallBeforePrepare
tran_CallDuringRestart
tran_CallTransactionallyBeforePrepare
tran_Ready
tran_status_t

368 Encina Toolkit Executive Guide and Reference  



  tran_CallBeforeAbort
 

 tran_CallBeforeAbort

Requests a callback before a transaction aborts.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallBeforeAbort(
IN tran_tid_t tid,
IN void (GcallbackBeforeAbort)(IN tran_tid_t, IN void G),
IN void Garg)

 Parameters
tid Specifies the transaction identifier.

callbackBeforeAbort
Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallBeforeAbort function requests that the before-abort callback be executed before the
transaction identified by the tid parameter is aborted. If the transaction has already aborted, the function
returns the TRAN_TID_NOT_VALID status code and the callback is not executed. If the transaction commits,
the callback is never executed.

If the application's recovery service indicates at prepare time that it does not need to find out the outcome
of the transaction, the callback is not executed even if the transaction aborts. The recovery service's
interface should specify precisely when this happens. Typically it happens when the application does not
update any data during the transaction.

Each before-abort callback is invoked at most once. If more than one before-abort callback is registered
and the transaction aborts, the callbacks are all invoked in an unspecified order. Because before-abort
callbacks are not always invoked, the application may want to register a transaction resolution callback to
deallocate data structures associated with the before-abort callback. See the tran_CallAfterResolution
function for more information.

Before-abort Callback: The callbackBeforeAbort parameter points to a function that TRAN invokes
before a transaction aborts. This function must be defined to take two arguments and return no value.
The value of tid is passed as the first argument, and the value of arg is passed as the second.

Nested Transactions: Any transaction that has registered a before-abort callback is notified when
any subtree containing the named transaction aborts.

  Chapter 39. TRAN Functions 369



 tran_CallBeforeAbort  
 

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_CallAfterCWRT
tran_CallAfterFinished
tran_CallAfterResolution
tran_CallAfterRestart
tran_CallBeforePrepare
tran_CallDuringRestart
tran_CallTransactionallyBeforePrepare
tran_status_t
tran_tid_t

370 Encina Toolkit Executive Guide and Reference  



  tran_CallBeforePrepare
 

 tran_CallBeforePrepare

Requests a callback before a specific transaction prepares.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallBeforePrepare(
IN tran_tid_t tid,
IN void (GcallbackBeforePrepare)(IN tran_tid_t, IN void G, IN tran_tid_t),
IN void Garg)

 Parameters
tid Specifies the transaction identifier.

callbackBeforePrepare
Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallBeforePrepare function requests that the before-prepare callback be executed before the
transaction identified by the tid parameter prepares. Remote transactional work is not legal in the
callback.

If the transaction has already committed or aborted, the function returns the status code
TRAN_TID_NOT_VALID, and the callback is not executed. If the transaction aborts before it prepares, the
callback is never executed.

Each before-prepare callback is invoked at most once. If more than one before-prepare callback is
registered and the transaction prepares, the callbacks are all invoked in an unspecified order. Because
before-prepare callbacks cannot be invoked for transactions that abort, the application may want to
register a transaction resolution callback to de-allocate data structures associated with the before-prepare
callback. See the tran_CallAfterResolution function for more information.

Because of pre-prepare, the application may prepare a transaction more than once. TRAN executes the
before-prepare callback only for the single prepare phase immediately following the call to
tran_CallBeforePrepare. If the callback must be repeated on each prepare, the callback can re-register
itself.

Before-prepare Callback: The callbackBeforePrepare parameter points to a function that TRAN
invokes before a transaction prepares. This function must be defined to take two arguments and return no
value. The value of tid is passed as the first argument, and the value of arg is passed as the second.
The identifier of the active transaction is passed as the third argument; it is not legal to perform remote
transactional work in this callback.

  Chapter 39. TRAN Functions 371



 tran_CallBeforePrepare  
 

Nested Transactions: Before-prepare callbacks can be registered on behalf of any member of a
transaction family prior to resolution.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_CallAfterCWRT
tran_CallAfterFinished
tran_CallAfterResolution
tran_CallAfterRestart
tran_CallBeforeAbort
tran_CallDuringRestart
tran_CallTransactionallyBeforePrepare
tran_status_t
tran_tid_t

372 Encina Toolkit Executive Guide and Reference  



  tran_CallDuringRestart
 

 tran_CallDuringRestart

Requests a callback during restart.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallDuringRestart(
IN void (GcallbackDuringRestart)(IN void G),
IN void Garg)

 Parameters
callbackDuringRestart

Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallDuringRestart function requests that the during-restart callback be executed after TRAN
has recovered its state during restart. The callback is executed within the tran_Ready function after
TRAN has processed the log records provided by recovery services, but before TRAN makes any
communication service upcalls to try to resolve transactions.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

During-restart Callback: The callbackDuringRestart parameter points to a function that TRAN
invokes during a restart. This function must be defined to take one argument and return no value. The
value of the arg parameter is passed as the only argument.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED

 Related Information

tran_CallAfterCWRT
tran_CallAfterFinished
tran_CallAfterResolution
tran_CallAfterRestart
tran_CallBeforeAbort
tran_CallBeforePrepare
tran_CallTransactionallyBeforePrepare
tran_Ready
tran_status_t

  Chapter 39. TRAN Functions 373



 tran_CallOnHeuristicDamage  
 

 tran_CallOnHeuristicDamage

Requests a callback when heuristic damage is detected.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallOnHeuristicDamage(
IN tran_tid_t tid,
IN void (GcallbackOnHeuristicDamage)(IN tran_tid_t, IN void G, IN tran_applId_t),
IN pointer_t arg)

 Parameters
tid Specifies the transaction identifier.

callbackOnHeuristicDamage
Specifies the procedure to call when heuristic damage is discovered.

arg
Specifies a pointer to an argument.

 Description

The tran_CallOnHeuristicDamage function requests a callback when heuristic damage is discovered. An
application is said to have caused heuristic damage when it forces or records a heuristic outcome that
does not match the distributed outcome for a transaction.

If the specified transaction identifier, tid, is TRAN_TID_NULL, the callback applies to any transaction in which
this application is, or has been, a participant. If the damaged transaction has previously finished, a new
transaction identifier is assigned; the global identifier for the transaction (stored in the
TRAN_PROPERTY_KEY_GLOBAL_IDENTIFIER property) is the same. If the specified transaction is other than
TRAN_TID_NULL, the callback applies only to that transaction, and expires when the transaction finishes.

Heuristic-damage Callback: The callbackOnHeuristicDamage parameter points to a function that
is invoked when TRAN discovers that any application has caused heuristic damage. Callbacks registered
for a specific transaction expire when they are invoked; a callback must re-register itself if further heuristic
damage reports for the transaction are required.

The function must be defined to take three arguments and return no value. The value of tid is passed as
the first argument. The value of arg is passed as the second argument. The identifier of the application
that forced or recorded the heuristic outcome that resulted in damage is passed as the third argument.

Nested Transactions: Heuristic damage occurs on a per-transaction basis but is reported on a
family basis. Any transaction that is heuristically completed with an outcome that does not match the
distributed outcome is considered damaged. Callbacks are invoked when any member of the transaction
family experiences heuristic damage.

374 Encina Toolkit Executive Guide and Reference  



  tran_CallOnHeuristicDamage
 

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_applId_t
tran_DeclareReportableHeuristicDecisions
tran_ForceHeuristicOutcome
tran_ForciblyFinish
tran_RecordHeuristicOutcome
tran_RequireHeuristicDamageReporting
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 375



 tran_CallTransactionallyBeforePrepare  
 

 tran_CallTransactionallyBeforePrepare

Requests a callback in which work is legal before a specific transaction prepares.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CallTransactionallyBeforePrepare(
IN tran_tid_t tid,
IN void (GcallbackBeforePrepare)(IN tran_tid_t, IN void G, IN tran_tid_t),
IN void Garg)

 Parameters
tid Specifies the transaction identifier.

callbackBeforePrepare
Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_CallTransactionallyBeforePrepare function requests that the before-prepare callback be
executed before the transaction identified by the tid parameter prepares. The before-prepare callback is
permitted to perform additional transactional work.

If an application needs a before-prepare callback, but does not need to do transactional work in the
callback, it should use the tran_CallBeforePrepare function instead.

If the transaction has already committed or aborted, the function returns the TRAN_TID_NOT_VALID status
code and the before-prepare callback is not executed. If the transaction aborts before it prepares, the
before-prepare callback is never executed.

Each before-prepare callback is invoked at most once. If more than one before-prepare callback is
registered and the transaction prepares, the callbacks are all invoked in an unspecified order. Because
before-prepare callbacks are not invoked for transactions that abort, the application may want to register a
transaction resolution callback to de-allocate data structures associated with the prepare callback. See
the tran_CallAfterResolution function for more information.

Because of pre-prepare, the application may prepare a transaction more than once. See the
tran_PrePrepare function for more information. TRAN executes the before-prepare callback only for the
single prepare phase immediately following the call to the tran_CallTransactionallyBeforePrepare
function. If the callback must be repeated on each prepare, the callback can re-register itself.

376 Encina Toolkit Executive Guide and Reference  



  tran_CallTransactionallyBeforePrepare
 

Before-prepare Callback: The callbackBeforePrepare parameter points to a function that TRAN
invokes before a transaction prepares. This function must be defined to take two arguments and return no
value. The value of tid is passed as the first argument, and the value of arg is passed as the second.
The identifier of the active transaction, which the callback can use to perform additional transactional work,
is passed as the third argument.

Nested Transactions: Before-prepare callbacks can be registered on behalf of any member of a
transaction family prior to resolution. Work can be performed in transactional before-prepare callbacks
only on the transaction specified in the callback, which may not be the transaction for which the callback
was registered.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_CallAfterCWRT
tran_CallAfterFinished
tran_CallAfterResolution
tran_CallAfterRestart
tran_CallBeforeAbort
tran_CallBeforePrepare
tran_PrePrepare
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 377



 tran_CommBlockFunctions  
 

 tran_CommBlockFunctions

Provides block and wake-up functions.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommBlockFunctions(
IN tran_serviceId_t commServiceId,
IN void (GupcallDefaultBlock)(IN tran_serviceId_t,

 IN tran_tid_t,
IN unsigned int,
IN unsigned long),

IN void (GupcallDefaultWakeup)(IN tran_serviceId_t,
 IN tran_tid_t,

IN unsigned int))

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

upcallDefaultBlock
Specifies the procedure to block waiting for communication service action.

upcallDefaultWakeup
Specifies the procedure to indicate that upcallDefaultBlock should return.

 Description

The tran_CommBlockFunctions function installs its own procedures for blocking application threads.
This function is optional; if a communication service does not provide its own block and wake-up
procedures, TRAN uses the default procedures established as part of the environment. A communication
service can supply a block upcall to explicitly receive asynchronous TRAN messages from other
applications.

Block Upcall: The upcallDefaultBlock parameter points to a function that TRAN can call to wait for
communication service functions to complete. When a block upcall is invoked, it is assigned a unique
identifier. The block upcall should not return until the wake-up upcall is invoked with the same transaction
and block identifiers.

The function must be defined to take four arguments and return no value. The identifier for the
communication service being called (commServiceId) is passed as the first argument. The transaction
identifier for the blocked transaction is passed as the second argument. A unique identifier for the block
invocation is passed as the third argument. The number of microseconds that should elapse before
calling the tran_Alarm function is passed as the fourth argument; calling tran_Alarm is required only if
the upcall implementation interferes with the alarm upcall in the environment.

378 Encina Toolkit Executive Guide and Reference  



  tran_CommBlockFunctions
 

Wake-up Upcall: The upcallDefaultWakeup parameter points to a function that TRAN calls to cause
the corresponding block upcall to return.

The function must be defined to take three arguments and return no value. The identifier for the
communication service being called (commServiceId) is passed as the first argument. The transaction
identifier for the blocked transaction is passed as the second argument. A unique identifier for the block
invocation is passed as the third argument.

 Return Values
TRAN_SUCCESS

 Related Information

tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_serviceId_t
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 379



 tran_CommIdentifyBlindRequest  
 

 tran_CommIdentifyBlindRequest

Specifies the address and identifier of the application that received a blind RPC.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommIdentifyBlindRequest(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_address_t localAddress,
IN tran_tid_t tid)

 Parameters
commServiceId

Specifies the service identifier of the calling communications service.

remoteApplId
Specifies the application to which the request is sent.

remoteAddress
Specifies the address that can be used to reach the remote application again.

localAddress
Specifies the address that can be used to reach the local application again.

tid Specifies the transaction identifier.

 Description

The tran_CommIdentifyBlindRequest function informs TRAN of the application address and identifier of
the destination of a “blind” RPC. A blind RPC is one that is invoked (via the
tran_CommSendingBlindRequest function) before the address and identifier of the destination
application are known.

Exactly one call must be made to the tran_CommIdentifyBlindRequest function for each call made to
the tran_CommSendingBlindRequest function, unless the transaction associated with the blind RPC is
aborted. Each pair of calls is equivalent to a single call to the tran_CommSendingRequest function.

TRAN must be informed of the address and identifier of the destination of the RPC before the RPC is
completed. After tran_CommIdentifyBlindRequest is called, the communications service can call the
tran_CommReceivedReply function to complete the blind RPC.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

380 Encina Toolkit Executive Guide and Reference  



  tran_CommIdentifyBlindRequest
 

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingBlindRequest
tran_CommSendingReply
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_serviceId_t
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 381



 tran_CommInit  
 

 tran_CommInit

Initializes the TRAN communication interface.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommInit(
IN tran_addressFamily_t addressFamily,
IN tran_upcallCommSend_t upcallCommSend,
OUT tran_serviceId_t GcommServiceIdOut)

 Parameters
addressFamily

Specifies the permanently unique identifier for the communication service.

upcallCommSend
Specifies the procedure that sends messages for TRAN.

commServiceIdOut
Returns the service identifier to be used in future calls.

 Description

The tran_CommInit function initializes its interface to TRAN. Using this function, it provides an
addressFamily parameter to identify itself and a procedure that TRAN can call to deliver messages.
TRAN returns a short-lived identifier for the communication service that can be used in other interface
functions and upcalls. The tran_CommInit function must be called after the application calls the tran_Init
function, but before it calls the tran_Ready function.

TRAN uses the address family identifier to correlate the underlying communication services in different
applications. The address family identifier must be unique among all communication services; however, a
given communication service must use the same identifier in all applications in which it is included. The
address family identifier is represented by a variable-size array of bytes. TRAN does not interpret the
contents of an address family other than to compare for equality.

Send Upcall: The upcallCommSend parameter points to a function that asks a communication service
to deliver messages to the transaction service in another application. The function must be defined to
take the following five arguments and return no value:

1. The identifier of the communication service being called is passed as the first argument (type
tran_serviceId_t).

2. The number of messages to send is passed as the second argument (type unsigned int).

3. An array of destination-application identifiers is passed as the third argument (type tran_applId_t).

4. An array of destination addresses is passed as the fourth argument (type tran_address_t).

5. An array of messages to send is passed as the fifth argument (type tran_message_t).

For each message in the array of messages, the communication service in the remote application
(identified by the corresponding elements of the application-identifier and address arrays) should call
tran_CommReceived to deliver the message to TRAN. The communication service is responsible for
destroying each message (using tran_MessageDestroy), application identifier (using

382 Encina Toolkit Executive Guide and Reference  



  tran_CommInit
 

tran_ApplIdDestroy), and address (using tran_AddressDestroy) when they are no longer needed; the
arrays themselves should not be destroyed.

The same message may appear more than once in the array of messages. Identical messages always
appear in sequence in the array; they are never separated by other messages. The communication
service can use the tran_MessageIdentical function to detect that a single message is intended for more
than one destination, and it can use a multicast mechanism to deliver the message. The
tran_MessageDestroy function must be called for a message as many times as the message appears in
the array of messages. A communication service that cannot perform efficient multicast does not need to
treat identical messages specially.

The elements of the application-identifier and address arrays that correspond to the element of the
message array specify the destination for each message. The destination application is the application
that was involved in some transaction that became active since the last restart or was recovered during
that restart. The destination address is provided by the same communication service in some participant
in the transaction, either implicitly in a remote invocation function (tran_CommSendingRequest for
example) or explicitly in a call to tran_CommProvideAddressInfo. Normally, the address is one provided
by the local application; however, in the event of failures, TRAN may try to use addresses provided by
other applications.

TRAN does not demand reliable or synchronous message delivery. The communication service can return
from the upcall before the messages are actually sent. Messages may be lost; acknowledgments are not
required. The communication service should make its best effort to deliver a message. The
tran_CommProvideAddressInfo function can be used to inform TRAN of observed failures.

TRAN does require that any messages that are delivered are correct. Messages must be delivered in
whole, and their contents must not be corrupted. Messages must not be delivered to applications other
than those for which they were intended.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_APPL_READY

 Related Information

tran_address_t
tran_AddressDestroy
tran_addressFamily_t
tran_applId_t
tran_ApplIdDestroy
tran_CommBlockFunctions
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_Init
tran_message_t
tran_MessageDestroy

  Chapter 39. TRAN Functions 383



 tran_CommInit  
 

tran_MessageIdentical
tran_Ready
tran_serviceId_t
tran_status_t
tran_upcallCommSend_t

384 Encina Toolkit Executive Guide and Reference  



  tran_CommProvideAddressInfo
 

 tran_CommProvideAddressInfo

Provides information about usefulness of addresses.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommProvideAddressInfo(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_tid_t tid,
IN int addressIsPermanent,
IN unsigned long estimatedTimeToReach)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

remoteApplId
Specifies the application for which address information is provided.

remoteAddress
Specifies the address that can be used for the remote application.

tid Specifies the transaction for which the address can be used.

addressIsPermanent
Indicates whether the address eventually succeeds.

estimatedTimeToReach
Specifies the estimated one-way message delivery time.

 Description

The tran_CommProvideAddressInfo function provides addressing information about a remote application
specified by the remoteApplId parameter. The information pertains to a particular address specified by the
remoteAddress parameter. This address need not have been used for the remote application; the
communication service can use this function to suggest a new address for an application. The use of the
address information can be limited to a particular transaction specified by the tid parameter. If it can be
applied to any transaction, tid may be TRAN_TID_NULL. By asserting the addressIsPermanent parameter,
the communication service guarantees that the address eventually succeeds. The estimatedTimeToReach
parameter gives an estimate of the time (in microseconds) that would be required to deliver a message
(using the comm-send upcall) using the specified address at this time; a value of zero can be used to
indicate that an estimate is unavailable.

  Chapter 39. TRAN Functions 385



 tran_CommProvideAddressInfo  
 

 Return Values
TRAN_SUCCESS
TRAN_COMM_NOT_INITIALIZED

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_serviceId_t
tran_status_t

386 Encina Toolkit Executive Guide and Reference  



  tran_CommReceived
 

 tran_CommReceived

Delivers a message to TRAN.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommReceived(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_address_t localAddress,
IN tran_message_t message,
OUT tran_message_t GreplyOut)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

remoteApplId
Specifies the identifier of the application from which the message was received.

remoteAddress
Specifies the address that can be used to reach the remote application again.

localAddress
Specifies the address that can be used to reach the local application again.

message
Specifies the data from the comm-send upcall in the remoteApplId parameter.

replyOut
Returns a reply message, if appropriate.

 Description

The tran_CommReceived function delivers a message from a comm-send upcall in the specified remote
application (remoteApplId). The communication service should specify an address that can be used to
send future messages to the remote application for the remoteAddress parameter and the address the
remote application used to deliver this message for the localAddress parameter. The communication
service can specify that it can conveniently return data to TRAN in the remote application by providing a
replyOut parameter that is not ((tran_message_t *) 0). TRAN fills replyOut with a message if necessary;
the communication service must call the tran_MessageDestroy function to destroy replyP when it no
longer needs that message. If no reply is appropriate, TRAN fills replyOut with TRAN_MESSAGE_NULL; the
communication service can use the tran_MessageIdentical function to test for equality with this null
value.

  Chapter 39. TRAN Functions 387



 tran_CommReceived  
 

 Return Values
TRAN_COMM_NOT_INITIALIZED
TRAN_INVALID_MESSAGE
TRAN_SUCCESS

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_message_t
tran_MessageDestroy
tran_MessageIdentical
tran_serviceId_t
tran_status_t

388 Encina Toolkit Executive Guide and Reference  



  tran_CommReceivedReply
 

 tran_CommReceivedReply

Completes a transactional remote invocation.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommReceivedReply(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_address_t localAddress,
IN tran_message_t piggybackMessage,
OUT tran_tid_t GtidOut)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

remoteApplId
Specifies the identifier of the application from which the reply was received.

remoteAddress
Specifies the address that can be used to reach the remote application again.

localAddress
Specifies the address that can be used to reach the local application again.

piggybackMessage
Specifies the data from the tran_CommSendingReply function to TRAN.

tidOut
Returns a transaction identifier.

 Description

The tran_CommReceivedReply function is called after making a transactional remote invocation. The
communication service must provide the application identifier for the remote application, and an address
that it can use later to deliver other TRAN messages to that application; it must also provide an address
the remote application can use to send TRAN data back to the local application. The communication
service also provides TRAN data generated by a call to the tran_CommSendingRequest function by the
same communication service (having the same address family) in the remote application. TRAN returns a
local identifier for the transaction.

A communication service that has called the tran_CommServicePromisesToMatchReplies function must
provide the transaction identifier used in the corresponding tran_CommReceivedRequest function in the
tidOut parameter. Note that the value must still be passed by reference. See the
tran_CommSendingReply function for more information regarding the handling of TRAN_MESSAGE_NULL as
a reply message.

  Chapter 39. TRAN Functions 389



 tran_CommReceivedReply  
 

 Return Values
TRAN_COMM_NOT_INITIALIZED
TRAN_INVALID_MESSAGE
TRAN_SUCCESS
TRAN_TID_NO_OUTSTANDING_REQUESTS
TRAN_TRANSACTION_ABORTED

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_message_t
tran_serviceId_t
tran_status_t
tran_tid_t

390 Encina Toolkit Executive Guide and Reference  



  tran_CommReceivedRequest
 

 tran_CommReceivedRequest

Accepts a transactional remote invocation.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommReceivedRequest(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_address_t localAddress,
IN tran_message_t piggybackMessage,
OUT tran_tid_t GtidOut)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

remoteApplId
Specifies the identifier of the application from which the request was received.

remoteAddress
Specifies the address that can be used to reach the remote application again.

localAddress
Specifies the address that can be used to reach the local application again.

piggybackMessage
Specifies the data from the tran_CommSendingRequest function to TRAN.

tidOut
Returns a transaction identifier.

 Description

The tran_CommReceivedRequest function is called when it receives a transactional invocation from
another client application. The communication service must provide the application identifier for the
remote application, and an address that it can use later to deliver other TRAN messages to that
application; it must also provide an address the remote application can use to send TRAN data back to
the local application. The communication service also provides TRAN data generated by a call to
tran_CommSendingRequest by the same communication service (having the same address family) in
the remote application. TRAN returns a local identifier for the transaction; this identifier may be different
than the one used in the client application.

 Return Values
TRAN_COMM_NOT_INITIALIZED
TRAN_INVALID_MESSAGE
TRAN_SUCCESS
TRAN_TRANSACTION_ABORTED

  Chapter 39. TRAN Functions 391



 tran_CommReceivedRequest  
 

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_message_t
tran_serviceId_t
tran_status_t
tran_tid_t

392 Encina Toolkit Executive Guide and Reference  



  tran_CommSendingBlindRequest
 

 tran_CommSendingBlindRequest

Begins a transactional RPC before the address and identifier of the destination application are known.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommSendingBlindRequest(
IN tran_tid_t tid,
OUT tran_message_t GpiggybackMessageOut)

 Parameters
tid Specifies the transaction identifier.

piggybackMessageOut
Returns data to be passed to TRAN.

 Description

The tran_CommSendingBlindRequest function initiates an RPC to a server before the application
identifier and address of the destination are known. TRAN must be informed of the application identifier
and address before the RPC completes. The communication service must provide the application
identifier for the remote application, and an address that it can use later to deliver other TRAN messages
to that application, by calling the tran_CommIdentifyBlindRequest function.

For each call made to tran_CommSendingBlindRequest, a matching call must be made to
tran_CommIdentifyBlindRequest unless the transaction associated with the RPC is aborted. Each pair
of calls is equivalent to a single call to the tran_CommSendingRequest function.

The tran_CommSendingBlindRequest function is intended for use on the first RPC to a destination, not
for every RPC. Its purpose is to simplify the initiation of communications in applications that do not
require, or are unable to determine, details about a destination application.

TRAN returns data in the piggybackMessageOut parameter that the communications service must forward
to the remote application along with the request itself. The communications service is responsible for
calling the tran_MessageDestroy function to release the data when it is no longer needed.

 Note

A disadvantage to using the tran_CommSendingBlindRequest and tran_CommIdentifyBlindRequest
calls instead of the tran_CommSendingRequest call is that TRAN cannot contact the server if the client
aborts the transaction while the RPC is in progress. In this case, the server discovers the failure
eventually but not promptly.

  Chapter 39. TRAN Functions 393



 tran_CommSendingBlindRequest  
 

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_CommBlockFunctions
tran_CommIdentifyBlindRequest
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_message_t
tran_MessageDestroy
tran_status_t
tran_tid_t

394 Encina Toolkit Executive Guide and Reference  



  tran_CommSendingReply
 

 tran_CommSendingReply

Returns from a transactional remote invocation.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommSendingReply(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_address_t localAddress,
IN tran_tid_t tid,
OUT tran_message_t GpiggybackMessageOut)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

remoteApplId
Specifies the application to which the request is sent.

remoteAddress
Specifies the address that can be used to reach the remote application again.

localAddress
Specifies the address that can be used to reach the local application again.

tid Specifies the transaction identifier.

piggybackMessageOut
Returns data to be passed to TRAN.

 Description

The tran_CommSendingReply function is called after completing a transactional invocation and before
sending the reply. The communication service must provide the application identifier for the remote
application, and an address that it can use later to deliver other TRAN messages to that application; it
must also provide an address the remote application can use to send TRAN data back to the local
application. TRAN returns data that must be delivered to TRAN in the remote application; the
communication service is responsible calling the tran_MessageDestroy function when it no longer needs
the data. A tran_CommSendingReply function must match a tran_CommReceivedRequest function for
the same transaction by the same communication service.

A communication service that has called the tran_CommServicePromisesToMatchReplies function may
be returned a piggybackMessageOut that is TRAN_MESSAGE_NULL. If so, the communication service in the
remote application must provide TRAN_MESSAGE_NULL to the corresponding tran_CommReceivedReply
function; and, the piggybackMessageOut should not be destroyed. TRAN promises to never return a
piggybackMessageOut that contains no data; a communication service can use this fact to represent a
TRAN_MESSAGE_NULL message as one containing no data purely for the purposes of transmission.

  Chapter 39. TRAN Functions 395



 tran_CommSendingReply  
 

 Return Values
TRAN_COMM_NOT_INITIALIZED
TRAN_SUCCESS
TRAN_TID_NO_OUTSTANDING_REQUESTS
TRAN_TID_NOT_ACTIVE

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_message_t
tran_MessageDestroy
tran_serviceId_t
tran_status_t
tran_tid_t

396 Encina Toolkit Executive Guide and Reference  



  tran_CommSendingRequest
 

 tran_CommSendingRequest

Begins a transactional remote invocation.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommSendingRequest(
IN tran_serviceId_t commServiceId,
IN tran_applId_t remoteApplId,
IN tran_address_t remoteAddress,
IN tran_address_t localAddress,
IN tran_tid_t tid,
OUT tran_message_t GpiggybackMessageOut)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

remoteApplId
Specifies the application to which the request is sent.

remoteAddress
Specifies the address that can be used to reach the remote application again.

localAddress
Specifies the address that can be used to reach the local application again.

tid Specifies the transaction identifier.

piggybackMessageOut
Returns data to be passed to TRAN.

 Description

The tran_CommSendingRequest function is called before invoking another application transactionally.
The communication service must provide the application identifier for the remote application, and an
address that it can use later to deliver other TRAN messages to that application; it must also provide an
address the remote application can use to send TRAN data back to the local application. TRAN returns
data that the communication service must forward to the remote application along with the request itself.
The communication service is responsible for calling the tran_MessageDestroy function to release the
piggybackMessageP when it no longer needs its data. Each call to the tran_CommSendingRequest
function must be matched by a call to the tran_CommReceivedReply function before the transaction
commits. This function is only valid when the transaction is active in this application.

 Return Values
TRAN_SUCCESS
TRAN_COMM_NOT_INITIALIZED
TRAN_TID_NOT_VALID

  Chapter 39. TRAN Functions 397



 tran_CommSendingRequest  
 

 Related Information

tran_address_t
tran_applId_t
tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommServiceAlwaysSendsReply
tran_CommServicePromisesToMatchReplies
tran_message_t
tran_MessageDestroy
tran_serviceId_t
tran_status_t
tran_tid_t

398 Encina Toolkit Executive Guide and Reference  



  tran_CommServiceAlwaysSendsReply
 

 tran_CommServiceAlwaysSendsReply

Informs TRAN that the communications service delivers messages on failed RPC replies.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommServiceAlwaysSendsReply(
IN tran_serviceId_t commServiceId)

 Parameters
commServiceId

Specifies the service identifier of the calling communications service.

 Description

The tran_CommServiceAlwaysSendsReply function can be called by a communications service to
declare that it delivers TRAN messages even when the tran_CommSendingReply function fails. This
allows messages to be piggybacked on the RPC reply—rather than being sent asynchronously—if the
transaction associated with the RPC is aborted.

If the communications service calls the tran_CommServiceAlwaysSendsReply function, it must also call
the tran_CommSendingReply function for each RPC it receives. Failure to do so can result in messages
being delayed or lost, thereby affecting performance or the quality of abort information. TRAN can return
a message in any call to the tran_CommSendingReply function, including ones that do not return
TRAN_SUCCESS. TRAN returns the message TRAN_MESSAGE_NULL if it has no message to deliver on an RPC
reply.

The tran_CommServiceAlwaysSendsReply function must be called during initialization, after calling
tran_CommInit and before calling tran_Ready. The communications service in the client should call the
tran_CommReceived function to deliver the message to TRAN in the client.

 Return Values
TRAN_APPL_READY
TRAN_SUCCESS

 Related Information

tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServicePromisesToMatchReplies
tran_Ready
tran_serviceId_t
tran_status_t

  Chapter 39. TRAN Functions 399



 tran_CommServicePromisesToMatchReplies  
 

 tran_CommServicePromisesToMatchReplies

Enables transactional invocation reply optimizations.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_CommServicePromisesToMatchReplies(
IN tran_serviceId_t commServiceId)

 Parameters
commServiceId

Specifies the service identifier of the calling communication service.

 Description

The tran_CommServicePromisesToMatchReplies function is called during initialization to indicate that it
provides the proper transaction identifier upon entry to tran_CommReceivedReply functions. Normally,
the tran_CommReceivedReply function returns the transaction identifier. Many communication services,
however, know the transaction identifier that is returned and can instead provide it to TRAN. These
communication services can call tran_CommServicePromisesToMatchReplies to enable TRAN to
optimize (or eliminate) the state information piggybacked on the reply.

 Return Values
TRAN_APPL_NOT_INITIALIZED
TRAN_APPL_NOT_READY
TRAN_INVALID_SERVICE
TRAN_SUCCESS

 Related Information

tran_CommBlockFunctions
tran_CommInit
tran_CommProvideAddressInfo
tran_CommReceived
tran_CommReceivedReply
tran_CommReceivedRequest
tran_CommSendingReply
tran_CommSendingRequest
tran_CommServiceAlwaysSendsReply
tran_status_t

400 Encina Toolkit Executive Guide and Reference  



  tran_DeclareLastCall
 

 tran_DeclareLastCall

Declares that the next transactional RPC is the last.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_DeclareLastCall(
IN tran_tid_t tid,
IN int enable)

 Parameters
tid Specifies the transaction identifier.

enable
Indicates if the function enables or disables the optimization.

 Description

The tran_DeclareLastCall function can be called by the beginner of a transaction to declare that the next
transactional RPC it makes is its last. The enable parameter is used to enable and disable the last-call
optimization. Specifying a nonzero value for the enable parameter enables the optimization; a value of
zero disables the optimization if a previous function enabled it. Attempts to disable the optimization fail if it
is not enabled or if the transaction is not valid, returning the TRAN_TID_NOT_VALID status.

The enable parameter allows modules to temporarily disable the optimization, make an unanticipated
RPC, and then reinstate the optimization for the final RPC. This permits a module to claim that it makes
exactly one (or no) RPCs in a given interface call so that its client can use the tran_DeclareLastCall
function, but actually make more RPCs internally.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 401



 tran_DeclareReportableHeuristicDecisions  
 

 tran_DeclareReportableHeuristicDecisions

Declares heuristic decision policy.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_DeclareReportableHeuristicDecisions(
IN tran_tid_t tid,
IN tran_heuristicType_t isReportableHeuristicCommit)

 Parameters
tid Specifies the transaction identifier.

isReportableHeuristicCommit
Specifies the type of commit outcome that the application might report. It can be one of the following:

 � TRAN_HEURISTIC_OUTCOME_ABORT
 � TRAN_HEURISTIC_OUTCOME_COMMIT
 � TRAN_HEURISTIC_OUTCOME_BOTH

 Description

The tran_DeclareReportableHeuristicDecisions function is called by an application capable of causing
heuristic damage that must be reported to other applications. Claiming to make reportable heuristic
decisions, particularly heuristic commit, may incur additional throughput and latency costs in committing
transactions. An application that makes heuristic outcome decisions programmatically, as opposed to
through operator intervention, is encouraged to declare any heuristic decisions it might make. Applications
that provide administrative interfaces for forcing outcomes are encouraged to choose heuristic abort when
the operator is not certain of the distributed outcome; the application should declare that it makes
reportable heuristic abort decisions, but not reportable heuristic commit decisions.

If the application makes reportable heuristic commit decisions, the isReportableHeuristicCommit parameter
is set to TRAN_HEURISTIC_OUTCOME_COMMIT. If the application makes reportable abort decisions,
isReportableHeuristicCommit is set to TRAN_HEURISTIC_OUTCOME_ABORT. If an application makes both,
isReportableHeuristicCommit is set to TRAN_HEURISTIC_OUTCOME_BOTH.

The declaration applies to the specific transaction, or if the specified transaction identifier, tid, is
TRAN_TID_NULL, the declaration applies to any transaction in which this application is, or has been, a
participant. The declaration does not apply to any transaction that has already prepared to commit.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

402 Encina Toolkit Executive Guide and Reference  



  tran_DeclareReportableHeuristicDecisions
 

 Related Information

tran_CallOnHeuristicDamage
tran_ForceHeuristicOutcome
tran_ForciblyFinish
tran_heuristicType_t
tran_RecordHeuristicOutcome
tran_RequireHeuristicDamageReporting
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 403



 tran_DeferCommit  
 

 tran_DeferCommit

Allows an application to take responsibility for the transaction outcome.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_DeferCommit(
IN tran_tid_t tid,
IN void (GcallbackAfterPrepare35)(IN tran_tid_t, IN void G),
IN void Garg)

 Parameters
tid Specifies the transaction identifier.

callbackAfterPrepare35

Specifies the callback procedure.

arg
Specifies the argument for the callback procedure.

 Description

The tran_DeferCommit function indicates that an application wants to take responsibility for the outcome
of the transaction. When the transaction is ended, TRAN initiates the prepare phase. If all participants
prepare, TRAN invokes an after-prepare callback, specified (optionally) in the tran_DeferCommit function.
The application is then responsible for calling the tran_ProvideOutcome36 function to indicate whether the
transaction should commit or abort; this responsibility persists even after application failures, until the
transaction is finished. By calling tran_DeferCommit, the application is implicitly insisting on being the
coordinator for the transaction; the function fails if it is made more than once, or if a coordinator conflict is
detected.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

After-prepare Callback: The callbackAfterPrepare parameter points to a function that TRAN
invokes after the application takes responsibility for the prepared transaction. The function must be
defined to take two arguments and return no value. The transaction identifier is passed as the first
argument. The value of arg is passed as the second argument.

35 The after-prepare callback (callbackAfterPrepare) is not for ephemeral clients.

36 tran_ProvideOutcome is not for ephemeral clients.

404 Encina Toolkit Executive Guide and Reference  



  tran_DeferCommit
 

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_COORDINATOR_CONFLICT
TRAN_NOT_BEGINNER
TRAN_TID_ACTIVE_CHILDREN
TRAN_TID_NOT_VALID
TRAN_TID_OUTSTANDING_REQUESTS

 Related Information

tran_Prepare
tran_ProvideOutcome
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 405



 tran_DelayAbort  
 

 tran_DelayAbort

Restricts completion of a transaction abort.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_DelayAbort(
IN tran_tid_t tid,
IN int newRestriction)

 Parameters
tid Specifies the transaction identifier.

newRestriction
Specifies TRUE to establish a new restriction, FALSE to cancel a previous one.

 Description

The tran_DelayAbort function imposes or removes a restriction on the completion of a transaction abort.
A new restriction is enabled by calling with the newRestriction parameter set to TRUE, and disabled by
calling again with newRestriction set to FALSE. More than one restriction can be established. As long as
a restriction remains in effect, TRAN does not invoke any recovery service abort upcalls, and
consequently, does not invoke any after-resolution callbacks. New restrictions cannot be established once
all before-abort callbacks have been invoked, or once the transaction is locally committed. Restrictions
affect only abort; commitment can proceed despite restrictions.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS

 Related Information

tran_ProlongFinish
tran_ProlongResolution
tran_RequestPromptFinish
tran_status_t
tran_tid_t

406 Encina Toolkit Executive Guide and Reference  



  tran_DumpState
 

 tran_DumpState

Dumps state of TRAN.

 Synopsis
#include <tran/tran.h>

void tran_DumpState()

 Description

The tran_DumpState function dumps the state of TRAN in an application. A dump contains the following
information.

� Values for global variables.
� List of transactions. The entry for each transaction contains the following information:

– Its transaction identifiers and related transactions
 – Its properties
– The applications involved in that transaction
– Various states associated with the transaction

 – Transaction participants
– The transaction family

� List of communication services that have initiated.
� List of recovery services that have initiated.
� List of timeouts (posted, pending, and in-progress).

  Chapter 39. TRAN Functions 407



 tran_End  
 

 tran_End

Ends a transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_End(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_End function attempts to commit a transaction. A transaction can be ended only once, and only
when no other activity is taking place on its behalf. The function does not return until local state reflects
the transaction outcome.

It is illegal to end a transaction while work or commit processing is in progress for the transaction. Any
transactional RPCs must be completed.

The tran_End function does not return until the transaction is locally resolved, meaning that:

�  The outcome of the transaction is known. If this application has done any local work, as determined
by the recovery service, the outcome is the same as that delivered to other participants that have
done work on this transaction.

�  Any local recoverable state, maintained by a recovery service, reflects this outcome.

Nested Transactions: It is illegal to end a transaction before all of its children are completed
(committed or aborted). It is not necessary that tran_End be called for children that have been aborted
using the tran_Abort function; however, all other children must be ended.

A subtransaction only commits relative to its parent. Commit processing only takes place on behalf of the
top-level transaction. The effects of a subtransaction are not permanent until the top-level transaction
commits. A subtransaction that has not ended can abort independently of its parent.

The tran_End function does not return until the work done by any aborted descendent transaction is
undone.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_NOT_BEGINNER
TRAN_TID_ACTIVE_CHILDREN
TRAN_TID_NOT_VALID
TRAN_TID_OUTSTANDING_REQUESTS

408 Encina Toolkit Executive Guide and Reference  



  tran_End
 

 Related Information

tran_Abort
tran_AbortFamily
tran_Begin
tran_Prepare
tran_PrePrepare
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 409



 tran_ForceGroupIdCons  
 

 tran_ForceGroupIdCons

Creates a new force-group identifier from existing data.

 Synopsis
#include <tran/tran.h>

tran_forceGroupId_t tran_ForceGroupIdCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_ForceGroupIdCons function creates a new object of type tran_forceGroupId_t from existing
data. The application provides a generic pointer and a data length to define the contents of the object.
The function stores a reference to the original data rather than copying the data. The application must not
de-allocate or change the data it uses to construct an object until that object is destroyed. TRAN also
promises not to change the data provided. The application can specify that TRAN is responsible for
freeing the data by calling a destructor function when it no longer needs the data. TRAN is permitted to
free this memory whenever it deems appropriate.

 Related Information

tran_forceGroupId_t
tran_ForceGroupIdCopy
tran_ForceGroupIdCreate

410 Encina Toolkit Executive Guide and Reference  



  tran_ForceGroupIdCopy
 

 tran_ForceGroupIdCopy

Creates a copy of a force group identifier object.

 Synopsis
#include <tran/tran.h>

tran_forceGroupId_t tran_ForceGroupIdCopy(
IN tran_forceGroupId_t object)

 Parameters
object

Specifies a force group identifier object to copy.

 Description

The tran_ForceGroupIdCopy function creates a new object of type tran_forceGroupId_t from an
existing force group identifier object. The application must call the tran_ForceGroupIdDestroy function
when it no longer needs the object.

 Related Information

tran_forceGroupId_t
tran_ForceGroupIdCons
tran_ForceGroupIdCreate
tran_ForceGroupIdDestroy

  Chapter 39. TRAN Functions 411



 tran_ForceGroupIdCreate  
 

 tran_ForceGroupIdCreate

Creates a new force-group identifier.

 Synopsis
#include <tran/tran.h>

tran_forceGroupId_t tran_ForceGroupIdCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_ForceGroupIdCreate function creates a new object of type tran_forceGroupId_t. The
application provides a generic pointer and a data length to define the contents of the object. TRAN copies
the data; the application can de-allocate its copy of the data as soon as the function completes. The
application must call the tran_ForceGroupIdDestroy function when it no longer needs the object.

 Related Information

tran_forceGroupId_t
tran_ForceGroupIdCons
tran_ForceGroupIdCopy
tran_ForceGroupIdDestroy

412 Encina Toolkit Executive Guide and Reference  



  tran_ForceGroupIdData
 

 tran_ForceGroupIdData

Retrieves a force-group identifier.

 Synopsis
#include <tran/tran.h>

void Gtran_ForceGroupIdData(
IN tran_forceGroupId_t object)

 Parameters
object

Specifies the object containing the force-group identifier.

 Description

The tran_ForceGroupIdData function retrieves the data contained in an object of type
tran_forceGroupId_t. The function returns a generic pointer to the data; the tran_ForceGroupIdLength
function returns the valid length of that data in bytes. The data pointer only remains valid as long as the
original object; if the data is required, the caller should copy the data before the object is destroyed.

 Related Information

tran_forceGroupId_t
tran_ForceGroupIdLength

  Chapter 39. TRAN Functions 413



 tran_ForceGroupIdDestroy  
 

 tran_ForceGroupIdDestroy

Destroys a force-group identifier.

 Synopsis
#include <tran/tran.h>

void tran_ForceGroupIdDestroy(
IN tran_forceGroupId_t object)

 Parameters
object

Specifies the object containing the force-group identifier.

 Description

The tran_ForceGroupIdDestroy function destroys an object of type tran_forceGroupId_t when it is no
longer needed. Applications must use this function for objects that they create or construct, and for
objects that TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it
cannot be used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_forceGroupId_t
tran_ForceGroupIdCons
tran_ForceGroupIdCopy
tran_ForceGroupIdCreate

414 Encina Toolkit Executive Guide and Reference  



  tran_ForceGroupIdEqual
 

 tran_ForceGroupIdEqual

Determines whether two force-group identifiers are equal.

 Synopsis
#include <tran/tran.h>

int tran_ForceGroupIdEqual(
IN tran_forceGroupId_t objectOne,
IN tran_forceGroupId_t objectTwo)

 Parameters
objectOne

Specifies the first object.

objectTwo
Specifies a second object to be compared with the value specified for objectOne.

 Description

The tran_ForceGroupIdEqual function compares two objects of type tran_forceGroupId_t to determine
whether they are equal. The function returns 1 (TRUE) if the objects are equal, and 0 (FALSE) if the
objects differ.

 Related Information

tran_forceGroupId_t

  Chapter 39. TRAN Functions 415



 tran_ForceGroupIdLength  
 

 tran_ForceGroupIdLength

Retrieves the length of a force-group identifier.

 Synopsis
#include <tran/tran.h>

unsigned long tran_ForceGroupIdLength(
IN tran_forceGroupId_t object)

 Parameters
object

Specifies the object containing the force-group identifier.

 Description

The tran_ForceGroupIdLength function retrieves the data contained in an object of type
tran_forceGroupId_t. The function returns the valid length of that data in bytes; the
tran_ForceGroupIdData function returns a generic pointer to the data.

 Related Information

tran_forceGroupId_t
tran_ForceGroupIdData

416 Encina Toolkit Executive Guide and Reference  



  tran_ForceHeuristicOutcome
 

 tran_ForceHeuristicOutcome

Forces an outcome.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ForceHeuristicOutcome(
IN tran_tid_t tid,
IN tran_heuristicType_t commitDesired)

 Parameters
tid Specifies the transaction identifier.

commitDesired
Specifies the type of commit desired, either TRAN_HEURISTIC_OUTCOME_ABORT or
TRAN_HEURISTIC_OUTCOME_COMMIT.

 Description

The tran_ForceHeuristicOutcome function forces an outcome to be delivered for the transaction
identified by the tid parameter. TRAN delivers the outcome using the normal recovery service upcalls and
application callbacks. The commitDesired parameter indicates what type of forced outcome should be
delivered. This function can only be used for transactions that are prepared.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_CallOnHeuristicDamage
tran_DeclareReportableHeuristicOutcome
tran_ForciblyFinish
tran_heuristicType_t
tran_RecordHeuristicOutcome
tran_RequireHeuristicDamageReporting
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 417



 tran_ForciblyFinish  
 

 tran_ForciblyFinish

Forcibly finishes a resolved transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ForciblyFinish(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_ForciblyFinish function asks TRAN to finish a transaction that has already resolved, abdicating
any remaining outcome or heuristic damage reporting requirements. TRAN normally does not finish a
transaction as long as it is responsible for informing other participants of the transaction outcome or any
heuristic damage it has done. In the event that other participants (or the communication channels used to
reach them) have been permanently retired from service, TRAN is unable to finish the transaction,
requiring that the application retain a log record on its behalf. This function asks TRAN to proceed to the
finished phase (recovery service upcalls and after-finished callbacks) regardless of outstanding reporting
requirements. The function can only be used once the transaction has been resolved (meaning that the
appropriate recovery service resolution upcall, after-CWRT callbacks, and after-resolution callbacks have
completed); the tran_ForceHeuristicOutcome function can be used to forcibly resolve a transaction that
is prepared, and the tran_Abort function can be used to (safely) resolve a transaction that is not
prepared. The tran_ForciblyFinish function must be used very carefully, for it can cause undetectable
heuristic damage if outcome reporting was not really completed.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_Abort
tran_CallOnHeuristicDamage
tran_DeclareReportableHeuristicOutcome
tran_ForceHeuristicOutcome
tran_RecordHeuristicOutcome
tran_RequireHeuristicDamageReporting
tran_status_t
tran_tid_t

418 Encina Toolkit Executive Guide and Reference  



  tran_GetCoordinator
 

 tran_GetCoordinator

Determines which application is currently chosen to coordinate a transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_GetCoordinator(
IN tran_tid_t tid,
OUT tran_applId_t GcoordinatorP,
OUT int GdefiniteP)

 Parameters
tid Specifies the transaction identifier.

coordinatorP
Returns the current choice of coordinator.

definiteP
Returns a flag that is TRUE if the transaction does not commit except using this coordinator, or
FALSE if it might commit using another coordinator.

 Description

The tran_GetCoordinator function gets the current choice of commit coordinator for a transaction. An
application identifier for this coordinator is returned in the coordinatorP parameter. The application is
responsible for calling the tran_ApplIdDestroy function when it no longer needs the application identifier.

If definiteP is set to TRUE, either some participant has insisted on this coordinator, or commit processing
has begun and it is too late to change coordinators. The application should abort the transaction if this
coordinator is not acceptable.

If definiteP is set to FALSE, this is a suggested commit coordinator and the application can use
tran_SetCoordinator to suggest or insist on a different one.

Nested Transactions: All transactions in a family have the same coordinator. The application gets
the current choice for the family's coordinator by calling tran_GetCoordinator using any member
transaction identifier as an argument.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_COORDINATOR_NOT_SET
TRAN_TID_NOT_VALID

  Chapter 39. TRAN Functions 419



 tran_GetCoordinator  
 

 Related Information

tran_applId_t
tran_ApplIdDestroy
tran_SetCoordinator
tran_SelectivelyCoordinate
tran_status_t
tran_tid_t

420 Encina Toolkit Executive Guide and Reference  



  tran_GetGlobalState
 

 tran_GetGlobalState

Returns the distributed commitment state.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_GetGlobalState(
IN tran_tid_t tid,

 OUT tran_globalState_t GstateOut,
OUT int GdamageKnownOut)

 Parameters
tid Specifies the transaction identifier.

stateOut
Returns the distributed commitment state. See the tran_globalState_t function for more information.

damageKnownOut
Returns TRUE if some application has caused heuristic damage, otherwise FALSE.

 Description

The tran_GetGlobalState function returns information about the distributed commitment state. The
function returns a state value, stateOut, and heuristic damage information, damageKnownOut. The
stateOut parameter reflects only the commitment state as delivered to this application.

See the tran_localState_t for a description of states that can be returned.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_GetLocalState
tran_GetRelativeCommitState
tran_globalState_t
tran_localState_t
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 421



 tran_GetLocalState  
 

 tran_GetLocalState

Returns the local state of the transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_GetLocalState(
IN tran_tid_t tid,

 OUT tran_localState_t GstateOut,
OUT tran_outcomeQuality_t GqualityOut)

 Parameters
tid Specifies the transaction identifier.

stateOut
Returns the local outcome state returned (see tran_localState_t for more information).

qualityOut
Returns the quality indication for the local outcome, a tran_outcomeQuality_t type. See the
tran_outcomeQuality_t data type for more information.

 Description

The tran_GetLocalState function returns the local state of a transaction. The function returns a state
value, stateOut, and an indication of the quality of the outcome information, qualityOut, described by the
state value, if any. The stateOut parameter reflects only the commitment state as delivered to this
application.

See tran_localState_t and tran_outcomeQuality_t for a description of states and quality indications that
can be returned.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_GetGlobalState
tran_GetRelativeCommitState
tran_localState_t
tran_outcomeQuality_t
tran_status_t
tran_tid_t

422 Encina Toolkit Executive Guide and Reference  



  tran_GetRelativeCommitState
 

 tran_GetRelativeCommitState

Returns the relative commitment state between two transactions.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_GetRelativeCommitState(
IN tran_tid_t targetTransaction,
IN tran_tid_t questionerTransaction,

 OUT tran_relativeCommitState_t GresultOut)

 Parameters
targetTransaction

Specifies the transaction identifier for the target transaction.

questionerTransaction
Specifies the transaction identifier of the questioner transaction.

qualityOut
Returns the relative commit state of target transaction to the questioner transaction, a
tran_relativeCommitState_t type. See the tran_relativeCommitState_t data type for more
information.

 Description

The tran_GetRelativeCommitState function quickly checks whether one transaction has committed
relative to another. This function returns immediately; if TRAN cannot determine whether relative
commitment has occurred without sending additional messages, TRAN_CWRT_NONE is returned. An
application can call tran_CallAfterCWRT if it requires better information or asynchronous notification.

See the tran_relativeCommitState_t data type for a description of relative commit states that can be
returned.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_CallAfterCWRT
tran_GetLocalState
tran_GetRelativeCommitState
tran_relativeCommitState_t
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 423



 tran_Init  
 

 tran_Init

Begins the application interface initialization.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Init(
IN int nested)

 Parameters
nested

This parameter is ignored.

 Description

The tran_Init function initializes the application interface. The application must call the tran_Init function
after its environment has been configured and before other application components are initialized.

 Note

The nested parameter is no longer required for this function. TRAN ignores values specified for this
parameter.

 Return Values
TRAN_APPL_INITIALIZED
TRAN_ENVIRONMENT_INCOMPLETE
TRAN_SUCCESS

 Related Information

tran_Ready
tran_StandardEnvironment
tran_status_t
tran_Terminate

424 Encina Toolkit Executive Guide and Reference  



  tran_ListTransactions
 

 tran_ListTransactions

Lists transactions in use by an application.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ListTransactions(
OUT tran_tid_t GGtransactionsPP
OUT unsigned int GtransactionsCountP)

 Parameters
transactionsPP

Returns a list of transactions in use by an application.

transactionsCountP
Returns the number of transactions listed.

 Description

The tran_ListTransactions function returns a list of an application's current transactions. The elements
of the list have no particular order. The application must dispose of the list by calling the
tran_TidArrayDestroy function when it is no longer needed.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED

 Related Information

tran_ApplIsRecoverable
tran_status_t
tran_tid_t
tran_TidArrayDestroy

  Chapter 39. TRAN Functions 425



 tran_LogRecordCons  
 

 tran_LogRecordCons

Creates a new log record from existing data.

 Synopsis
#include <tran/tran.h>

tran_logRecord_t tran_LogRecordCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_LogRecordCons function creates a new object of type tran_logRecord_t from existing data.
The application provides a generic pointer and a data length to define the contents of the object. The
function stores a reference to the original data rather than copying the data. The application must not
de-allocate or change the data it uses to construct an object until that object is destroyed. TRAN also
promises not to change the data provided. The application can specify that TRAN is responsible for
freeing the data by calling a destructor function when it no longer needs the data. TRAN is permitted to
free this memory whenever it deems appropriate.

 Notes

This API is not supported on z/OS

 Related Information

tran_logRecord_t
tran_LogRecordCopy
tran_LogRecordCreate

426 Encina Toolkit Executive Guide and Reference  



  tran_LogRecordCopy
 

 tran_LogRecordCopy

Creates a copy of a log record object.

 Synopsis
#include <tran/tran.h>

tran_logRecord_t tran_LogRecordCopy(
IN tran_logRecord_t object)

 Parameters
object

Specifies a log record object to copy.

 Description

The tran_LogRecordCopy function creates a new object of type tran_logRecord_t from an existing log
record object. The application must call the tran_LogRecordDestroy function when it no longer needs
the object.

 Notes

This API is not supported on z/OS

 Related Information

tran_logRecord_t
tran_LogRecordCons
tran_LogRecordCreate
tran_LogRecordDestroy

  Chapter 39. TRAN Functions 427



 tran_LogRecordCreate  
 

 tran_LogRecordCreate

Creates a new log record.

 Synopsis
#include <tran/tran.h>

tran_logRecord_t tran_LogRecordCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_LogRecordCreate function creates a new object of type tran_logRecord_t. The application
provides a generic pointer and a data length to define the contents of the object. TRAN copies the data;
the application can de-allocate its copy of the data as soon as the function completes. The application
must call the tran_LogRecordDestroy function when it no longer needs the object.

 Notes

This API is not supported on z/OS

 Related Information

tran_logRecord_t
tran_LogRecordCons
tran_LogRecordCopy
tran_LogRecordDestroy

428 Encina Toolkit Executive Guide and Reference  



  tran_LogRecordData
 

 tran_LogRecordData

Retrieves a log record.

 Synopsis
#include <tran/tran.h>

void Gtran_LogRecordData(
IN tran_logRecord_t object)

 Parameters
object

Specifies the object containing the log record.

 Description

The tran_LogRecordData function retrieves the data contained in an object of type tran_logRecord_t.
The function returns a generic pointer to the data; the tran_LogRecordLength function returns the valid
length of that data in bytes. The data pointer only remains valid as long as the original object; if the data
is required, the caller should copy the data before the object is destroyed.

 Notes

This API is not supported on z/OS

 Related Information

tran_logRecord_t
tran_LogRecordLength

  Chapter 39. TRAN Functions 429



 tran_LogRecordDestroy  
 

 tran_LogRecordDestroy

Destroys a log record.

 Synopsis
#include <tran/tran.h>

void tran_LogRecordDestroy(
IN tran_logRecord_t object)

 Parameters
object

Specifies the object containing the log record.

 Description

The tran_LogRecordDestroy function destroys an object of type tran_logRecord_t when it is no longer
needed. Applications must use this function for objects that they create or construct, and for objects that
TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it cannot be
used, nor can any pointers to its contents acquired using the data access functions.

 Notes

This API is not supported on z/OS

 Related Information

tran_logRecord_t
tran_LogRecordCons
tran_LogRecordCopy
tran_LogRecordCreate

430 Encina Toolkit Executive Guide and Reference  



  tran_LogRecordLength
 

 tran_LogRecordLength

Retrieves the length of a log record.

 Synopsis
#include <tran/tran.h>

unsigned long tran_LogRecordLength(
IN tran_logRecord_t object)

 Parameters
object

Specifies the object containing the log record.

 Description

The tran_LogRecordLength function retrieves the data contained in an object of type tran_logRecord_t.
The function returns the valid length of that data in bytes. The tran_LogRecordData function returns a
generic pointer to the data.

 Notes

This API is not supported on z/OS

 Related Information

tran_logRecord_t
tran_LogRecordData

  Chapter 39. TRAN Functions 431



 tran_MessageCons  
 

 tran_MessageCons

Creates a new message from existing data.

 Synopsis
#include <tran/tran.h>

tran_message_t tran_MessageCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_MessageCons function creates a new object of type tran_message_t from existing data. The
application provides a generic pointer and a data length to define the contents of the object. The function
stores a reference to the original data rather than copying the data. The application must not de-allocate
or change the data it uses to construct an object until that object is destroyed. TRAN also promises not to
change the data provided. The application can specify that TRAN is responsible for freeing the data by
calling a destructor function when it no longer needs the data. TRAN is permitted to free this memory
whenever it deems appropriate.

 Related Information

tran_message_t
tran_MessageCopy
tran_MessageCreate

432 Encina Toolkit Executive Guide and Reference  



  tran_MessageCopy
 

 tran_MessageCopy

Creates a copy of a message object.

 Synopsis
#include <tran/tran.h>

tran_message_t tran_MessageCopy(
IN tran_message_t object)

 Parameters
object

Specifies a message object to copy.

 Description

The tran_MessageCopy function creates a new object of type tran_message_t from an existing message
object. The application must call the tran_MessageDestroy function when it no longer needs the object.

 Related Information

tran_message_t
tran_MessageCons
tran_MessageCreate
tran_MessageDestroy

  Chapter 39. TRAN Functions 433



 tran_MessageCreate  
 

 tran_MessageCreate

Creates a new message.

 Synopsis
#include <tran/tran.h>

tran_message_t tran_MessageCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the message contents.

length
Specifies the length of the message in bytes.

 Description

The tran_MessageCreate function creates a new object of type tran_message_t. The application
provides a generic pointer and a data length to define the contents of the object. TRAN copies the data;
the application can de-allocate its copy of the data as soon as the function completes. The application
must call the tran_MessageDestroy function when it no longer needs the object.

 Related Information

tran_message_t
tran_MessageCons
tran_MessageCopy
tran_MessageDestroy

434 Encina Toolkit Executive Guide and Reference  



  tran_MessageData
 

 tran_MessageData

Retrieves a message.

 Synopsis
#include <tran/tran.h>

void Gtran_MessageData(
IN tran_message_t object)

 Parameters
object

Specifies the object containing the message.

 Description

The tran_MessageData function retrieves the data contained in an object of type tran_message_t. The
function returns a generic pointer to the data; the tran_MessageLength function returns the valid length of
that data in bytes. The data pointer only remains valid as long as the original object; if the data is
required, the caller should copy the data before the object is destroyed.

 Related Information

tran_message_t
tran_MessageLength

  Chapter 39. TRAN Functions 435



 tran_MessageDestroy  
 

 tran_MessageDestroy

Destroys a message.

 Synopsis
#include <tran/tran.h>

void tran_MessageDestroy(
IN tran_message_t object)

 Parameters
object

Specifies the object containing the message.

 Description

The tran_MessageDestroy function destroys an object of type tran_message_t when it is no longer
needed. Applications must use this function for objects that they create or construct, and for objects that
TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it cannot be
used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_message_t
tran_MessageCons
tran_MessageCopy
tran_MessageCreate

436 Encina Toolkit Executive Guide and Reference  



  tran_MessageIdentical
 

 tran_MessageIdentical

Determines whether two messages are identical.

 Synopsis
#include <tran/tran.h>

int tran_MessageIdentical(
IN tran_message_t objectOne,
IN tran_message_t objectTwo)

 Parameters
objectOne

Specifies the first message.

objectTwo
Specifies a second message to be compared with the value specified for objectOne.

 Description

The tran_MessageIdentical function compares two objects of type tran_message_t to determine whether
they are identical (have the same contents). The function returns 1 (TRUE) if the objects are identical,
and 0 (FALSE) if the objects differ.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY

 Related Information

tran_message_t

  Chapter 39. TRAN Functions 437



 tran_MessageLength  
 

 tran_MessageLength

Retrieves the length of a message.

 Synopsis
#include <tran/tran.h>

unsigned long tran_MessageLength(
IN tran_message_t object)

 Parameters
object

Specifies the object containing the message.

 Description

The tran_MessageLength function retrieves the data contained in an object of type tran_message_t. The
function returns the valid length of that data in bytes. The tran_MessageData function returns a generic
pointer to the data.

 Related Information

tran_message_t
tran_MessageData

438 Encina Toolkit Executive Guide and Reference  



  tran_Prepare
 

 tran_Prepare

Prepares a transaction and leaves it prepared.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Prepare(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_Prepare function directs TRAN to perform only the prepare phase of two-phase commit. This
function performs a subset of the work done by the tran_End function and is subject to the same
restrictions that apply to that function. The calling application implicitly insists that it be the coordinator,
and that a two-phase commitment protocol be used. If the prepare phase is successful, the application
becomes responsible for determining the outcome of the transaction.

The tran_Prepare function can be called in place of the tran_End function and only when it would be
valid to call the tran_End function. A transaction can be prepared only by its beginner, and it can be
prepared only once. Any transactional RPCs must be completed before the tran_Prepare function is
called.

The tran_Prepare function indicates success only if the prepare phase completes successfully. Each
participant, including the caller to tran_Prepare, is asked to prepare just as though the beginner had
attempted to commit the transaction using tran_End. If any participant chooses to abort, the tran_Prepare
function returns TRAN_TID_NOT_VALID.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

Nested Transactions: It is illegal to prepare a transaction that has active children.

The application can only call tran_Prepare for the top-level member of a family. All committed
subtransactions in the family prepare together with their top-level ancestor.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_COORDINATOR_CONFLICT
TRAN_NOT_BEGINNER
TRAN_TID_ACTIVE_CHILDREN
TRAN_TID_NOT_VALID
TRAN_TID_OUTSTANDING_REQUESTS

  Chapter 39. TRAN Functions 439



 tran_Prepare  
 

 Related Information

tran_DeferCommit
tran_End
tran_ProvideOutcome
tran_status_t
tran_tid_t

440 Encina Toolkit Executive Guide and Reference  



  tran_PrePrepare
 

 tran_PrePrepare

Hints that a transaction should be pre-prepared.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_PrePrepare(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_PrePrepare function is called during an RPC to ask TRAN to locally prepare the transaction that
performed the RPC. TRAN may ignore the request. If TRAN chooses to pre-prepare, it first waits until all
RPCs being serviced by the application have completed. It then prepares the transaction at the
application and at servers the application has used (directly or indirectly) during the transaction as
necessary.

The call to tran_PrePrepare returns TRAN_SUCCESS if it is used correctly, regardless of whether TRAN
actually pre-prepares.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

Nested Transactions: All transactions in a family prepare together. The application requests a
pre-prepare of the family by calling tran_PrePrepare for any member.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 441



 tran_ProlongFinish  
 

 tran_ProlongFinish

Controls the after-finished phase.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ProlongFinish(
IN tran_tid_t tid,
IN int newExtension)

 Parameters
tid Specifies the transaction identifier.

newExtension
Specifies whether to extend the after-finished phase or cancel a previous extension. TRUE extends
the after-finished phase and FALSE removes the extension.

 Description

The tran_ProlongFinish function controls the after-finished phase of a transaction. The after-finished
phase is extended by calling the tran_ProlongFinish function with the newExtension parameter set to
TRUE.

Prolonging the after-finished phase prevents the transaction's identifier from becoming invalid after all the
after-finished callbacks are completed, allowing extended access to the transaction state through the
identifier. See the tran_CallAfterFinished function for more information on after-finished callbacks.

The application must call tran_ProlongFinish again with newExtension set to FALSE to remove the
extension. More than one extension can be established. Calls to establish extensions must have
matching calls to remove them.

 Return Values
TRAN_SUCCESS

 Related Information

tran_CallAfterFinished
tran_DelayAbort
tran_ProlongResolution
tran_RequestPromptFinish
tran_status_t
tran_tid_t

442 Encina Toolkit Executive Guide and Reference  



  tran_ProlongResolution
 

 tran_ProlongResolution

Controls the after resolution phase.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ProlongResolution(
IN tran_tid_t tid,
IN int newRestriction)

 Parameters
tid Specifies the transaction identifier.

newRestriction
Specifies TRUE to establish a new restriction, FALSE to cancel a previous one.

 Description

The tran_ProlongResolution function controls the after-resolution phase. The after-resolution phase is
extended by calling with the newRestriction parameter set to TRUE. Heuristic decisions can continue to
be recorded, and the after-resolution phase takes place again after an application restart if completeness
requirements so dictate. See the tran_RequireCompleteOutcome37 function for more information.

Prolonging the after-resolution phase prevents the transaction from entering the finished phase (the
recovery service upcall and after-finished callbacks); it has no effect on when registered after-resolution
callbacks are executed. The application should call tran_ProlongResolution again with newRestriction
set to FALSE to remove the extension. More than one extension can be established. Calls to establish
extensions must have matching calls to remove them.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS

 Related Information

tran_DelayAbort
tran_ProlongFinish
tran_RequestPromptFinish
tran_RequireCompleteOutcome
tran_status_t
tran_tid_t

37 tran_RequireCompleteOutcome is not for ephemeral clients.

  Chapter 39. TRAN Functions 443



 tran_PropertyAdd  
 

 tran_PropertyAdd

Specifies a global property.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_PropertyAdd(
IN tran_tid_t tid,
IN tran_propertyKey_t key,
IN tran_propertyValue_t value)

 Parameters
tid Specifies the transaction identifier. If tid is specified as TRAN_TID_NULL, application-specific properties

are added.

key
Specifies the property key.

value
Specifies the property value.

 Description

The tran_PropertyAdd function associates a new global property (key and value) with a transaction or
application. The key and value are variable-sized, uninterpreted collections of data. However, some keys
are reserved for TRAN's use. The tid parameter specifies the transaction or, if tid is specified as
TRAN_TID_NULL, the application. Application-specific properties can be added in recoverable applications
only.

TRAN propagates this new property to other participants along with other messages, including (but not
limited to) all transactional RPC messages and commit processing messages on behalf of the transaction.
Any number of properties can be associated with one transaction; more than one value can be associated
with the same key. Once added, a property is permanent; it cannot be removed from a transaction or
application. However, properties associated with transactions are only added when the transaction
finishes; there is no guarantee that properties will be added until the transaction is prepared.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_PROPERTY_KEY_RESERVED
TRAN_TID_NOT_VALID

 Related Information

tran_propertyKey_t
tran_PropertyRetrieve
tran_propertyValue_t
tran_status_t
tran_tid_t

444 Encina Toolkit Executive Guide and Reference  



  tran_PropertyKeyCons
 

 tran_PropertyKeyCons

Creates a new property key from existing data.

 Synopsis
#include <tran/tran.h>

tran_propertyKey_t tran_PropertyKeyCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_PropertyKeyCons function creates a new object of type tran_propertyKey_t from existing
data. The application provides a generic pointer and a data length to define the contents of the object.
The function stores a reference to the original data rather than copying the data. The application must not
de-allocate or change the data it uses to construct an object until that object is destroyed. TRAN also
promises not to change the data provided. The application can specify that TRAN is responsible for
freeing the data by calling a destructor function when it no longer needs the data. TRAN is permitted to
free this memory whenever it deems appropriate.

 Related Information

tran_propertyKey_t
tran_PropertyKeyCopy
tran_PropertyKeyCreate

  Chapter 39. TRAN Functions 445



 tran_PropertyKeyCopy  
 

 tran_PropertyKeyCopy

Creates a copy of a property key object.

 Synopsis
#include <tran/tran.h>

tran_propertyKey_t tran_PropertyKeyCopy(
IN tran_propertyKey_t object)

 Parameters
object

Specifies a property key object to copy.

 Description

The tran_PropertyKeyCopy function creates a new object of type tran_propertyKey_t from an existing
property key object. The application must call the tran_PropertyKeyDestroy function when it no longer
needs the object.

 Related Information

tran_propertyKey_t
tran_PropertyKeyCons
tran_PropertyKeyCreate
tran_PropertyKeyDestroy

446 Encina Toolkit Executive Guide and Reference  



  tran_PropertyKeyCreate
 

 tran_PropertyKeyCreate

Creates a new property key.

 Synopsis
#include <tran/tran.h>

tran_propertyKey_t tran_PropertyKeyCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_PropertyKeyCreate function creates a new object of type tran_propertyKey_t. The application
provides a generic pointer and a data length to define the contents of the object. TRAN copies the data;
the application can de-allocate its copy of the data as soon as the function completes. The application
must call the tran_PropertyKeyDestroy function when it no longer needs the object.

 Related Information

tran_propertyKey_t
tran_PropertyKeyCons
tran_PropertyKeyCopy
tran_PropertyKeyDestroy

  Chapter 39. TRAN Functions 447



 tran_PropertyKeyData  
 

 tran_PropertyKeyData

Retrieves a property key.

 Synopsis
#include <tran/tran.h>

void Gtran_PropertyKeyData(
IN tran_propertyKey_t object)

 Parameters
object

Specifies the object containing the property key.

 Description

The tran_PropertyKeyData function retrieves the data contained in an object of type
tran_propertyKey_t. The function returns a generic pointer to the data; the tran_PropertyKeyLength
function returns the valid length of that data in bytes. The data pointer only remains valid as long as the
original object; if the data is required, the caller should copy the data before the object is destroyed.

 Related Information

tran_propertyKey_t
tran_PropertyKeyLength

448 Encina Toolkit Executive Guide and Reference  



  tran_PropertyKeyDestroy
 

 tran_PropertyKeyDestroy

Destroys a property key.

 Synopsis
#include <tran/tran.h>

void tran_PropertyKeyDestroy(
IN tran_propertyKey_t object)

 Parameters
object

Specifies the object containing the property key.

 Description

The tran_PropertyKeyDestroy function destroys an object of type tran_propertyKey_t when it is no
longer needed. Applications must use this function for objects that they create or construct, and for
objects that TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it
cannot be used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_propertyKey_t
tran_PropertyKeyCopy
tran_PropertyKeyCons
tran_PropertyKeyCreate

  Chapter 39. TRAN Functions 449



 tran_PropertyKeyEqual  
 

 tran_PropertyKeyEqual

Determines whether two property keys are equal.

 Synopsis
#include <tran/tran.h>

int tran_PropertyKeyEqual(
IN tran_propertyKey_t objectOne,
IN tran_PropertyKey_t objectTwo)

 Parameters
objectOne

Specifies the first object.

objectTwo
Specifies a second object to be compared with the value specified for objectOne.

 Description

The tran_PropertyKeyEqual function compares two objects of type tran_propertyKey_t to determine
whether they are equal. The function returns 1 (TRUE) if the objects are equal, and 0 (FALSE) if the
objects differ.

 Related Information

tran_propertyKey_t

450 Encina Toolkit Executive Guide and Reference  



  tran_PropertyKeyLength
 

 tran_PropertyKeyLength

Retrieves the length of a property key.

 Synopsis
#include <tran/tran.h>

unsigned long tran_PropertyKeyLength(
IN tran_propertyKey_t object)

 Parameters
object

Specifies the object containing the property key.

 Description

The tran_PropertyKeyLength function retrieves the data contained in an object of type
tran_propertyKey_t. The function returns the valid length of that data in bytes. The
tran_PropertyKeyData function returns a generic pointer to the data.

 Related Information

tran_propertyKey_t
tran_PropertyKeyData

  Chapter 39. TRAN Functions 451



 tran_PropertyRetrieve  
 

 tran_PropertyRetrieve

Retrieves global property values.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_PropertyRetrieve(
IN tran_tid_t tid,
IN tran_propertyKey_t key,
OUT tran_propertyValue_t GGvalueArrayP,
OUT unsigned int GvalueCountP )

 Parameters
tid Specifies the transaction identifier. If tid is specified as TRAN_TID_NULL, application-specific properties

are retrieved.

key
Specifies the application-specified property key.

valueArrayP
Returns an array of values previously associated with the given key.

valueCountP
Returns the number of values in valueArrayP.

 Description

The tran_PropertyRetrieve function returns the values associated with the given key in properties for the
given transaction or application. Only properties that were added by or propagated to this application are
considered and only properties associated with the current transaction can be retrieved. The application is
responsible for calling tran_PropertyValueDestroy for each array element when that element is no longer
needed, and tran_PropertyValueArrayDestroy for the array itself when the array is no longer needed. If
no values are associated with the key, the function returns TRAN_PROPERTY_KEY_NOT_FOUND; no property
value array is returned or should be destroyed. See the tran_PropertyValueDestroy and
tran_PropertyValueArrayDestroy functions for more information.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID
TRAN_PROPERTY_KEY_NOT_FOUND

 Related Information

tran_PropertyAdd
tran_propertyKey_t
tran_propertyValue_t
tran_PropertyValueArrayDestroy
tran_PropertyValueDestroy
tran_status_t
tran_tid_t

452 Encina Toolkit Executive Guide and Reference  



  tran_PropertyValueArrayDestroy
 

 tran_PropertyValueArrayDestroy

Destroys a property value array.

 Synopsis
#include <tran/tran.h>

void tran_PropertyValueArrayDestroy(
IN tran_propertyValue_t Garray)

 Parameters
array

Specifies an array of property values returned by an interface function.

 Description

The tran_PropertyValueArrayDestroy function destroys an array of property values when it is no longer
needed. Destroying an array does not destroy its elements; they must be destroyed separately, as
desired.

 Related Information

tran_propertyValue_t

  Chapter 39. TRAN Functions 453



 tran_PropertyValueCons  
 

 tran_PropertyValueCons

Creates a new property value from existing data.

 Synopsis
#include <tran/tran.h>

tran_propertyValue_t tran_PropertyValueCons(
IN void GdataP,
IN unsigned long length
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_PropertyValueCons function creates a new object of type tran_propertyValue_t from existing
data. The application provides a generic pointer and a data length to define the contents of the object.
The function stores a reference to the original data rather than copying the data. The application must not
de-allocate or change the data it uses to construct an object until that object is destroyed. TRAN also
promises not to change the data provided. The application can specify that TRAN is responsible for
freeing the data by calling a destructor function when it no longer needs the data. TRAN is permitted to
free this memory whenever it deems appropriate.

 Related Information

tran_propertyValue_t
tran_PropertyValueCopy
tran_PropertyValueCreate

454 Encina Toolkit Executive Guide and Reference  



  tran_PropertyValueCopy
 

 tran_PropertyValueCopy

Creates a copy of a property value object.

 Synopsis
#include <tran/tran.h>

tran_propertyValue_t tran_PropertyValueCopy(
IN tran_propertyValue_t object)

 Parameters
object

Specifies a property value object to copy.

 Description

The tran_PropertyValueCopy function creates a new object of type tran_propertyValue_t from an
existing property value object. The application must call the tran_PropertyValueDestroy function when it
no longer needs the object.

 Related Information

tran_propertyValue_t
tran_PropertyValueCons
tran_PropertyValueCreate
tran_PropertyValueDestroy

  Chapter 39. TRAN Functions 455



 tran_PropertyValueCreate  
 

 tran_PropertyValueCreate

Creates a new property value.

 Synopsis
#include <tran/tran.h>

tran_propertyValue_t tran_PropertyValueCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_PropertyValueCreate function creates a new object of type tran_propertyValue_t. The
application provides a generic pointer and a data length to define the contents of the object. TRAN copies
the data; the application can de-allocate its copy of the data as soon as the function completes. The
application must call the tran_PropertyValueDestroy function when it no longer needs the object.

 Related Information

tran_propertyValue_t
tran_PropertyValueCons
tran_PropertyValueCopy
tran_PropertyValueDestroy

456 Encina Toolkit Executive Guide and Reference  



  tran_PropertyValueData
 

 tran_PropertyValueData

Retrieves a property value.

 Synopsis
#include <tran/tran.h>

void Gtran_PropertyValueData(
IN tran_propertyValue_t object)

 Parameters
object

Specifies the object containing the property value.

 Description

The tran_PropertyValueData function retrieves the data contained in an object of type
tran_propertyValue_t. The function returns a generic pointer to the data; the tran_PropertyValueLength
function returns the valid length of that data in bytes. The data pointer only remains valid as long as the
original object; if the data is required, the caller should copy the data before the object is destroyed.

 Related Information

tran_propertyValue_t
tran_PropertyValueLength

  Chapter 39. TRAN Functions 457



 tran_PropertyValueDestroy  
 

 tran_PropertyValueDestroy

Destroys a property value.

 Synopsis
#include <tran/tran.h>

void tran_PropertyValueDestroy(
IN tran_propertyValue_t object)

 Parameters
object

Specifies the object containing the property value.

 Description

The tran_PropertyValueDestroy function destroys an object of type tran_propertyValue_t when it is no
longer needed. Applications must use this function for objects that they create or construct, and for
objects that TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it
cannot be used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_propertyValue_t
tran_PropertyValueCons
tran_PropertyValueCopy
tran_PropertyValueCreate

458 Encina Toolkit Executive Guide and Reference  



  tran_PropertyValueEqual
 

 tran_PropertyValueEqual

Determines whether two property values are equal.

 Synopsis
#include <tran/tran.h>

int tran_PropertyValueEqual(
IN tran_propertyValue_t objectOne,
IN tran_PropertyValue_t objectTwo)

 Parameters
objectOne

Specifies the first object.

objectTwo
Specifies a second object to be compared with the value specified for objectOne.

 Description

The tran_PropertyValueEqual function compares two objects of type tran_propertyValue_t to determine
whether they are equal. The function returns 1 (TRUE) if the objects are equal, and 0 (FALSE) if the
objects differ.

 Related Information

tran_propertyValue_t

  Chapter 39. TRAN Functions 459



 tran_PropertyValueLength  
 

 tran_PropertyValueLength

Retrieves the length of a property value.

 Synopsis
#include <tran/tran.h>

unsigned long tran_PropertyValueLength(
IN tran_propertyValue_t object)

 Parameters
object

Specifies the object containing the property value.

 Description

The tran_PropertyValueLength function retrieves the data contained in an object of type
tran_propertyValue_t. The function returns the valid length of that data in bytes; the
tran_PropertyValueData function returns a generic pointer to the data.

 Related Information

tran_propertyValue_t
tran_PropertyValueData

460 Encina Toolkit Executive Guide and Reference  



  tran_ProvideOutcome
 

 tran_ProvideOutcome

Specifies whether the transaction should commit or abort.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_ProvideOutcome(
IN tran_tid_t tid,
IN int commitDesired)

 Parameters
tid Specifies the transaction identifier.

commitDesired
Specifies commit (1) or abort (0).

 Description

The tran_ProvideOutcome function is called by the application to resolve any prepared transactions for
which it has called the tran_DeferCommit38 function. The application can determine that a transaction
has become prepared in three ways:

� The after-prepare callback provided in its call to the tran_DeferCommit function
� Successful completion of a call to the tran_Prepare39 function—if it is the beginner
� Querying the state or properties associated with the transaction during restart

The application can call tran_ProvideOutcome at any time after the transaction has become prepared; it
need not do so after the after-prepare callback returns. The tran_ProvideOutcome function directs TRAN
to commit or abort the transaction, but does not wait for the resolution to be permanently recorded.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_COORDINATOR_CONFLICT
TRAN_NOT_BEGINNER
TRAN_TID_ACTIVE_CHILDREN
TRAN_TID_NOT_VALID
TRAN_TID_OUTSTANDING_REQUESTS

38 tran_DeferCommit is not for ephemeral clients.

39 tran_Prepare is not for ephemeral clients.

  Chapter 39. TRAN Functions 461



 tran_ProvideOutcome  
 

 Related Information

tran_DeferCommit
tran_Prepare
tran_status_t
tran_tid_t

462 Encina Toolkit Executive Guide and Reference  



  tran_Ready
 

 tran_Ready

Completes the application interface initialization.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Ready()

 Description

The tran_Ready function indicates that all of its installed components (such as communication or recovery
services) have completed their initialization. This function must be called before any other interface
functions that create or manipulate new transactions.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_APPL_READY

 Related Information

tran_Init
tran_StandardEnvironment
tran_status_t
tran_Terminate

  Chapter 39. TRAN Functions 463



 tran_RecAcknowledge  
 

 tran_RecAcknowledge

Acknowledges an asynchronous recovery service upcall.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecAcknowledge(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

tid Specifies the transaction identifier.

 Description

The tran_RecAcknowledge function indicates completion of an upcall declared as asynchronous. The
recovery service must issue one tran_RecAcknowledge function for each invocation of an asynchronous
upcall when it is completed, regardless of how it is completed. The recovery service must not call
tran_RecAcknowledge for upcalls that were not declared to be asynchronous.

 Notes
An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_RecExplicitlyAcknowledges
tran_serviceId_t
tran_status_t
tran_tid_t

464 Encina Toolkit Executive Guide and Reference  



  tran_RecBlockFunctions
 

 tran_RecBlockFunctions

Provides block and wake up functions.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecBlockFunctions(
IN tran_serviceId_t recServiceId,
IN void (GupcallDefaultBlock)(IN tran_serviceId_t,

 IN tran_tid_t,
IN unsigned int,
IN unsigned long),

IN void (GupcallDefaultWakeup)(IN tran_serviceId_t,
 IN tran_tid_t,

IN unsigned int))

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

upcallDefaultBlock
Specifies the procedure to block waiting for recovery service action.

upcallDefaultWakeup
Specifies the procedure to indicate that upcallDefaultBlock should return.

 Description

The tran_RecBlockFunctions function installs its own procedures for blocking application threads. This
function is optional; if a recovery service does not provide its own block and wake-up procedures, TRAN
uses the default procedures established as part of the environment.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

Block Upcall: The upcallDefaultBlock parameter points to a function that TRAN can call to wait for
recovery service functions to complete. When a block upcall is invoked, it is assigned a unique identifier.
The block upcall should not return until the wake-up upcall is invoked with the same transaction and block
identifiers.

The function must be defined to take four arguments and return no value. The identifier for the recovery
service being called (recServiceId) is passed as the first argument. The transaction identifier for the
blocked transaction is passed as the second argument. A unique identifier for the block invocation is
passed as the third argument. The number of microseconds that should elapse before calling the
tran_Alarm function is passed as the fourth argument; calling tran_Alarm is required only if the upcall
implementation interferes with the alarm upcall in the environment.

  Chapter 39. TRAN Functions 465



 tran_RecBlockFunctions  
 

Wake-up Upcall: The upcallDefaultWakeup parameter points to a function that TRAN calls to cause
the corresponding block upcall to return.

The function must be defined to take three arguments and return no value. The identifier for the recovery
service being called (recServiceId) is passed as the first argument. The transaction identifier for the
blocked transaction is passed as the second argument. A unique identifier for the block invocation is
passed as the third argument.

 Return Values
TRAN_SUCCESS

 Related Information

tran_RecInit
tran_RecReadOnly
tran_RecRefuse
tran_serviceId_t
tran_status_t
tran_tid_t

466 Encina Toolkit Executive Guide and Reference  



  tran_RecDynamicallyRegisters
 

 tran_RecDynamicallyRegisters

Specifies that the recovery service requests certain upcalls on a per-transaction basis.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecDynamicallyRegisters(
IN tran_serviceId_t recServiceId,
IN int registersForPrepare,
IN int registersForOutcome,
IN int registersForFinished)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

registersForPrepare
Indicates whether the recovery service informs TRAN when it requires a prepare upcall for a
transaction.

registersForOutcome
Indicates whether the recovery service informs TRAN when it requires an outcome (commit or abort)
upcall for a transaction.

registersForFinished
Indicates whether the recovery service informs TRAN when it requires a finished upcall for a
transaction.

 Description

The tran_RecDynamicallyRegisters function can be issued during initialization to indicate that it
dynamically registers for upcalls on a per-transaction basis. Dynamic registration provides TRAN with
additional information used for optimizing commitment or abort processing.

The registersForPrepare, registersForOutcome, and registersForFinished parameters are used to specify if
the recovery service should inform TRAN when it requires a prepare, outcome (commit or abort), or
finished upcall for a transaction, respectively. A nonzero value indicates that the corresponding upcall is
declared as dynamically registered. The recovery service can use the tran_RecRegister function to
request specific upcalls that have been declared as dynamically registered.

Dynamic registration is optional for both TRAN and a recovery service. If a recovery service does not use
the tran_RecDynamicallyRegisters function to specify dynamic registration for upcalls, TRAN delivers all
upcalls for every transaction. In addition, TRAN can issue an upcall even when a recovery service
specifies dynamic registration and does not request that upcall.

If a recovery service specifies that it dynamically registers for an upcall, but then fails to request that
upcall, TRAN may treat the application as implicitly completing that upcall whenever that upcall would
normally occur. In the case of a prepare upcall, TRAN can also assume that the recovery service was
read-only.

  Chapter 39. TRAN Functions 467



 tran_RecDynamicallyRegisters  
 

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

Nested Transactions: Dynamic registration is done on a transaction family basis in applications that
use nested transactions.

 Return Values
TRAN_SUCCESS
TRAN_APPL_READY
TRAN_INVALID_SERVICE

 Related Information

tran_RecRegister
tran_serviceId_t
tran_status_t

468 Encina Toolkit Executive Guide and Reference  



  tran_RecExplicitlyAcknowledges
 

 tran_RecExplicitlyAcknowledges

Declares upcalls as asynchronous.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecExplicitlyAcknowledges(
IN tran_serviceId_t recServiceId,
IN int writesAsynchronously,
IN int preparesAsynchronously,
IN int commitsAsynchronously,
IN int abortsAsynchronously,
IN int finishesAsynchronously)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

writesAsynchronously
Indicates whether the rec-write upcall explicitly acknowledges completion.

preparesAsynchronously
Indicates whether the rec-prepare upcall explicitly acknowledges completion.

commitsAsynchronously
Indicates whether the rec-commit upcall explicitly acknowledges completion.

abortsAsynchronously
Indicates whether the rec-abort upcall explicitly acknowledges completion.

finishesAsynchronously
Indicates whether the rec-finished upcall explicitly acknowledges completion.

 Description

The tran_RecExplicitlyAcknowledges function indicates that it acknowledges completion of upcalls
explicitly. Each parameter describes the behavior of a particular type of upcall. For example, if
preparesAsynchronously is asserted, the rec-prepare upcall may return before completing its work; when
the work associated with a rec-prepare upcall is completed, the recovery service must call
tran_RecAcknowledge. An upcall that has been declared as acknowledging asynchronously must do so
once for each invocation.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

  Chapter 39. TRAN Functions 469



 tran_RecExplicitlyAcknowledges  
 

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_RecAcknowledge
tran_serviceId_t
tran_status_t
upcallRecAbort

470 Encina Toolkit Executive Guide and Reference  



  tran_RecInit
 

 tran_RecInit

Initializes the recovery service interface.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecInit(
IN void (GupcallRecWrite)(IN tran_serviceId_t,

 IN tran_tid_t,
 IN tran_logRecord_t,

IN tran_recOptimization_t G),
IN void (GupcallRecPrepare)(IN tran_serviceId_t,

 IN tran_tid_t,
 IN tran_logRecord_t,

IN tran_recOptimization_t G),
IN void (GupcallRecCommit)(IN tran_serviceId_t,

 IN tran_tid_t,
IN tran_recOptimization_t G),

IN void (GupcallRecAbort)(IN tran_serviceId_t,
 IN tran_tid_t,

IN tran_recOptimization_t G),
IN void (GupcallRecFinished)(IN tran_serviceId_t,

 IN tran_tid_t,
IN tran_recOptimization_t G),

IN void (GupcallRecActive)(IN tran_serviceId_t,
 IN tran_tid_t,
 IN int),

OUT tran_serviceId_t GrecServiceIdOut)

 Parameters
upcallRecWrite

Specifies the procedure called to write log records for TRAN.

upcallRecPrepare
Specifies the procedure called to prepare a transaction.

upcallRecCommit
Specifies the procedure called to deliver a commit outcome.

upcallRecAbort
Specifies the procedure called to deliver an abort outcome.

upcallRecFinished
Specifies the procedure called to dispose of TRAN log records.

upcallRecActive
Specifies the procedure called to indicate when a transaction is active.

recServiceIdOut
Returns the service identifier to be used in interface functions and upcalls associated with this
recovery service.

  Chapter 39. TRAN Functions 471



 tran_RecInit  
 

 Description

The tran_RecInit function initializes the interface for the recovery service to TRAN. The recovery service
must call the tran_RecInit function and perform the restart processing before permitting the application to
call the tran_Ready function.

The input parameters to the tran_RecInit function are procedures that TRAN can call to write log records,
prepare transactions, deliver outcomes, and relate transaction state. The result parameter,
recServiceIdOut, is used to identify this particular recovery service when TRAN invokes upcalls and when
the recovery service invokes calls.

If a recovery service does not need to take any action at commit or abort time, NULL can be specified as
the value of the upcallRecCommit or upcallRecAbort parameter to indicate that no upcall is required.
Specifying upcallRecCommit as NULL provides a minor improvement in performance.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

Recovery-write Upcall: The upcallRecWrite parameter points to a function that TRAN calls to ask
the recovery service to permanently record a TRAN log record. When the application no longer needs the
specified log record, the recovery service must destroy that record using the destructor function
tran_LogRecordDestroy.

The function must be defined to take four arguments and return no value. The recovery service identifier
is passed as the first argument. If the application is a participant in an unfinished transaction, the identifier
for that transaction is passed as the second argument; otherwise, the value TRAN_TID_NULL is passed.

The data that must be logged is passed in the third argument; the recovery service must use the access
functions for special-purpose data types to acquire the record contents. The recovery service must ensure
that the data is recorded permanently (and that it is replayed during restart) before returning from the
upcall. A parameter to aid the recovery service in optimizing logging is passed as the fourth argument.

Recovery-prepare Upcall: The upcallRecPrepare parameter points to a function that TRAN calls to
prepare a transaction family. The recovery service must take any necessary steps to assure that it can
accept the distributed outcome (commit or abort) for the transaction family from TRAN. It must also record
the data contained in the log record for TRAN. The recovery service must call tran_RecRefuse if it
cannot prepare or tran_RecReadOnly if it does not need to prepare; otherwise, it must make the prepare
assurance and log TRAN data permanently before it returns. The recovery service must call
tran_LogRecordDestroy when it no longer needs the data.

The function must be defined to take four arguments and return no value. The recovery service identifier
is passed as the first argument. The identifier for the transaction is passed as the second argument. The
data that the recovery service must log is passed as the third argument. The recovery service typically
incorporates the data provided by TRAN into its own prepare record, so that both become permanent
atomically. The recovery service must use the access functions for special-purpose data types to acquire
the record contents. A parameter to aid the recovery service in optimizing logging is passed as the fourth
argument.

Once all recovery services in an application have prepared, the application must abide by the distributed
outcome. The application can call tran_Abort to attempt to abort a transaction at any time; however,
once the application has prepared, the request is not guaranteed to succeed. As part of the

472 Encina Toolkit Executive Guide and Reference  



  tran_RecInit
 

recovery-prepare upcall, the recovery service must ensure that a subsequent application failure does not
cause the transaction to be aborted (or committed) accidentally.

The recovery service must respond to the recovery-prepare upcall in one of three ways:

� The recovery service can assure that it will accept the distributed outcome and that it can replay the
TRAN data after a failure. TRAN promises to ascertain and deliver the distributed outcome.

� The recovery service may use the tran_RecReadOnly to indicate that it can safely accept either
outcome without waiting for other participants to prepare. A recovery service typically does so
because it has made no modifications to recoverable storage on behalf of the transaction family. The
recovery service need not write TRAN data; if it does write and replay the data at restart, TRAN may
treat the application as prepared. If no other modules in the application demand the distributed
outcome, TRAN may deliver a local outcome immediately. Once an outcome is delivered, the
application is not permitted to perform work on behalf of the transaction family; incoming RPCs fail,
causing the transaction to abort in the calling application.

� The recovery service can use the tran_RecRefuse function to indicate that it cannot prepare. It can
then call tran_Abort to abort any member of the transaction family.

It may be necessary for TRAN to invoke this upcall more than once for a transaction family during its
lifetime. A transaction family is no longer considered prepared when an RPC arrives for any member of
the family. This can take place after TRAN invokes the upcall. TRAN initiates a new prepare phase
(invoking all before-prepare callbacks and prepare upcalls) before the transaction family is allowed to
commit.

Recovery-commit Upcall: The upcallRecCommit parameter points to a function that TRAN calls to
indicate that a transaction family has committed. The recovery service should take any actions necessary
to make the effects of the transaction visible to others. The recovery service should also log a commit
indication that can be replayed during restart. The recovery service can release resources it held in order
to abort the transaction family, but it cannot discard the most recent TRAN log record until the
recovery-finished upcall is invoked. TRAN delivers this upcall only once in a single execution of the
application; it is delivered again after a restart if the transaction has not finished.

The function must be defined to take three arguments and return no value. The recovery service identifier
is passed as the first argument. The identifier for the transaction is passed as the second argument. A
parameter to aid the recovery service in optimizing logging is passed as the third argument.

The recovery service should log a commit indication before returning from the recovery-commit upcall. At
restart, the recovery service should replay the special log record value constant TRAN_LOG_RECORD_COMMIT.
The recovery service can use this constant to construct its log record; alternately, it may record a commit
indication of its choosing, and replay the constant when it encounters its commit indication at restart. The
commit indication need not be recorded permanently before the upcall returns, but it should be buffered so
that it becomes permanent along with any later log records for transactions that may depend on the
committed work. The commit indication is not considered the most recent TRAN log record for the
purposes of restart.

Recovery-abort Upcall: The upcallRecAbort parameter points to a function that TRAN calls to
indicate that a transaction has aborted. The recovery service should ensure that the effects of the
transaction are undone before returning from the upcall. The recovery service should also log an abort
indication that can be replayed during restart. TRAN invokes the recovery-abort upcall only once for a
transaction during a single execution of the application; it is redelivered for prepared transactions after an
application restart. TRAN may deliver this upcall as soon as the transaction is known to be aborted and
all before-abort callbacks have been completed; the beginner of the transaction need not have called the
tran_End function.

  Chapter 39. TRAN Functions 473



 tran_RecInit  
 

The function must be defined to take three arguments and return no value. The recovery service identifier
is passed as the first argument. The identifier for the transaction is passed as the second argument. A
parameter to aid the recovery service in optimizing logging is passed as the third argument.

The recovery service should replay an abort indication for the transaction during restart if the transaction
was considered prepared when the upcall was invoked. The recovery service can record the abort
indication however it chooses; it should replay the indication as the special log record value constant
TRAN_LOG_RECORD_ABORT. An abort indication is not considered the most recent TRAN log record for the
purposes of restart.

Recovery-finished Upcall: The upcallRecFinished parameter points to a function that TRAN calls
to inform the recovery service that the TRAN log records for a transaction should be discarded. The
recovery service must not return from the upcall until it can guarantee that in its next restart it replays one
of the following on behalf of this transaction: no records at all or an empty log record (in addition to any
others it might replay). No other recovery service upcalls are invoked for a transaction after the
recovery-finished upcall.

The function must be defined to take three arguments and return no value. The recovery service identifier
is passed as the first argument. The identifier for the transaction is passed as the second argument. A
parameter to aid the recovery service in optimizing logging is passed as the third argument.

Recovery-active Upcall: The upcallRecActive parameter points to a function that TRAN calls to
indicate when a transaction becomes active or inactive. TRAN guarantees that it invokes the upcall before
a new transaction identifier is returned to the application (in tran_Begin or
tran_CommReceivedRequest).

The function must be defined to take three arguments and return no value. The recovery service identifier
is passed as the first argument. The identifier for the transaction is passed as the second argument. A
value indicating if the transaction is active or inactive is passed as the third argument; the value is a
nonzero value (TRUE) when the application begins a transaction or when a transactional RPC arrives at
the application, and it is 0 (FALSE) when the last transactional RPC leaves an application that did not
begin the transaction.

Nested Transactions: TRAN calls upcallRecPrepare with the transaction identifier of the top-level
transaction in the family. All committed members of a transaction family prepare together with their
top-level ancestor. The recovery service must prepare all members of the transaction family that have not
been aborted.

A transaction family is no longer considered prepared when any member transaction is aborted. TRAN
initiates another prepare phase for the remainder of the family before it can commit.

TRAN calls upcallRecCommit once with the transaction identifier of the top-level family member. All
members of the family that were not aborted before the most recent upcallRecPrepare are committed
together.

TRAN calls upcallRecAbort for all descendants of the named transaction that have not been undone.
TRAN does not invoke the recovery-abort upcall for a transaction while another upcall is in progress for an
ancestor or descendent. TRAN does not invoke the recovery-abort upcall for a subtransaction that aborts
after being committed relative to its parent.

TRAN calls upcallRecFinished once with the transaction identifier of the top-level member. All members of
a family finish together.

474 Encina Toolkit Executive Guide and Reference  



  tran_RecInit
 

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_APPL_READY

 Related Information

tran_Abort
tran_Begin
tran_CommReceivedRequest
tran_End
tran_LogRecordDestroy
tran_logRecord_t
tran_Ready
tran_RecBlockFunctions
tran_recOptimization_t
tran_RecReadOnly
tran_RecRefuse
tran_serviceId_t
tran_status_t

  Chapter 39. TRAN Functions 475



 tran_RecMustForceGroup  
 

 tran_RecMustForceGroup

Determines if the recovery service must force a group.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecMustForceGroup(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid,
IN tran_forceGroupId_t forceGroupId,
OUT int GmustForceP)

 Parameters
recServiceId

Specifies the service identifier for the recovery service being invoked.

tid Specifies the transaction identifier.

forceGroupId
Specifies the log force group identifier.

mustForceP
Returns a flag that is TRUE if the caller must force this group for this tid.

 Description

The tran_RecMustForceGroup function is called during the rec-prepare upcall to find out whether it must
force a particular log force group when TRAN log records are written for a particular transaction. TRAN
returns TRUE in mustForceP if the recovery service has been designated to force the group or FALSE if it
has not been designated. This result is valid only for the most recent recovery upcall made by TRAN.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_forceGroupId_t
tran_RecUsingForceGroup
tran_serviceId_t
tran_status_t
tran_tid_t

476 Encina Toolkit Executive Guide and Reference  



  tran_RecordHeuristicOutcome
 

 tran_RecordHeuristicOutcome

Records that an application has heuristically completed work.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecordHeuristicOutcome(
IN tran_tid_t tid,
IN tran_heuristicType_t workCommitted)

 Parameters
tid Specifies the transaction identifier.

workCommitted
Specifies the type of commit. It can be one of the following:

 � TRAN_HEURISTIC_OUTCOME_ABORT
 � TRAN_HEURISTIC_OUTCOME_COMMIT
 � TRAN_HEURISTIC_OUTCOME_BOTH

 Description

The tran_RecordHeuristicOutcome function records that the application has heuristically completed
work. An application calls tran_RecordHeuristicOutcome to indicate that it has heuristically forced an
outcome for some part of the transaction, tid. If workCommitted is set to TRAN_HEURISTIC_OUTCOME_ABORT,
some transactional work has been heuristically aborted, , if it is TRAN_HEURISTIC_OUTCOME_COMMIT, some
transactional work has been committed. If workCommitted is set to TRAN_HEURISTIC_OUTCOME_BOTH, some
work has been heuristically aborted and other work has been heuristically committed.

TRAN does not deliver an outcome as a result of this call; an application should call
tran_ForceHeuristicOutcome if that is desired. This function is intended to allow an application
component to report heuristic decisions that occur beyond its control; for example, a module that interacts
with a foreign transaction system could report heuristic decisions made by that system using this function.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

  Chapter 39. TRAN Functions 477



 tran_RecordHeuristicOutcome  
 

 Related Information

tran_CallOnHeuristicDamage
tran_DeclareReportableHeuristicOutcome
tran_ForceHeuristicOutcome
tran_ForciblyFinish
tran_heuristicType_t
tran_RequireHeuristicDamageReporting
tran_status_t
tran_tid_t

478 Encina Toolkit Executive Guide and Reference  



  tran_RecReadOnly
 

 tran_RecReadOnly

Accepts an early outcome.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecReadOnly(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

tid Specifies the transaction identifier.

 Description

The tran_RecReadOnly function indicates that it can safely accept any outcome immediately. The
recovery service need not log the prepare record provided in the recovery-prepare upcall
(upcallRecPrepare) function. The recovery service must not assume that TRAN delivers a local outcome
immediately; other recovery services or other application modules may demand the distributed outcome.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_RecBlockFunctions
tran_RecInit
tran_RecRefuse
tran_serviceId_t
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 479



 tran_RecRefuse  
 

 tran_RecRefuse

Refuses to comply with an upcall.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecRefuse(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

tid Specifies the transaction identifier.

 Description

The tran_RecRefuse function indicates that it refuses to comply with an upcall. It may do so because it is
unable to prepare a transaction family or because it is unable to write a TRAN log record. The recovery
service must not replay a log record associated with an upcall that it has refused.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_RecBlockFunctions
tran_RecInit
tran_RecReadOnly
tran_serviceId_t
tran_status_t
tran_tid_t

480 Encina Toolkit Executive Guide and Reference  



  tran_RecRegister
 

 tran_RecRegister

Indicates the upcalls required for a transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecRegister(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid,
IN int registerForPrepare,
IN int registerForOutcome,
IN int registerForFinished)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

tid Specifies the transaction identifier.

registerForPrepare
Indicates whether a prepare upcall is required for a transaction.

registerForOutcome
Indicates whether an outcome (commit or abort) upcall is required for a transaction.

registerForFinished
Indicates whether a finished upcall is required for a transaction.

 Description

The tran_RecRegister function indicates which upcalls are required for a transaction. The recovery
service must make this request prior to performing any work that requires the upcall. It should request
upcalls only when it needs them, so that TRAN can take advantage of optimizations during commitment
(or abort) processing. An optimal recovery service requests only those upcalls it actually needs.

The recovery service must specify all dynamic upcalls that it requires. A nonzero value in the
registerForPrepare, registerForOutcome, or registerForFinished parameters specifies that an upcall of the
respective type is required. The set of upcalls to be delivered is not cumulative; all upcalls that are
required for a transaction must be specified on each subsequent call. It is legal, but not necessary, to
specify upcalls that were not declared as dynamic in the call to the tran_RecDynamicallyRegisters
function.

The recovery service must call the tran_RecRegister function prior to doing work that would require the
upcall. TRAN may make decisions that precludes later requests for upcalls based on the recovery
service's current intentions. The recovery service must not depend on other upcalls, callbacks, or events
for an opportunity to state its requirements. For all practical purposes, this means that the function must
be called while the transaction is still active.

  Chapter 39. TRAN Functions 481



 tran_RecRegister  
 

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

Nested Transactions: Dynamic registration should be done on a transaction family basis in
applications that use nested transactions. In such applications, upcalls are delivered on behalf of the
top-level transaction only. The call to the tran_RecRegister function can be specified by any member of
the transaction family and affects all transactions in that family.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID
TRAN_APPL_NOT_READY
TRAN_INVALID_SERVICE

 Related Information

tran_RecDynamicallyRegisters
tran_serviceId_t
tran_status_t
tran_tid_t

482 Encina Toolkit Executive Guide and Reference  



  tran_RecReplay
 

 tran_RecReplay

Replays a log record during restart processing.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecReplay(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid,
IN tran_logRecord_t logRecord)

 Parameters
recServiceId

Specifies the service identifier of the calling recovery service.

tid Specifies the transaction identifier.

logRecord
Specifies the log record.

 Description

The tran_RecReplay function is called during restart to provide TRAN with a log record's information.
TRAN does nothing with the record until the application calls tran_Ready. At that time, TRAN considers
each record and replays it if necessary.

When the application no longer needs the specified log record, the application must then destroy that
record using the destructor function tran_LogRecordDestroy.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_APPL_READY
TRAN_INVALID_RECORD

 Related Information

tran_logRecord_t
tran_LogRecordDestroy
tran_Ready
tran_serviceId_t
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 483



 tran_RecUsingForceGroup  
 

 tran_RecUsingForceGroup

Declares use of a log-force group.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RecUsingForceGroup(
IN tran_serviceId_t recServiceId,
IN tran_tid_t tid,
IN tran_forceGroupId_t forceGroupId)

 Parameters
recServiceId

Specifies the service identifier for the recovery service being invoked.

tid Specifies the transaction identifier.

forceGroupId
Specifies the log force group identifier.

 Description

The tran_RecUsingForceGroup function specifies a log force group that it is using for a particular
transaction. It can call this function more than once to specify multiple force groups for the same
transaction.

By calling tran_RecUsingForceGroup, the recovery service promises to force the group when writing
each subsequent TRAN log record, unless otherwise indicated by a call to tran_RecMustForceGroup.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_TID_NOT_VALID

 Related Information

tran_forceGroupId_t
tran_RecMustForceGroup
tran_serviceId_t
tran_status_t
tran_tid_t

484 Encina Toolkit Executive Guide and Reference  



  tran_RequestPromptFinish
 

 tran_RequestPromptFinish

Requests that all participating applications finish promptly.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RequestPromptFinish(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_RequestPromptFinish function indicates that it anxiously awaits after-finished callbacks. TRAN
always attempts to promptly deliver the distributed outcome (commit or abort) for a transaction, but it may
proceed to the after-finished phase lazily to improve throughput. An application that does not proceed
before the after-finished phase occurs, for example to wait for potential heuristic damage reporting, should
call tran_RequestPromptFinish to eliminate unwanted latency. This function should not have any effect
on program correctness; it is purely a performance hint.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_COMM_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_DelayAbort
tran_ProlongFinish
tran_ProlongResolution
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 485



 tran_RequireCompleteOutcome  
 

 tran_RequireCompleteOutcome

Indicates that the application needs a complete outcome.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RequireCompleteOutcome(
IN tran_tid_t tid,
IN int nowRequired)

 Parameters
tid Specifies the transaction identifier.

nowRequired
Specifies the flag that is TRUE if the application requires all outcome callbacks.

 Description

The tran_RequireCompleteOutcome function indicates that it needs to complete after-resolution
callbacks regardless of failure. An application expresses a need for a complete outcome by calling
tran_RequireCompleteOutcome with nowRequired set to TRUE. An application can later cancel its
request for the distributed outcome by calling tran_RequireCompleteOutcome again with nowRequired
set to FALSE. Cancellations must match requests.

If no application module expresses a need for a complete outcome, TRAN does not guarantee that
callbacks can be reestablished. TRAN may make use of logging optimizations that would cause the
transaction family to be considered finished after restart, meaning that outcome information would be
unavailable.

TRAN does not automatically reestablish after-resolution callbacks (or restrictions). The application must
call tran_CallAfterResolution, tran_ProlongResolution,40 or tran_RequireCompleteOutcome again as
desired.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

40 tran_ProlongResolution is not for ephemeral clients.

486 Encina Toolkit Executive Guide and Reference  



  tran_RequireCompleteOutcome
 

 Related Information

tran_CallAfterResolution
tran_ProlongResolution
tran_RecReadOnly
tran_RequireDistributedOutcome
tran_SetEphemeralOutcomeRequirementLimit
tran_SetEphemeralOutcomeDeliveryLimit
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 487



 tran_RequireDistributedOutcome  
 

 tran_RequireDistributedOutcome

Requests distributed outcome information, or cancels previous request.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RequireDistributedOutcome(
IN tran_tid_t tid,
IN int nowRequired)

 Parameters
tid Specifies the transaction identifier.

nowRequired
Specifies a flag that is TRUE if the application requires distributed outcome information.

 Description

The tran_RequireDistributedOutcome function requests distributed outcome information, or cancels a
previous request. An application expresses a need for the distributed outcome by calling the function with
the nowRequired parameter set to TRUE. An application can later cancel its request for the distributed
outcome by calling the function again with nowRequired set to FALSE. Cancellations must match
requests.

The distributed outcome is that agreed upon by all participants in the transaction and permanently
recorded by at least one participant. TRAN delivers a local commit outcome instead of the distributed
outcome if no application module expresses a need for the distributed outcome and all recovery services
respond to the rec-prepare upcall by calling the tran_RecReadOnly41 function.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_RecReadOnly
tran_RequireCompleteOutcome
tran_SetEphemeralOutcomeRequirementLimit
tran_SetEphemeralOutcomeDeliveryLimit
tran_status_t
tran_tid_t

41 tran_RecReadOnly is not for ephemeral clients.

488 Encina Toolkit Executive Guide and Reference  



  tran_RequireHeuristicDamageReporting
 

 tran_RequireHeuristicDamageReporting

Requests heuristic damage reporting guarantees.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_RequireHeuristicDamageReporting(
IN tran_tid_t tid,
IN tran_heuristicType_t isRequirementForCommit,
IN int isRequiredBeforeFinishing,
IN int isRequiredAfterRestart)

 Parameters
tid Specifies the transaction identifier.

isRequirementForCommit
Specifies the type of guarantee desired, one of the following:

 � TRAN_HEURISTIC_OUTCOME_ABORT
 � TRAN_HEURISTIC_OUTCOME_COMMIT
 � TRAN_HEURISTIC_OUTCOME_BOTH

isRequiredBeforeFinishing
Specifies TRUE if heuristic damage reporting is required before after-finished callbacks; specifies
FALSE otherwise.

isRequiredAfterRestart
Specifies TRUE if heuristic damage reporting is required after restart; specifies FALSE otherwise.

 Description

The tran_RequireHeuristicDamageReporting function requests heuristic damage reporting guarantees.
Normally, TRAN attempts to report heuristic damage information to all participants in the transaction;
however, the only guarantee provided is that damage caused by heuristic abort decisions is reported to
the coordinator before it finishes. Applications can call to demand additional guarantees.

The isRequirementForCommit parameter specifies whether a demand applies to damage caused by
heuristic commit, abort, or both. The isRequiredBeforeFinishing parameter indicates whether the reports
must be delivered before after-finished callbacks are invoked, or later. The isRequiredAfterRestart
parameter indicates whether this timeliness guarantee must be extended after an application restart, or
that it can be waived after the application crashes. Guarantees do not apply to heuristic damage that is
not considered reportable or heuristic damage that may have already occurred. See the
tran_DeclareReportableHeuristicDecisions function for more information.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

  Chapter 39. TRAN Functions 489



 tran_RequireHeuristicDamageReporting  
 

 Related Information

tran_CallOnHeuristicDamage
tran_DeclareReportableHeuristicOutcome
tran_ForceHeuristicOutcome
tran_ForciblyFinish
tran_heuristicType_t
tran_RecordHeuristicOutcome
tran_status_t
tran_tid_t

490 Encina Toolkit Executive Guide and Reference  



  tran_Reserve
 

 tran_Reserve

Reserves a transaction identifier.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Reserve(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_Reserve function reserves the transaction identifier specified in the tid parameter. Reserving a
transaction identifier allows that same identifier to be used after restart and prevents it from being used for
any new transactions.

The tran_Reserve function must be called by the application module during restart, after the tran_Init
function and before the tran_Ready function. If called after the tran_Ready function, the
TRAN_APPL_READY status code is returned.

 Return Values
TRAN_SUCCESS
TRAN_APPL_READY

 Related Information

tran_Init
tran_Ready
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 491



 tran_Secure  
 

 tran_Secure

Generates authentication and authorization information.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Secure(
IN tran_tid_t tid,
IN tran_securityKey_t key)

 Parameters
tid Specifies the transaction identifier.

key
Specifies the application-specified security key.

 Description

The tran_Secure function provides data immune to forgery for secure RPC and asynchronous messages.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_SECURITY_KEY_ALREADY_SET
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_securityKey_t
tran_tid_t

492 Encina Toolkit Executive Guide and Reference  



  tran_SecurityKeyCons
 

 tran_SecurityKeyCons

Creates a new security key from existing data.

 Synopsis
#include <tran/tran.h>

tran_securityKey_t tran_SecurityKeyCons(
IN void GdataP,
IN unsigned long length,
IN void (GdestructorFunction)(void G))

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of data in bytes.

destructorFunction
Specifies the destructor function that TRAN calls when the data is no longer needed, or a null function
pointer if automatic destruction is not desired.

 Description

The tran_SecurityKeyCons function creates a new object of type tran_securityKey_t from existing data.
The application provides a generic pointer and a data length to define the contents of the object. The
function stores a reference to the original data rather than copying the data. The application must not
de-allocate or change the data it uses to construct an object until that object is destroyed. TRAN also
promises not to change the data provided. The application can specify that TRAN is responsible for
freeing the data by calling a destructor function when it no longer needs the data. TRAN is permitted to
free this memory whenever it deems appropriate.

 Related Information

tran_securityKey_t
tran_SecurityKeyCopy
tran_SecurityKeyCreate

  Chapter 39. TRAN Functions 493



 tran_SecurityKeyCopy  
 

 tran_SecurityKeyCopy

Creates a copy of a security key object.

 Synopsis
#include <tran/tran.h>

tran_securityKey_t tran_SecurityKeyCopy(
IN tran_securityKey_t object)

 Parameters
object

Specifies a security key object to copy.

 Description

The tran_SecurityKeyCopy function creates a new object of type tran_securityKey_t from an existing
security key object. The application must call the tran_SecurityKeyDestroy function when it no longer
needs the object.

 Related Information

tran_securityKey_t
tran_SecurityKeyCons
tran_SecurityKeyCreate
tran_SecurityKeyDestroy

494 Encina Toolkit Executive Guide and Reference  



  tran_SecurityKeyCreate
 

 tran_SecurityKeyCreate

Creates a new security key.

 Synopsis
#include <tran/tran.h>

tran_securityKey_t tran_SecurityKeyCreate(
IN void GdataP,
IN unsigned long length)

 Parameters
dataP

Specifies a pointer to data defining the object contents.

length
Specifies the length of the data in bytes.

 Description

The tran_SecurityKeyCreate function creates a new object of type tran_securityKey_t. The application
provides a generic pointer and a data length to define the contents of the object. TRAN copies the data;
the application can de-allocate its copy of the data as soon as the function completes. The application
must call the tran_SecurityKeyDestroy function when it no longer needs the object.

 Related Information

tran_securityKey_t
tran_SecurityKeyCons
tran_SecurityKeyCopy
tran_SecurityKeyDestroy

  Chapter 39. TRAN Functions 495



 tran_SecurityKeyDestroy  
 

 tran_SecurityKeyDestroy

Destroys a security key.

 Synopsis
#include <tran/tran.h>

void tran_SecurityKeyDestroy(
IN tran_securityKey_t object)

 Parameters
object

Specifies the object containing the security key.

 Description

The tran_SecurityKeyDestroy function destroys an object of type tran_securityKey_t when it is no
longer needed. Applications must use this function for objects that they create or construct, and for
objects that TRAN provides in interface functions, upcalls, and callbacks. Once an object is destroyed it
cannot be used, nor can any pointers to its contents acquired using the data access functions.

 Related Information

tran_securityKey_t
tran_SecurityKeyCons
tran_SecurityKeyCopy
tran_SecurityKeyCreate

496 Encina Toolkit Executive Guide and Reference  



  tran_SecurityKeyEqual
 

 tran_SecurityKeyEqual

Determines whether two security keys are equal.

 Synopsis
#include <tran/tran.h>

int tran_SecurityKeyEqual(
IN tran_securityKey_t objectOne,
IN tran_securityKey_t objectTwo)

 Parameters
objectOne

Specifies the first object.

objectTwo
Specifies a second object to be compared with the value specified for objectOne.

 Description

The tran_SecurityKeyEqual function compares two objects of type tran_securityKey_t to determine
whether they are equal. The function returns 1 (TRUE) if the objects are equal, and 0 (FALSE) if the
objects differ.

 Related Information

tran_securityKey_t

  Chapter 39. TRAN Functions 497



 tran_SecurityKeyLength  
 

 tran_SecurityKeyLength

Retrieves the length of a security key.

 Synopsis
#include <tran/tran.h>

unsigned long tran_SecurityKeyLength(
IN tran_securityKey_t object)

 Parameters
object

Specifies the object containing the security key.

 Description

The tran_SecurityKeyLength function retrieves the data contained in an object of type
tran_securityKey_t. The function returns the valid length of that data in bytes.

 Related Information

tran_securityKey_t

498 Encina Toolkit Executive Guide and Reference  



  tran_SelectivelyCoordinate
 

 tran_SelectivelyCoordinate

Requests calls to the please-coordinate upcall42.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_SelectivelyCoordinate(
IN void (GupcallPleaseCoordinate42)(IN tran_tid_t, OUT intG))

 Parameters
upcallPleaseCoordinate

Specifies the procedure that decides whether to accept responsibility for coordinating a transaction.

 Description

The tran_SelectivelyCoordinate function specifies an upcall to be invoked whenever the application is
asked to coordinate a transaction.

Please-coordinate Upcall: The upcallPleaseCoordinate42 parameter points to a function that TRAN
calls to ask the application whether it accepts responsibility for coordinating a transaction. The coordinator
is responsible for performing communication and retaining the TRAN log record for the transaction until the
last participant finishes.

The function must be defined to take two arguments and return no value. The identifier for the transaction
is provided to aid the application in its decision. If the application was already a participant, its identifier is
used; otherwise, a new identifier is provided. This identifier also can be used later to abort the transaction
normally (using tran_Abort before it commits) or forcibly (using tran_ForceHeuristicOutcome). The
application indicates its willingness to coordinate by returning TRUE in the second parameter; otherwise, it
should return FALSE.

 Notes

An ephemeral client should not use this API. If you call this API, the upcallPleaseCoordinate you name is
never driven. (This produces incorrect results.)

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED

42 The please-coordinate upcall (upcallPleaseCoordinate) is not for ephemeral clients.

  Chapter 39. TRAN Functions 499



 tran_SelectivelyCoordinate  
 

 Related Information

tran_Abort
tran_ForcePartialOutcome
tran_GetCoordinator
tran_SetCoordinator
tran_status_t
tran_tid_t

500 Encina Toolkit Executive Guide and Reference  



  tran_SetCoordinator
 

 tran_SetCoordinator

Designates a coordinator for a transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_SetCoordinator(
IN tran_tid_t tid,
IN tran_applId_t coordinator,
IN int insist)

 Parameters
tid Specifies the transaction identifier.

coordinator
Specifies the application identifier of coordinator.

insist
Specifies the flag that is TRUE if the application refuses to prepare except with this coordinator.

 Description

The tran_SetCoordinator function requests a particular coordinator. The coordinator need not have
participated in the family. The participant should set the insist parameter to TRUE if it is unwilling to
prepare unless this coordinator is chosen.

The coordinator need not have participated in the family. TRAN must have a valid communication service
address for the coordinator. The tran_CommProvideAddressInfo function allows a communication
service to register an address for a coordinator that has not participated.

If TRAN can tell when tran_SetCoordinator is called that other applications have already insisted on a
different coordinator, the function returns TRAN_COORDINATOR_CONFLICT, regardless whether the caller
insisted. If it discovers later that participants have insisted on different coordinators, it aborts the
transaction.

Nested Transactions: All transactions in a family have the same coordinator. The application sets
the family's coordinator by calling tran_SetCoordinator using any member transaction identifier as an
argument.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_COORDINATOR_CONFLICT
TRAN_TID_NOT_VALID

  Chapter 39. TRAN Functions 501



 tran_SetCoordinator  
 

 Related Information

tran_applId_t
tran_CommProvideAddressInfo
tran_GetCoordinator
tran_SelectivelyCoordinate
tran_status_t
tran_tid_t

502 Encina Toolkit Executive Guide and Reference  



  tran_SetEphemeralOutcomeDeliveryLimit
 

 tran_SetEphemeralOutcomeDeliveryLimit

Specifies how long a recoverable application supplies outcome information.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_SetEphemeralOutcomeDeliveryLimit(
IN tran_tid_t tid,
IN unsigned long timeLimit)

 Parameters
tid Specifies the transaction identifier.

timeLimit
Specifies the length of time the application delivers outcome information, specified in microseconds.

 Description

The tran_SetEphemeralOutcomeDeliveryLimit function specifies how long it delivers outcome
information to ephemeral applications. A recoverable application may need to retain a TRAN log record
for this duration if the ephemeral application fails undetectably. After this time limit, TRAN may abandon
the ephemeral application, causing it to receive a local outcome.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_RecReadOnly
tran_RequireCompleteOutcome
tran_RequireDistributedOutcome
tran_SetEphemeralOutcomeRequirementLimit
tran_status_t
tran_tid_t

  Chapter 39. TRAN Functions 503



 tran_SetEphemeralOutcomeRequirementLimit  
 

 tran_SetEphemeralOutcomeRequirementLimit

Specifies how long an ephemeral application requires outcome information.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_SetEphemeralOutcomeRequirementLimit(
IN tran_tid_t tid,
IN unsigned long timeLimit)

 Parameters
tid Specifies the transaction identifier.

timeLimit
Specifies the length of time an outcome is required, in microseconds.

 Description

The tran_SetEphemeralOutcomeRequirementLimit function specifies how long an ephemeral
application requires outcome information. If an application requires the distributed outcome, TRAN
attempts to acquire outcome information for the specified period of time, timeLimit. See the
tran_RequireDistributedOutcome function for more information. After timeLimit expires, TRAN may
deliver a local outcome. The default time limit is zero.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_INITIALIZED
TRAN_TID_NOT_VALID

 Related Information

tran_RecReadOnly
tran_RequireCompleteOutcome
tran_RequireDistributedOutcome
tran_SetEphemeralOutcomeDeliveryLimit
tran_status_t
tran_tid_t

504 Encina Toolkit Executive Guide and Reference  



  tran_SpecialEnvironment
 

 tran_SpecialEnvironment

Specifies the system environment.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_SpecialEnvironment(
IN int (GupcallInitialize)(),
IN void (GupcallTerminate)(IN char G),
IN void (GupcallMutexInit)(INOUT tran_mutex_t G),
IN void (GupcallMutexLock)(INOUT tran_mutex_t G),
IN void (GupcallMutexUnlock)(INOUT tran_mutex_t G),
IN int (GupcallMutexTryLock)(INOUT tran_mutex_t G),
IN void (GupcallMutexTerminate)(INOUT tran_mutex_t G),
IN void G (GupcallMemAlloc)(IN unsigned long),
IN void (GupcallMemFree)(IN void G),
IN void (GupcallCurrentTime)(OUT unsigned long G,

OUT unsigned long G),
IN void (GupcallAlarmSet)(IN unsigned long),
IN void (GupcallCreateApplId)(OUT tran_applId_t G),
IN void (GupcallDefaultBlock)(IN tran_serviceId_t,

 IN tran_tid_t,
IN unsigned int,
IN unsigned long),

IN void (GupcallDefaultWakeup)(IN tran_serviceId_t,
 IN tran

IN unsigned int))

 Parameters
upcallInitialize

Specifies the procedure to perform environment initialization.

upcallTerminate
Specifies the procedure to perform termination.

upcallMutexInit
Specifies the procedure to initialize a mutual exclusion variable.

upcallMutexLock
Specifies the procedure to enter a critical section.

upcallMutexUnlock
Specifies the procedure to leave a critical section.

upcallMutexTryLock
Specifies the procedure to attempt to enter a critical section.

upcallMutexTerminate
Specifies the procedure to terminate a mutual exclusion variable.

upcallMemAlloc
Specifies the procedure to allocate memory.

upcallMemFree
Specifies the procedure to free memory.

  Chapter 39. TRAN Functions 505



 tran_SpecialEnvironment  
 

upcallCurrentTime
Specifies the procedure to return the current time.

upcallAlarmSet
Specifies the procedure to ask for asynchronous notification.

upcallCreateApplId
Specifies the procedure to generate a new application identifier.

upcallDefaultBlock
Specifies the procedure to wait for external events.

upcallDefaultWakeup
Specifies the procedure to resume execution.

 Description

The tran_SpecialEnvironment function defines its environment functions. Initially, all environment upcalls
are undefined. Each call to tran_SpecialEnvironment replaces each environment function specified by a
nonzero procedure pointer. All environment functions must be specified before the application calls the
tran_Init function.

When using the tran_SpecialEnvironment function, an application must call the trace_Init function
explicitly.

Initialize Upcall: The upcallInitialize parameter points to a function that TRAN calls each time the
application calls tran_Init. The function must perform any initialization required for other environment
functions, and it should return a nonzero value (TRUE) the first time it is called. It can return 0 (FALSE) to
indicate that the application call to tran_Init should fail.

Terminate Upcall: The upcallTerminate parameter points to a function that TRAN calls on normal or
fatal termination of service. The function must be defined to take one argument, which is a null-terminated
string that briefly describes the reason for termination. If the string passed to the upcall is the empty
string, the termination is normal, and the upcall should return. If the string is non-empty, the upcall should
not return; typically, it should log the error and terminate execution of the application.

Initialize-mutex Upcall: The upcallMutexInit parameter points to a function that TRAN calls to
initialize a mutual exclusion variable before it is used. The function must be defined to take one argument
and return no value. An uninitialized mutual exclusion variable is passed to the function. The function
must perform any necessary machine-specific initialization and leave the mutual exclusion variable in the
available (unlocked) state.

Lock-mutex Upcall: The upcallMutexLock parameter points to a function that TRAN calls when the
application enters a critical section that must be protected by a mutual exclusion variable. The function
must be defined to take one argument and return no value. A mutual exclusion variable to be locked
atomically is passed to the function.

The upcall blocks until the mutual exclusion variable becomes available. Only one call to the lock-mutex
upcall or the tryLock-mutex upcall may succeed between calls to the unlock-mutex upcall; the lock-mutex
upcall blocks until it is successful.

506 Encina Toolkit Executive Guide and Reference  



  tran_SpecialEnvironment
 

Unlock-mutex Upcall: The upcallMutexUnlock parameter points to a function that TRAN calls when
the application exits a critical section protected by a mutual exclusion variable. The function must be
defined to take one argument and return no value. A mutual exclusion variable to be unlocked is passed
to the function. The function must make the mutual exclusion variable available.

TryLock-mutex Upcall: The upcallMutexTryLock parameter points to a function that TRAN calls to
test whether the application can enter a critical section protected by a mutual exclusion variable. The
function must be defined to take one argument. A mutual exclusion variable to attempt to lock is passed
to the function.

The upcall attempts to acquire an available mutual exclusion variable and fails if it cannot be acquired.
Only one call to the lock-mutex upcall or the tryLock-mutex upcall may succeed between calls to the
unlock-mutex upcall; the tryLock-mutex upcall returns a nonzero value (TRUE) if successful, and 0
(FALSE) otherwise.

Terminate-mutex Upcall: The upcallMutexTerminate parameter points to a function that TRAN
calls when it no longer requires a mutual exclusion variable. The function must be defined to take one
argument and return no value. A mutual exclusion variable to be terminated is passed to the function.
The function can be used to release any resources associated with the tran_mutex_t type.

Allocate-memory Upcall: The upcallMemAlloc parameter points to a function that TRAN calls to
allocate memory for its own use. TRAN calls the free-memory upcall to free the allocated memory.
Memory provided by the allocate-memory upcall must be aligned according to the strictest requirement of
the underlying hardware (standard implementations of malloc satisfy this requirement).

The function must be defined to take one argument. The number of bytes of memory to be allocated is
passed to the function. If the function returns NULL, TRAN terminates abnormally.

Free-memory Upcall: The upcallMemFree parameter points to a function that TRAN calls to free
memory allocated by the allocate-memory upcall. The function must be defined to take one argument and
return no value. A pointer to the memory to be freed is passed to the function.

Current-time Upcall: The upcallCurrentTime parameter points to a function that TRAN calls to
determine the current time. The current time must be represented as some number of seconds and
microseconds since a given origin time. The function must specify the origin time, provided that it is past.
After the function returns once, it should not change the origin time.

The function must be defined to take two arguments and return no value. The number of seconds must
be returned in the first argument and the number of microseconds must be returned in the second
argument. The number of microseconds returned should be strictly less than one million.

Set-alarm Upcall: The upcallAlarmSet parameter points to a function that TRAN calls to set an
alarm. The function must be defined to take one argument and return no value. The number of
microseconds that should elapse before the alarm goes off is passed to the function.

TRAN may call the set-alarm upcall again before the previous alarm goes off. The upcall implementation
can ignore the previous setting.

  Chapter 39. TRAN Functions 507



 tran_SpecialEnvironment  
 

Create-application-identifier Upcall: The upcallCreateApplId parameter points to a function that
TRAN calls to create a permanently, globally unique identifier for the application. The function must be
defined to take one argument and return no value. The application identifier must be returned in the
argument. TRAN never destroys this application identifier.

Default-block Upcall: The upcallDefaultBlock parameter points to a function that TRAN can call
when it must wait for other actions to take place before it can return from an interface function. The
environment contains a default function for blocking application threads. A communication or recovery
service can register its own block function.

The function must be defined to take four arguments and return no value. The identifier for the service
being called is passed as the first argument; it is 0 (zero) when the default function is used. The
transaction identifier for the blocked transaction is passed as the second argument. A unique identifier for
the block invocation is passed as the third argument. The block identifier and the transaction identifier
uniquely identify an invocation of the upcall. The number of microseconds that should elapse before
calling the tran_Alarm function is passed as the fourth argument; calling tran_Alarm is required only if
the upcall implementation interferes with the alarm upcall in the environment.

The function should take any actions necessary to cause the appropriate interface functions
(tran_CommReceived, tran_RecAcknowledge, or tran_Alarm) to take place, or to allow callbacks or
upcalls to complete; this may be as simple as blocking the currently executing thread and allowing others
to run. The default-block upcall should not return until the default-wakeup upcall is invoked with the same
transaction and block identifiers.

Default-wakeup Upcall: The upcallDefaultWakeup parameter points to a function that TRAN calls
when a blocked thread can return from a corresponding call to a default-block upcall. In multi-threaded
applications, the default-wakeup upcall can be called before the corresponding call to the default-block
upcall.

The function must be defined to take three arguments and return no value. The identifier for the service
being called is passed as the first argument. The transaction identifier for the blocked transaction is
passed as the second argument. A unique identifier for the block invocation is passed as the third
argument.

 Return Values
TRAN_APPL_INITIALIZED
TRAN_SUCCESS

 Related Information

tran_Alarm
tran_applId_t
tran_CommReceived
tran_Init
tran_mutex_t
tran_RecAcknowledge
tran_serviceId_t
tran_status_t
tran_tid_t

508 Encina Toolkit Executive Guide and Reference  



  tran_StandardEnvironment
 

 tran_StandardEnvironment

Establishes the standard application environment.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_StandardEnvironment()

 Description

The tran_StandardEnvironment function indicates that TRAN should use the standard Toolkit
environment functions. The tran_SpecialEnvironment function can be used by itself to specify a full set
of environment functions, or after calling tran_StandardEnvironment to replace a subset of the standard
Toolkit functions. The application must establish its environment before calling tran_Init.

 Return Values
TRAN_SUCCESS
TRAN_APPL_INITIALIZED

 Related Information

tran_Init
tran_Ready
tran_SpecialEnvironment
tran_status_t
tran_Terminate

  Chapter 39. TRAN Functions 509



 tran_StringDestroy  
 

 tran_StringDestroy

Destroys a string.

 Synopsis
#include <tran/tran.h>

void tran_StringDestroy(
IN char Gstring)

 Parameters
string

Specifies a string returned by an interface function.

 Description

The tran_StringDestroy function destroys a string returned by an interface function when it is no longer
needed.

510 Encina Toolkit Executive Guide and Reference  



  tran_Terminate
 

 tran_Terminate

Terminates an application.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_Terminate()

 Description

The tran_Terminate function terminates an application. The tran_Terminate function allows TRAN to
deliver queued messages or write log records. TRAN does not guarantee that all transactions are finished
before the function returns. After the application calls tran_Terminate, it must re-initialize the interface
before making any other calls.

 Related Information

tran_Init
tran_Ready
tran_StandardEnvironment
tran_status_t

  Chapter 39. TRAN Functions 511



 tran_TidArrayDestroy  
 

 tran_TidArrayDestroy

Destroys an array of transaction identifiers.

 Synopsis
#include <tran/tran.h>

void tran_TidArrayDestroy(
IN tran_tid_t Garray)

 Parameters
array

Specifies an array of transaction identifiers returned by an interface function.

 Description

The tran_TidArrayDestroy function destroys an array of property values when it is no longer needed.
Destroying an array does not destroy its elements; they must be destroyed separately, as desired.

 Related Information

tran_tid_t

512 Encina Toolkit Executive Guide and Reference  



  tran_TidEqual
 

 tran_TidEqual

Determines if two transaction identifiers are equal.

 Synopsis
#include <tran/tran.h>

int tran_TidEqual(
IN tran_tid_t tid1,
IN tran_tid_t tid2)

 Parameters
tid1

Specifies the transaction identifier.

tid2
Specifies the transaction identifier.

 Description

The tran_TidEqual function returns TRUE if the two specified transaction identifiers are equal. It does not
verify that they are valid.

 Related Information

tran_tid_t
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor
tran_TidToString

  Chapter 39. TRAN Functions 513



 tran_TidHash  
 

 tran_TidHash

Hashes a transaction identifier.

 Synopsis
#include <tran/tran.h>

unsigned long tran_TidHash(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_TidHash function returns an integer hash value for a transaction identifier. The low order bits of
this value can be used to hash into a table whose size is a power of two. If enough bits are used
(typically about ten), this hash function is perfect and never results in a collision.

 Related Information

tran_tid_t
tran_TidEqual
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor
tran_TidToString

514 Encina Toolkit Executive Guide and Reference  



  tran_TidIsDescendent
 

 tran_TidIsDescendent

Determines if one transaction is a descendant of another.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_TidIsDescendent(
IN tran_tid_t tid1,
IN tran_tid_t tid2,
OUT int GdescendentP)

 Parameters
tid1

Specifies the first transaction identifier.

tid2
Specifies the second transaction identifier.

descendentP
Returns a flag that is TRUE if tid2 is a descendent of tid1.

 Description

The tran_TidIsDescendent function determines if one transaction is a descendent of another. A
transaction is always considered a descendent of itself. If the application has disabled nesting, a
transaction is the descendent of another only if their identifiers are equal.

Transaction relationships may be lost after an application restart. Subtransactions may appear as
independent top-level transactions. Aborted subtransactions may be lost.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t
tran_TidEqual
tran_TidHash
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor
tran_TidToString

  Chapter 39. TRAN Functions 515



 tran_TidIsRelated  
 

 tran_TidIsRelated

Determines if two transactions are related.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_TidIsRelated(
IN tran_tid_t tid1,
IN tran_tid_t tid2,
OUT int GrelatedP)

 Parameters
tid1

Specifies the transaction identifier.

tid2
Specifies the transaction identifier.

relatedP
Returns a flag that is TRUE if the two transactions are related.

 Description

The tran_TidIsRelated function determines if two transactions are related. If the application has disabled
nesting, two transactions are considered related only if their identifiers are equal.

Transaction relationships may be lost after an application restart. Subtransactions may appear as
independent top-level transactions. Aborted subtransactions may be lost.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor
tran_TidToString

516 Encina Toolkit Executive Guide and Reference  



  tran_TidIsTopLevel
 

 tran_TidIsTopLevel

Determines if a transaction is top-level.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_TidIsTopLevel(
IN tran_tid_t tid,
OUT int GtopLevelP)

 Parameters
tid Specifies the transaction identifier.

topLevelP
Returns a flag that is TRUE if the transaction is top-level or FALSE if not.

 Description

The tran_TidIsTopLevel function determines if a transaction is top-level. If the application has disabled
nesting the answer is always TRUE.

Transaction relationships may be lost after an application restart. Subtransactions may appear as
independent top-level transactions. Aborted subtransactions may be lost.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor
tran_TidToString

  Chapter 39. TRAN Functions 517



 tran_TidKnownDescendents  
 

 tran_TidKnownDescendents

Lists a transaction's known descendants.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_TidKnownDescendents(
IN tran_tid_t tid,
OUT tran_tid_t GGdescendentsPP,
OUT unsigned int GdescendentsCountP)

 Parameters
tid Specifies the transaction identifier.

descendentsPP
Returns an array of transaction identifiers.

descendentsCountP
Returns the number of tids in descendentsPP.

 Description

The tran_TidKnownDescendents function obtains a list of the known descendants of a transaction. The
list includes the transaction itself and all of its descendants for which this application has ever been given
a transaction identifier; it also may contain descendants that are known to TRAN, but that have not yet
been returned to the application. The application should call the tran_TidArrayDestroy function when it
no longer needs the list.

Transaction relationships may be lost after an application restart. Subtransactions may appear as
independent top-level transactions. Aborted subtransactions may be lost.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t
tran_TidArrayDestroy
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidParent
tran_TidTopAncestor
tran_TidToString

518 Encina Toolkit Executive Guide and Reference  



  tran_TidParent
 

 tran_TidParent

Obtains the parent of a transaction.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_TidParent(
IN tran_tid_t tid,
OUT tran_tid_t GparentP)

 Parameters
tid Specifies the transaction identifier.

parentP
Returns the transaction identifier of the parent of tid.

 Description

The tran_TidParent function obtains the transaction identifier of a transaction's parent. TRAN sets
parentP to TRAN_TID_NULL if the transaction is top-level, or if the application has disabled nesting.

Transaction relationships may be lost after an application restart. Subtransactions may appear as
independent top-level transactions. Aborted subtransactions may be lost.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t
tran_TidArrayDestroy
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidTopAncestor
tran_TidToString

  Chapter 39. TRAN Functions 519



 tran_TidTopAncestor  
 

 tran_TidTopAncestor

Gets the top-level ancestor of a tid.

 Synopsis
#include <tran/tran.h>

tran_status_t tran_TidTopAncestor(
IN tran_tid_t tid,
OUT tran_tid_t GtopAncestorP)

 Parameters
tid Specifies the transaction identifier.

topAncestorP
Returns the top-level ancestor of this transaction.

 Description

The tran_TidTopAncestor function obtains the transaction identifier of a transaction's top-level ancestor.
If the application has disabled nesting this function always returns the transaction itself.

Transaction relationships may be lost after an application restart. Subtransactions may appear as
independent top-level transactions. Aborted subtransactions may be lost.

 Return Values
TRAN_SUCCESS
TRAN_APPL_NOT_READY
TRAN_TID_NOT_VALID

 Related Information

tran_status_t
tran_tid_t
tran_TidArrayDestroy
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidParent
tran_TidKnownDescendents
tran_TidToString

520 Encina Toolkit Executive Guide and Reference  



  tran_TidToString
 

 tran_TidToString

Represents a transaction identifier as a string.

 Synopsis
#include <tran/tran.h>

char Gtran_TidToString(
IN tran_tid_t tid)

 Parameters
tid Specifies the transaction identifier.

 Description

The tran_TidToString function gets a string representation of a transaction identifier. Typically this is
used for debugging. The string is variable-sized and null-terminated. The pointer is valid until the
transaction's top-level ancestor finishes. The same string is not used for another transaction identifier until
the application terminates. The application is responsible for destroying the string using
tran_StringDestroy.

 Related Information

tran_StringDestroy
tran_tid_t
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor

  Chapter 39. TRAN Functions 521



 tran_TidToString  
 

522 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 40. TRAN Data Types

The TRAN interface defines data types for the following types of entities and operations:

� Abort codes and status codes
 – tran_abort_t
 – tran_status_t

 � Transaction identifiers
 – tran_tid_t

 � Special-purpose objects
 – tran_address_t
 – tran_addressFamily_t
 – tran_applId_t
 – tran_forceGroupId_t
 – tran_logRecord_t
 – tran_message_t
 – tran_propertyKey_t
 – tran_propertyValue_t
 – tran_securityKey_t

� Transaction state information
 – tran_globalState_t
 – tran_localState_t
 – tran_outcomeQuality_t
 – tran_relativeCommitState_t

 � Recovery optimizations
 – tran_recOptimization_t

 � Synchronization upcalls
 – tran_mutex_t

 Copyright IBM Corp. 1989, 2001  523



 tran_abort_t  
 

 tran_abort_t

Defines a TRAN abort code

 Description

The tran_abort_t data type defines a TRAN abort code. TRAN generates an abort reason for a
transaction that has aborted. After a transaction aborts, the tran_AbortReason or
tran_AbortDataToReason function can be used to return the abort reason as an abort code of type
tran_abort_t. The encina_StatusToString function can be used to convert an abort code to a descriptive
string.

See “TRAN Diagnostics” on page 711 for information about TRAN status codes.

 Related Information

encina_StatusToString
tran_AbortDataToReason
tran_AbortReason

524 Encina Toolkit Executive Guide and Reference  



  tran_address_t
 

 tran_address_t

Defines an address

 Description

The tran_address_t data type is a variable-length sequence of bytes used to define a communications
service address.

 Related Information

tran_AddressCons
tran_AddressCopy
tran_AddressCreate
tran_AddressData
tran_AddressDestroy
tran_AddressEqual
tran_AddressLength

  Chapter 40. TRAN Data Types 525



 tran_addressFamily_t  
 

 tran_addressFamily_t

Defines an address family

 Description

The tran_addressFamily_t data type is a variable-length sequence of bytes used to define a
communications service address family. The address family is a global name that must be globally
unique. Applications that define values for this object should use the following naming policy to ensure
that conflicts between naming spaces do not occur. The value of the first byte specifies the naming
subspace (within the global name space) used for an object. The following first-byte values are
recommended for variable-length objects:

� 0 — Specifies objects defined by TRAN itself. This includes TRAN-defined property keys, application
identifiers, communications service address families, and recovery service force groups.

� 1 — Reserved for internal use.
� 2 — Specifies DCE UUID subspaces. A DCE UUID follows the first byte. The time_low, time_mid,

time_hi_and_version, clock_seq_hi_and_reserved, and clock_seq_low fields are encoded in that order,
in most-significant-byte-first order. Customers may create their own subspaces using UUIDs that they
generate.

� 3 — Specifies an Internet host name subspace. A null-terminated ASCII string follows the first byte.
Customers may create their own subspaces using Internet host names that have been assigned to
them.

� 4–31 — Reserved for subspaces based on other prevalent naming standards.

Any first-byte values beyond 31 are defined by the respective subspace owners.

 Related Information

tran_AddressFamilyCons
tran_AddressFamilyCopy
tran_AddressFamilyCreate
tran_AddressFamilyData
tran_AddressFamilyDestroy
tran_AddressFamilyEqual
tran_AddressFamilyLength

526 Encina Toolkit Executive Guide and Reference  



  tran_applId_t
 

 tran_applId_t

Defines an application identifier

 Description

The tran_applId_t data type is a variable-length sequence of bytes used to define an application identifier.
The application name is a global name that must be globally unique. Applications that define values for
this object should use the following naming policy to ensure that conflicts between naming spaces do not
occur. The value of the first byte specifies the naming subspace (within the global name space) used for
this object. The following first-byte values are recommended for variable-length objects:

� 0 — Specifies objects defined by TRAN itself. This includes TRAN-defined property keys, application
identifiers, communications service address families, and recovery service force groups.

� 1 — Reserved for internal use.
� 2 — Specifies DCE UUID subspaces. A DCE UUID follows the first byte. The time_low, time_mid,

time_hi_and_version, clock_seq_hi_and_reserved, and clock_seq_low fields are encoded in that order,
in most-significant-byte-first order. Customers may create their own subspaces using UUIDs that they
generate.

� 3 — Specifies an Internet host name subspace. A null-terminated ASCII string follows the first byte.
Customers may create their own subspaces using Internet host names that have been assigned to
them.

� 4–31 — Reserved for subspaces based on other prevalent naming standards.

Any first-byte values beyond 31 are defined by the respective subspace owners.

 Related Information

tran_ApplIdCons
tran_ApplIdCopy
tran_ApplIdCreate
tran_ApplIdData
tran_ApplIdDestroy
tran_ApplIdEqual
tran_ApplIdLength

  Chapter 40. TRAN Data Types 527



 tran_forceGroupId_t  
 

 tran_forceGroupId_t

Defines a force-group identifier

 Description

The tran_forceGroupId_t data type is a variable-length sequence of bytes used to define a recovery
service force-group identifier. The force-group identifier is a global name that must be globally unique.
Applications that define values for this object should use the following naming policy to ensure that
conflicts between naming spaces do not occur. The value of the first byte specifies the naming subspace
(within the global name space) used for this object. The following first-byte values are recommended for
variable-length objects:

� 0 — Specifies objects defined by TRAN itself. This includes TRAN-defined property keys, application
identifiers, communications service address families, and recovery service force groups.

� 1 — Reserved for internal use.
� 2 — Specifies DCE UUID subspaces. A DCE UUID follows the first byte. The time_low, time_mid,

time_hi_and_version, clock_seq_hi_and_reserved, and clock_seq_low fields are encoded in that order,
in most-significant-byte-first order. Customers may create their own subspaces using UUIDs that they
generate.

� 3 — Specifies an Internet host name subspace. A null-terminated ASCII string follows the first byte.
Customers may create their own subspaces using Internet host names that have been assigned to
them.

� 4–31 — Reserved for subspaces based on other prevalent naming standards.

Any first-byte values beyond 31 are defined by the respective subspace owners.

 Related Information

tran_ForceGroupIdCons
tran_ForceGroupIdCopy
tran_ForceGroupIdCreate
tran_ForceGroupIdData
tran_ForceGroupIdDestroy
tran_ForceGroupIdEqual
tran_ForceGroupIdLength

528 Encina Toolkit Executive Guide and Reference  



  tran_globalState_t
 

 tran_globalState_t

Defines the global transaction state.

 Synopsis
typedef enum {
TRAN_GLOBAL_STATE_NONE,
TRAN_GLOBAL_STATE_PREPARED,
TRAN_GLOBAL_STATE_COMMITTED,
TRAN_GLOBAL_STATE_ABORTED
 } tran_globalState_t;

 Enumerated Constants
TRAN_GLOBAL_STATE_NONE

Indicates that TRAN does not know the distributed outcome. The transaction may still be active, it
may be in the process of being prepared, or it may be resolved but TRAN does not know how. TRAN
does not actively attempt to determine the distributed outcome unless the application has become
prepared locally.

TRAN_GLOBAL_STATE_PREPARED
Indicates that all participants in the transaction are prepared. An application may be responsible for
providing the outcome, or TRAN may be attempting to record an outcome.

TRAN_GLOBAL_STATE_COMMITTED
Indicates that the transaction has committed. All participants in the transaction have been prepared.
At least one participant has permanently recorded the commitment, except if the local application is
the only participant that has required the distributed outcome, and no application module has
demanded a complete outcome phase. Then TRAN can permit the recovery service to record the
commit indication lazily.

TRAN_GLOBAL_STATE_ABORTED
Indicates that the transaction has aborted. At least one participant has permanently recorded that the
transaction has aborted.

 Description

The tran_globalState_t data type enumerates the global states of a transaction.

 Related Information

tran_GetGlobalState
tran_GetLocalState
tran_GetRelativeCommitState
tran_localState_t
tran_outcomeQuality_t
tran_relativeCommitState_t

  Chapter 40. TRAN Data Types 529



 tran_localState_t  
 

 tran_localState_t

Defines the local transaction state.

 Synopsis
typedef enum {
TRAN_LOCAL_STATE_NONE,
TRAN_LOCAL_STATE_PRESENT,
TRAN_LOCAL_STATE_ACTIVE,
TRAN_LOCAL_STATE_INACTIVE,
TRAN_LOCAL_STATE_PREPARING,
TRAN_LOCAL_STATE_PREPARED,
TRAN_LOCAL_STATE_COMMITTING,
TRAN_LOCAL_STATE_COMMITTED,
TRAN_LOCAL_STATE_COMMIT_COMPLETE,
TRAN_LOCAL_STATE_BEFORE_ABORT,
TRAN_LOCAL_STATE_ABORTING,
TRAN_LOCAL_STATE_ABORTED,
TRAN_LOCAL_STATE_ABORT_COMPLETE,
TRAN_LOCAL_STATE_FINISHED
} tran_localState_t;

 Enumerated Constants
TRAN_LOCAL_STATE_NONE

Indicates that the application has not participated in the transaction directly — it has neither begun nor
received an RPC for the transaction. The transaction identifier may have been obtained using the
transaction relationship functions (parent, descendent, top ancestor), or from a recovery service upcall
that refers a tree of transactions. It is not legal to perform work on behalf of the transaction.

TRAN_LOCAL_STATE_PRESENT
Reserved for future use. An RPC is in progress on behalf of this transaction, but no application
module has registered to participate.

TRAN_LOCAL_STATE_ACTIVE
Indicates that the transaction is currently active in this application — it has begun (but not ended) the
transaction, it has received (but not replied to) an RPC for this transaction, or a before-prepare
callback is in progress that permits work to be done on this transaction.

TRAN_LOCAL_STATE_INACTIVE
Indicates that the transaction has been active before, but it is no longer. It is not legal to make RPCs
on behalf of the transaction. Local recovery services may permit work; this is a policy that the
Transaction Service (TRAN) cannot enforce. It is legal to abort the transaction. The transaction has
not been aborted, and it cannot be committed without the application preparing. Nontransactional
before-prepare callbacks can take place in this state.

TRAN_LOCAL_STATE_PREPARING
Indicates that the recovery services are being asked to prepare the transaction. A recovery service
may do work as necessary to prepare, but no other work is permitted on behalf of transaction.

TRAN_LOCAL_STATE_PREPARED
Indicates that all recovery services are prepared. Work is not legal.

TRAN_LOCAL_STATE_COMMITTING
Indicates that the recovery services are being informed that the transaction has committed.

530 Encina Toolkit Executive Guide and Reference  



  tran_localState_t
 

TRAN_LOCAL_STATE_COMMITTED
Indicates that the recovery services have been informed that the transaction has committed. Commit
upcalls and after-resolution callbacks take place in this state.

TRAN_LOCAL_STATE_COMMIT_COMPLETE
Indicates that the transaction has completed all commitment-related actions. Commit upcalls and
after-resolution callbacks have been completed. The transaction may not be finished because of
heuristic damage reporting requirement or for TRAN protocol reasons.

TRAN_LOCAL_STATE_BEFORE_ABORT
Indicates that the transaction has been aborted, but recovery services have not been informed.
Before-abort callbacks take place in this state. Abort delays leave the transaction in this state after
the before-abort callbacks.

TRAN_LOCAL_STATE_ABORTING
Indicates that the recovery services are being informed that the transaction has committed.

TRAN_LOCAL_STATE_ABORTED
Indicates that all recovery services have aborted the work associated with the transaction such that no
effects can be observed by other transactions. After-resolution callbacks take place in this state.

TRAN_LOCAL_STATE_ABORT_COMPLETE
Indicates that the transaction has completed all abort-related actions. Abort upcalls and
after-resolution callbacks have been completed. The transaction may not be finished because of
heuristic damage reporting requirements or for TRAN protocol reasons.

TRAN_LOCAL_STATE_FINISHED
Indicates that all TRAN functions have taken place for this transaction. The recovery service finished
upcalls and after-finished callbacks take place in this state.

 Description

The tran_localState_t data type enumerates the local states of a transaction. These states reflect only
the commitment state as delivered to the calling application.

 Related Information

tran_GetGlobalState
tran_GetLocalState
tran_GetRelativeCommitState
tran_globalState_t
tran_outcomeQuality_t
tran_relativeCommitState_t

  Chapter 40. TRAN Data Types 531



 tran_logRecord_t  
 

 tran_logRecord_t

Defines a log record

 Description

The tran_logRecord_t data type is a variable-length sequence of bytes used to define a log record.

 Related Information

tran_LogRecordCons
tran_LogRecordCopy
tran_LogRecordCreate
tran_LogRecordData
tran_LogRecordDestroy
tran_LogRecordLength

532 Encina Toolkit Executive Guide and Reference  



  tran_message_t
 

 tran_message_t

Defines a message

 Description

The tran_message_t data type is a variable-length sequence of bytes used to define a message.

 Related Information

tran_MessageCons
tran_MessageCopy
tran_MessageCreate
tran_MessageData
tran_MessageDestroy
tran_MessageIdentical
tran_MessageLength

  Chapter 40. TRAN Data Types 533



 tran_mutex_t  
 

 tran_mutex_t

Defines a mutual exclusion object.

 Synopsis
typedef struct {
 int tranMutualExclusionCell;
 union tranMutualExclusionUnion { unsigned long i; pointer_t p; }
 tranMutualExclusionState;
union tranMutualExclusionUnion tranMutualExclusionSpareSpace [6];
} tran_mutex_t;

 Description

The tran_mutex_t data type defines a mutual exclusion object. TRAN embeds these objects in its data
structures (allocated using the environment memory management upcalls). The structure of the object is
exposed; environment functions can use fields in the structure directly for whatever purpose they choose.
TRAN passes these objects by reference in each of the synchronization functions.

Each object contains one memory word, a state structure, and additional space. The memory word is
intended to be used as the target of hardware atomic update instructions. The additional state structure is
large enough to contain a long integer or a pointer to another data structure. The descriptions of these
fields are only suggestions—an environment module can use the tran_mutex_t references in any way,
including casting them to pointers of another type of equal or smaller size.

534 Encina Toolkit Executive Guide and Reference  



  tran_outcomeQuality_t
 

 tran_outcomeQuality_t

Defines local outcome quality.

 Synopsis
typedef enum {
TRAN_OUTCOME_QUALITY_NONE,
TRAN_OUTCOME_QUALITY_DISTRIBUTED,
TRAN_OUTCOME_QUALITY_LOCAL,
TRAN_OUTCOME_QUALITY_HEURISTIC,
TRAN_OUTCOME_QUALITY_EPHEMERAL
 } tran_outcomeQuality_t;

 Enumerated Constants
TRAN_OUTCOME_QUALITY_NONE

Indicates that the state value does not reflect an outcome.

TRAN_OUTCOME_QUALITY_DISTRIBUTED
Indicates that the outcome reflects the result of the distributed commitment process.

TRAN_OUTCOME_QUALITY_LOCAL
Indicates that the application indicated that it could accept either outcome. The outcome may not
match the distributed outcome.

TRAN_OUTCOME_QUALITY_HEURISTIC
Indicates that the outcome was forced by a call to the tran_ForceHeuristicOutcome function. The
outcome may not match the distributed outcome.

TRAN_OUTCOME_QUALITY_EPHEMERAL
Indicates that the application was given a local outcome, despite having asked for the distributed
outcome, because it is ephemeral. The distributed outcome could not be determined within the limits
set by this application, or by the application responsible for delivering the distributed outcome.

 Description

The tran_outcomeQuality_t data type enumerates the outcome qualities for the local outcome, commit or
abort.

 Related Information

tran_ForceHeuristicOutcome
tran_GetGlobalState
tran_GetLocalState
tran_GetRelativeCommitState
tran_globalState_t
tran_localState_t
tran_relativeCommitState_t

  Chapter 40. TRAN Data Types 535



 tran_propertyKey_t  
 

 tran_propertyKey_t

Defines a property key

 Description

The tran_propertyKey_t data type is a variable-length sequence of bytes used to define a property key.
The TRAN interface defines the following properties. A brief description follows the name of each property
key constant listed. These constants can be used in calls to the tran_PropertyRetrieve function.

� TRAN_PROPERTY_KEY_ABORT_DATA — The abort data describes the reason that TRAN aborted a
transaction. This data can only be interpreted using the tran_AbortDataToReason function. This
property is recorded only when TRAN aborts a transaction.

� TRAN_PROPERTY_KEY_ABORT_FORMAT — The abort format describes another property key in which abort
data is stored. A module that aborts a transaction should encode its reason for aborting in a property
of its own, and record the key for that property (as a property value) in the abort format property.
When TRAN aborts a transaction, it stores TRAN_PROPERTY_KEY_ABORT_DATA (converted to a property
value) in this property.

� TRAN_PROPERTY_KEY_ABORT_SOURCE — The abort source is the identifier of the application that called the
tran_Abort function (converted to a property value).

� TRAN_PROPERTY_KEY_GLOBAL_IDENTIFIER — The global identifier is a unique name for the transaction
that is the same in all applications. The local transaction identifier (tran_tid_t) that is used in most
TRAN interface functions is unique only within the application; other applications may have a different
local identifier. The global identifier is the same in all applications, and can be used for correlation
between applications. The global identifier is never reused for another transaction (in this or in any
other application, including after restarts), so it can be used to construct auditing information. Unlike
the local identifier, which is fixed in size, the global identifier can be large.

The property key is a global name that must be globally unique. Applications that define values for this
object should use the following naming policy to ensure that conflicts between naming spaces do not
occur. The value of the first byte specifies the naming subspace (within the global name space) used for
this object. The following first-byte values are recommended for variable-length objects:

� 0 — Specifies objects defined by TRAN itself. This includes TRAN-defined property keys, application
identifiers, communications service address families, and recovery service force groups.

� 1 — Reserved for internal use.
� 2 — Specifies DCE UUID subspaces. A DCE UUID follows the first byte. The time_low, time_mid,

time_hi_and_version, clock_seq_hi_and_reserved, and clock_seq_low fields are encoded in that order,
in most-significant-byte-first order. Customers may create their own subspaces using UUIDs that they
generate.

� 3 — Specifies an Internet host name subspace. A null-terminated ASCII string follows the first byte.
Customers may create their own subspaces using Internet host names that have been assigned to
them.

� 4–31 — Reserved for subspaces based on other prevalent naming standards.

Any first-byte values beyond 31 are defined by the respective subspace owners.

536 Encina Toolkit Executive Guide and Reference  



  tran_propertyKey_t
 

 Related Information

tran_Abort
tran_AbortDataToReason
tran_PropertyKeyCons
tran_PropertyKeyCopy
tran_PropertyKeyCreate
tran_PropertyKeyData
tran_PropertyKeyDestroy
tran_PropertyKeyEqual
tran_PropertyRetrieve
tran_tid_t

  Chapter 40. TRAN Data Types 537



 tran_propertyValue_t  
 

 tran_propertyValue_t

Defines a property value

 Description

The tran_propertyValue_t data type is a variable-length sequence of bytes used to define a property
value.

 Related Information

tran_PropertyValueCons
tran_PropertyValueCopy
tran_PropertyValueCreate
tran_PropertyValueData
tran_PropertyValueDestroy
tran_PropertyValueEqual
tran_PropertyValueLength

538 Encina Toolkit Executive Guide and Reference  



  tran_recOptimization_t
 

 tran_recOptimization_t

Defines optimization specifications.

 Synopsis
typedef struct {
unsigned int commitImminent,
unsigned int abortImminent,
unsigned int finishImminent,
unsigned int commitImminentIfReadOnly,
unsigned int finishImminentIfReadOnly,
unsigned int alreadyRecorded,
unsigned int localOnly,
unsigned int delayPermitted,
unsigned int permanenceNotRequired,
} tran_recOptimization_t;

 Fields
commitImminent

Specifies the advance warning that the delivery of the rec-commit upcall is imminent.

abortImminent
Specifies the advance warning that the delivery of the rec-abort upcall is imminent.

finishImminent
Specifies the advance warning that the delivery of the rec-finished upcall is imminent.

commitImminentIfReadOnly
Specifies the advance warning that the delivery of the rec-commit upcall is imminent if the recovery
service responds read-only.

finishImminentIfReadOnly
Specifies the advance warning that the delivery of the rec-finished upcall is imminent if the recovery
service responds read-only.

alreadyRecorded
Specifies the advice that an advance warning for this upcall was issued previously. The recovery
service can use this information to avoid writing a log record if it used the warning to coalesce the log
record into an earlier one.

localOnly
Indicates that the transaction has not been spread to other applications using the communications
service interface.

delayPermitted
Specifies the advice that the recovery service can delay writing the log record without preventing other
applications from proceeding. The recovery service can use this information to decide not to force the
log record to permanent storage immediately. The recovery service must still ensure that the log
record eventually becomes permanent; the upcall should not be completed until that time.

permanenceNotRequired
Specifies the advice that the logging associated with an upcall does not need to be permanent before
the upcall is considered complete (that is, a synchronous upcall returns or the tran_RecAcknowledge
function is called for an asynchronous upcall). For example, the Transaction Service (TRAN) does not
require that the logging associated with the rec-finished upcall be permanent in the coordinator of a

  Chapter 40. TRAN Data Types 539



 tran_recOptimization_t  
 

two-phase commit algorithm, since TRAN can always safely repeat the second phase if the indication
is lost due to a crash.

 Description

The tran_recOptimization_t data type defines optimization information that recovery services can use to
improve performance. The optimization information is contained in this structured type as a collection of
boolean fields. This data type appears as an IN parameter in the rec-prepare, rec-commit, rec-abort,
rec-write, and rec-finished upcalls.

An upcall is considered imminent if it is invoked without consulting other applications; only upcalls and
callbacks within the application can take place before the upcall is invoked. The recovery service can use
this information to decide to coalesce log records for the future upcall into the log record for this one.

For the commitImminentIfReadOnly and finishImminentIfReadOnly fields, advance warnings are conditional
on the recovery service responding to the rec-prepare upcall by calling the tran_RecReadOnly function.
The advance warning only applies if the recovery service responds read-only. These fields are only
asserted within a rec-prepare upcall invocation.

 Notes

An ephemeral client should not use this data type. Doing so produces incorrect results.

 Related Information

tran_RecAcknowledge
tran_RecFinished
tran_RecReadOnly

540 Encina Toolkit Executive Guide and Reference  



  tran_relativeCommitState_t
 

 tran_relativeCommitState_t

Defines a relative commit state.

 Synopsis
typedef enum {
TRAN_CWRT_NONE,
TRAN_CWRT_TARGET_ABORTED,
TRAN_CWRT_QUESTIONER_ABORTED,
TRAN_CWRT_QUESTIONER_COMMITTED,
TRAN_CWRT_RELATIVE_COMMIT
} tran_relativeCommitState_t;

 Enumerated Constants
TRAN_CWRT_NONE

Indicates that no relative commitment information is available at this time.

TRAN_CWRT_TARGET_ABORTED
Indicates that the target transaction has been aborted. Local work done by the target transaction has
been undone.

TRAN_CWRT_QUESTIONER_ABORTED
Indicates that the questioner transaction has been aborted. Local work done by the questioner
transaction is not guaranteed to be undone yet.

TRAN_CWRT_QUESTIONER_COMMITTED
Indicates that the questioner transaction committed with respect to its parent.

TRAN_CWRT_RELATIVE_COMMIT
Indicates that the target transaction committed with respect to the questioner transaction. The target
transaction cannot be aborted without causing the questioner transaction to abort.

 Description

The tran_relativeCommitState_t data type enumerates the relative commit states of two transactions.
These states reflect only the commitment state as delivered to the questioner transaction.

 Related Information

tran_GetGlobalState
tran_GetLocalState
tran_GetRelativeCommitState
tran_globalState_t
tran_localState_t
tran_outcomeQuality_t

  Chapter 40. TRAN Data Types 541



 tran_securityKey_t  
 

 tran_securityKey_t

Defines a security key

 Description

The tran_securityKey_t data type is a variable-length sequence of bytes used to define a security key.

 Related Information

tran_SecurityKeyCons
tran_SecurityKeyCopy
tran_SecurityKeyCreate
tran_SecurityKeyData
tran_SecurityKeyDestroy
tran_SecurityKeyEqual
tran_SecurityKeyLength

542 Encina Toolkit Executive Guide and Reference  



  tran_status_t
 

 tran_status_t

Defines a TRAN status code

 Description

The tran_status_t data type defines a TRAN status code. Most functions in the TRAN interface return a
value of type tran_status_t. Any function that is successful returns the code TRAN_SUCCESS. The
encina_StatusToString function can be used to convert a status code to a descriptive string.

See “TRAN Diagnostics” on page 711 for information about TRAN status codes.

 Related Information

encina_StatusToString

  Chapter 40. TRAN Data Types 543



 tran_tid_t  
 

 tran_tid_t

Defines a transaction identifier

 Description

The tran_tid_t data type defines a transaction identifier. The transaction identifier is the name an
application uses to refer to a transaction in the interface functions. A transaction identifier value is local to
a particular application; other participants in the same transaction may use different identifiers. The
tran_tid_t data type is an integer value that can be compared and assigned. TRAN defines a special null
identifier value, and provides functions for translating and comparing identifier values.

There is one reserved transaction identifier, TRAN_TID_NULL. This transaction identifier is never generated
by a TRAN function. It is treated specially by some functions (as described in their interfaces) and can be
used by the application as a special value for transaction identifiers. The TRAN_TID_NULL value is a
permanent constant; it does not change between application executions.

The interface provides functions for translating and comparing transaction identifiers, and for obtaining the
identifiers for related transactions. The translating and comparing functions are provided for backward
compatibility; clients can translate or compare transaction identifiers based on their integer values. The
functions that return a value of type tran_status_t cannot be used until the application has completed its
call to the tran_Ready function; other functions can be used as soon as the application has completed its
call to the tran_Init function.

 Related Information

tran_Init
tran_Ready
tran_TidEqual
tran_TidHash
tran_TidIsDescendent
tran_TidIsRelated
tran_TidIsTopLevel
tran_TidKnownDescendents
tran_TidParent
tran_TidTopAncestor
tran_TidToString

544 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 41. TRDCE Functions

The TRDCE Utilities Library provides utilities for constructing DCE client and server programs. Some of
these functions are intended to provide a simpler interface to common services, such as server registration
and client binding. Other functions supplement the functionality of existing DCE functions. For more
information on DCE functions, see the z/OS DCE Application Development Reference.

 Header Files

Applications that link with TRDCE must include the header file trdce/trdce.h.

 Functions

The TRDCE interface exports functions for the following types of operations:

� Binding clients and registering servers
 – trdce_BindingImport
 – trdce_BindingSetProtectionLevel
 – trdce_QualifyName
 – trdce_ReturnCallbackBinding
 – trdce_ReturnWkEndpoints
 – trdce_ServerRegister

� Listening to servers and handling dispatches
 – trdce_CreateThreadPool
 – trdce_RegisterSimpleDispatch
 – trdce_ServerListen

 � Managing security
 – trdce_IsPrincipalSet
 – trdce_ReturnKeyFile
 – trdce_ReturnPrincipal
 – trdce_SecKeyManagement
 – trdce_SecLoginContextCertify
 – trdce_SecLoginContextCreate
 – trdce_SecLoginContextRefresh
 – trdce_SecManagement
 – trdce_SetKeyFile
 – trdce_SetPrincipal

 � Controlling interfaces
 – trdce_DefineInterface
 – trdce_ListInterfaces
 – trdce_OfferInterface
 – trdce_QueryInterface

 � De-allocating memory
 – trdce_Free
 – trdce_FreeBindingVector
 – trdce_FreeProtseqVector

� Performing miscellaneous tasks
 – trdce_GetDCEStatus
 – trdce_NormalizeProtseq
 – trdce_ProtectLevelFromString
 – trdce_ReturnSupportedProtseqs

 Copyright IBM Corp. 1989, 2001  545



 trdce_BindingImport  
 

 trdce_BindingImport

Translates a server name to a secure binding handle.

 Synopsis
#include <trdce/trdce.h>

void trdce_BindingImport(
IN unsigned_char_t GentryName,
OUT rpc_binding_handle_t GbindingP,
OUT unsigned32 GstatusP)

 Parameters
entryName

Specifies the entry name at which the search for binding handles begins. The entry name must be a
fully-qualified name.

bindingP
Specifies a server binding handle.

statusP
Returns a DCE RPC status code.

 Description

The trdce_BindingImport function obtains a binding handle for the server based on the value of the
entryName parameter. The name can be either an RPC string binding or a DCE Directory Service name.
If no valid binding handle is found, the bindingP parameter is set to a null binding handle, and the function
returns.

If a binding handle is found, the function then annotates the binding handle for security, as appropriate.
The protection level used is one of the following (in order of preference):

� The protection level specified in a call to the trdce_BindingSetProtectionLevel function.
� The value found in the ENCINA_AUTHN environment variable.
� The rpc_c_protect_level_default protection level.

If the protection level evaluates to rpc_c_protect_level_default, the server's minimum protection level or
the DCE default level is used, whichever is more secure. If the protection level is
rpc_c_protect_level_none, no authentication or authorization services are used; otherwise, the DCE
secret authentication service and DCE authorization service are used, and the server principal name is
acquired from the server itself.

If the trdce_BindingImport function is successful, the statusP parameter is set to rpc_s_ok; otherwise,
the statusP parameter is set to a DCE status code returned by the RPC runtime or the Directory Service.

546 Encina Toolkit Executive Guide and Reference  



  trdce_BindingImport
 

 Related Information

trdce_BindingSetProtectionLevel

  Chapter 41. TRDCE Functions 547



 trdce_BindingSetProtectionLevel  
 

 trdce_BindingSetProtectionLevel

Sets a protection level for binding.

 Synopsis
#include <trdce/trdce.h>

void trdce_BindingSetProtectionLevel(
IN unsigned32 protectLevel)

 Parameters
protectLevel

Specifies the protection level to be used for binding a client to a server.

 Description

The trdce_BindingSetProtectionLevel function sets an explicit protection level for binding a client to a
server. The protection level is applied to the next trdce_BindingImport function called in the same
thread.

The value of the protectLevel parameter must be a DCE protection level. If the protection level is
rpc_c_protect_level_default (or this function is not used to set the protection level), the protection level
for the binding is selected according to the following criteria in the order given:

1. The value of the ENCINA_AUTHN environment variable is used if not set to
rpc_c_protect_level_default.

2. The rpc_c_protect_level_none protection level is used if the client has no login context or the server
has not registered authentication information with the RPC runtime.

3. The minimum protection level set for the server is used if higher than the DCE RPC runtime default.

4. The DCE RPC runtime default protection level is used.

Refer to DCE documentation for more information on authentication and protection levels.

 Related Information

trdce_BindingImport
trdce_ReturnCallbackBinding

548 Encina Toolkit Executive Guide and Reference  



  trdce_CreateThreadPool
 

 trdce_CreateThreadPool

Creates a thread pool.

 Synopsis
#include <trdce/trdce.h>

void trdce_CreateThreadPool(
IN unsigned32 numOfThreads,
OUT rpc_thread_pool_handle_t GpoolHandleP,
OUT unsigned32 GstatusP)

 Parameters
numOfThreads

Specifies the number of threads the pool should contain.

poolHandleP
Returns a pool handle that can be used for dispatching.

statusP
Returns a DCE RPC status code.

 Description

The trdce_CreateThreadPool function creates a thread pool. An application can use this thread pool
handle in calls to the trdce_RegisterSimpleDispatch function to assign incoming RPCs to use threads
from this pool.

 Related Information

trdce_RegisterSimpleDispatch
trdce_ServerListen

  Chapter 41. TRDCE Functions 549



 trdce_DefineInterface  
 

 trdce_DefineInterface

Registers an interface with TRDCE.

 Synopsis
# include <trdce/trdce.h>

int trdce_DefineInterface(
In char Gname,
IN rpc_if_handle_t ifHandle,
IN uuid_t GuuidP,
IN rpc_mgr_epv_t epv,
OUT unsigned32 GstatusP)

 Parameters
name

Specifies a string describing the interface to register.

ifHandle
Specifies an interface handle identifying the interface specification for the interface.

uuidP
Specifies a type UUID identifying the manager for the interface.

epv
Specifies the entry-point vector associated with the manager type UUID specified with uuidP.

statusP
Returns a DCE RPC status code.

 Description

The trdce_DefineInterface function registers an interface with the TRDCE library; the interface is not
registered with the RPC runtime. An interface that has been registered with the trdce_DefineInterface
function is not available for remote access, but the registration information for the interface can be
obtained with the trdce_ListInterfaces and trdce_QueryInterface functions. The name parameter can
be used to supply a brief description of the interface that is returned by the list and query functions.

Unlike the trdce_OfferInterface function, trdce_DefineInterface allows a manager type UUID to be
specified for the interface. If the interface requires a type UUID that is not NULL, you can use this
function to register the interface with TRDCE and you can use the rpc_server_register_if function to
register the interface with the RPC runtime.

 Return Values

A nonzero value is returned the first time the interface and manager are registered; otherwise, 0 (zero) is
returned.

550 Encina Toolkit Executive Guide and Reference  



  trdce_DefineInterface
 

 Related Information

trdce_ListInterfaces
trdce_OfferInterface
trdce_QueryInterface

  Chapter 41. TRDCE Functions 551



 trdce_Free  
 

 trdce_Free

Frees memory.

 Synopsis
#include <trdce/trdce.h>

void trdce_Free(
IN void Gptr)

 Parameters
ptr Specifies the memory to be freed.

 Description

The trdce_Free function is a general-purpose function that can be used to de-allocate memory for which
no specific de-allocation function is provided.

 Related Information

trdce_FreeBindingVector
trdce_FreeProtseqVector

552 Encina Toolkit Executive Guide and Reference  



  trdce_FreeBindingVector
 

 trdce_FreeBindingVector

Frees the memory used to store a vector of binding handles.

 Synopsis
#include <trdce/trdce.h>

void trdce_FreeBindingVector(
INOUT rpc_binding_vector_t GGbindingVectorPP,
OUT unsigned32 GstatusP)

 Parameters
bindingVectorPP

Contains the address of a vector of binding handles.

statusP
Returns a DCE RPC status code.

 Description

The trdce_FreeBindingVector function de-allocates the memory used to store a vector of server binding
handles returned by the trdce_ReturnWkEndpoints function.

 Related Information

trdce_ReturnWkEndpoints

  Chapter 41. TRDCE Functions 553



 trdce_FreeProtseqVector  
 

 trdce_FreeProtseqVector

Frees the memory used to store a protocol sequence vector.

 Synopsis
#include <trdce/trdce.h>

void trdce_FreeProtseqVector(
INOUT rpc_protseq_vector_t GGprotseqVectorPP,
OUT unsigned32 GstatusP)

 Parameters
protseqVectorPP

Contains the address of a protocol sequence vector.

statusP
Returns a DCE RPC status code.

 Description

The trdce_FreeProtseqVector function de-allocates the memory storing the protocol sequence vector
returned by the trdce_ReturnSupportedProtseqs function.

 Related Information

trdce_ReturnSupportedProtseqs

554 Encina Toolkit Executive Guide and Reference  



  trdce_GetDCEStatus
 

 trdce_GetDCEStatus

Obtains the status code associated with an exception.

 Synopsis
#include <trdce/trdce.h>

unsigned32 trdce_GetDCEStatus(
IN EXCEPTION GexceptionP)

 Parameters
exceptionP

Returns a DCE RPC or Encina exception.

 Description

The trdce_GetDCEStatus function returns the status code associated with the address exception
specified in the exceptionP parameter. Address exceptions are the standard type of DCE exception.

Known address exceptions are translated to their status code equivalents. This function attempts to
translate all known address exceptions but, because the set of known address exceptions is not well
defined, some may be omitted. Contact your support representative for help on translating address
exceptions that are unknown to TRDCE.

 Return Values

An Encina or DCE RPC status code is returned. If the exception is not recognized, the value
rpc_s_unknown_error is returned.

  Chapter 41. TRDCE Functions 555



 trdce_IsPrincipalSet  
 

 trdce_IsPrincipalSet

Determines whether a principal is set.

 Synopsis
#include <trdce/trdce.h>

boolean_t trdce_IsPrincipalSet()

 Description

The trdce_IsPrincipalSet function determines whether a principal is set for the application. A principal
can be set using the trdce_SetPrincipal function. This function returns TRUE if a principal is set and
FALSE if not.

 Related Information

trdce_ReturnPrincipal
trdce_SetPrincipal

556 Encina Toolkit Executive Guide and Reference  



  trdce_ListInterfaces
 

 trdce_ListInterfaces

Obtains a list of interfaces registered with TRDCE.

 Synopsis
# include <trdce/trdce.h>

void trdce_ListInterfaces(
OUT rpc_if_id_t GGifIdsP,
OUT uuid_t GGuuidsP,
OUT int GnumberP,
OUT unsigned32 GstatusP)

 Parameters
ifIdsP

Returns an array of interface identifiers registered with TRDCE.

uuidsP
Returns an array of manager type UUIDs for the interface identifiers specified in the ifIdsP parameter.

numberP
Returns the number of items in the arrays returned in the ifIdsP and uuidsP parameters.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ListInterfaces function obtains a list of interfaces registered with the TRDCE library, via either
the trdce_OfferInterface or trdce_DefineInterface function. All interfaces are returned, regardless of
whether they were registered with the RPC runtime.

The interface identifiers and manager type UUIDs for each registered interface are returned in two arrays;
the interface identifiers are returned in the ifIdsP parameter and the manager type UUIDs are returned in
the uuidsP parameter. The number of items in each array is returned in the numberP parameter. The
arrays must be destroyed with the trdce_Free function when they are no longer needed.

 Related Information

trdce_DefineInterface
trdce_Free
trdce_OfferInterface
trdce_QueryInterface

  Chapter 41. TRDCE Functions 557



 trdce_NormalizeProtseq  
 

 trdce_NormalizeProtseq

Returns the standard name for a protocol sequence.

 Synopsis
#include <trdce/trdce.h>

unsigned_char_p_t trdce_NormalizeProtseq(
IN unsigned_char_p_t protocolSequenceName)

 Parameters
protocolSequenceName

Specifies a protocol sequence.

 Description

The trdce_NormalizeProtseq function translates a protocol sequence into the name that the DCE RPC
runtime returns in string bindings that it generates. For example, “ip” is translated to “ncadg_ip_udp.”.

This function attempts to translate all known abbreviations but, because the set of known abbreviations is
not well defined, some may be omitted. Contact your support representative for help on translating
abbreviations that are unknown to TRDCE.

A pointer to a static string containing the translated protocol sequence is returned. Do not use the
trdce_Free function to de-allocate this pointer.

If the protocol sequence cannot be translated, the value of the protocolSequenceName parameter is
returned.

558 Encina Toolkit Executive Guide and Reference  



  trdce_OfferInterface
 

 trdce_OfferInterface

Registers an interface with the RPC runtime and TRDCE.

 Synopsis
# include <trdce/trdce.h>

void trdce_OfferInterface(
IN char Gannotation,
IN rpc_if_handle_t ifHandle,
IN rpc_mgr_epv_t epv,
OUT unsigned32 GstatusP)

 Parameters
annotation

Specifies a string describing the interface to register.

ifHandle
Specifies an interface handle identifying the interface specification for the interface.

epv
Specifies an entry-point vector associated with the interface.

statusP
Returns a DCE RPC status code.

 Description

The trdce_OfferInterface function registers the interface specified by the ifHandle parameter with both the
RPC runtime and the TRDCE library. Registration information for the interface can be retrieved with the
trdce_ListInterfaces and trdce_QueryInterface functions. The annotation parameter can be used to
supply a brief description of the interface; the description is returned by the list and query functions.

The trdce_OfferInterface function takes an entry-point vector in the epv parameter, and it sets the
manager type UUID for the interface to NULL by default. To specify a non-NULL type UUID, use the
trdce_DefineInterface function instead.

 Related Information

trdce_DefineInterface
trdce_ListInterfaces
trdce_QueryInterface

  Chapter 41. TRDCE Functions 559



 trdce_ProtectLevelFromString  
 

 trdce_ProtectLevelFromString

Returns a protection level from a string.

 Synopsis
#include <trdce/trdce.h>

unsigned32 trdce_ProtectLevelFromString(
IN char GprotectLevelString,
OUT unsigned32 GstatusP)

 Parameters
protectLevelString

Specifies a string identifier for the protection level.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ProtectLevelFromString function translates a string describing a protection level to a
protection level value. If the protectLevelString parameter is a null pointer, the string is obtained from the
environment variable ENCINA_AUTHN. If the protectLevelString parameter is a null pointer and the
environment variable is not set, or if the protectLevelString parameter contains an unrecognized value,
rpc_c_protect_level_default is returned.

The string specified in the protectLevelString parameter can contain a symbolic name or an integer value.
Valid symbolic names include the following:

 � default
 � none
 � connect
 � call
 � pkt (or packet)
 � pkt_integrity (or packet_integrity)
 � pkt_privacy (or packet_privacy)

Valid integer values are from 0 to 6 inclusive, corresponding to the valid symbolic names (0 is default, 1
is none, and so on).

If the protectLevelString parameter contains an unrecognized value, the statusP parameter is set to
rpc_s_invalid_arg; otherwise, the statusP parameter is set to rpc_s_ok.

 Return Values

Protection levels supported by authenticated RPC.

560 Encina Toolkit Executive Guide and Reference  



  trdce_QualifyName
 

 trdce_QualifyName

Guarantees that a name is fully qualified.

 Synopsis
#include <trdce/trdce.h>

void trdce_QualifyName(
IN unsigned_char_t GentryName,
IN unsigned_char_t GcomponentName,
OUT unsigned_char_t GGfullNameP,
OUT unsigned32 GstatusP)

 Parameters
entryName

Specifies an entry name that is to be fully qualified.

componentName
Specifies the name of the Encina component to be used.

fullNameP
Returns the fully-qualified name produced by this function.

statusP
Returns a DCE RPC status code.

 Description

The trdce_QualifyName function accepts a fully- or partially-qualified name or a string binding as input
and returns a fully-qualified name or a string binding.

Based on the value of the entryName parameter, the trdce_QualifyName function does one of the
following:

� If the entryName parameter is a fully-qualified name, it is copied to the fullNameP parameter
unaltered.

� If the entryName parameter is not a fully-qualified name, but is a string binding, it is copied to the
fullNameP parameter unaltered.

� If the entryName parameter is a partially-qualified name, a fully-qualified name is produced by adding
the value of the ENCINA_CDS_ROOT environment variable (or the string/.:/encina if
ENCINA_CDS_ROOT is not set), a/ (slash), the value of the componentName parameter, and a /
(slash) to the front of entryName; then, the entire string is copied to the fullNameP parameter. If the
componentName parameter is a null pointer, the componentName parameter and the second / (slash)
are omitted.

The trdce_QualifyName function allocates memory for the string returned in the fullNameP parameter; the
caller should use the trdce_Free function to free this memory when the value of the fullNameP parameter
is no longer needed.

If the trdce_QualifyName function is successful, the statusP parameter is set to rpc_s_ok. If no memory
is available for the value of the fullNameP parameter, the statusP parameter is set to rpc_s_no_memory.

  Chapter 41. TRDCE Functions 561



 trdce_QualifyName  
 

 Related Information

trdce_Free

562 Encina Toolkit Executive Guide and Reference  



  trdce_QueryInterface
 

 trdce_QueryInterface

Obtains information about an interface registered with TRDCE.

 Synopsis
# include <trdce/trdce.h>

int trdce_QueryInterface(
IN rpc_if_id_t GifIdP,
IN uuid_t GuuidP,
OUT rpc_if_handle_t GifHandleP,
OUT rpc_mgr_epv_t GepvP,
OUT char GGannotationP)

 Parameters
ifIdP

Specifies an interface identifier registered with TRDCE.

uuidP
Specifies a manager type UUID for the interface identifier specified in the ifIdP parameter.

ifHandleP
Returns the interface handle for the interface identifier specified in the ifIdP parameter.

epvP
Returns the entry-point vector associated with the interface.

annotationP
Returns the name or description that was associated with the interface at registration time.

 Description

The trdce_QueryInterface function obtains information about an interface registered with the TRDCE
library. The interface identifier in the ifIdP parameter and the manager type UUID in the uuidP parameter
specify the interface to query. The interface handle, entry point vector, and annotation for the interface
are returned. The results must not be changed or destroyed.

 Return Values

A nonzero value is returned if the interface has been registered with the TRDCE library; otherwise, 0
(zero) is returned.

 Related Information

trdce_DefineInterface
trdce_ListInterfaces
trdce_OfferInterface

  Chapter 41. TRDCE Functions 563



 trdce_RegisterSimpleDispatch  
 

 trdce_RegisterSimpleDispatch

Registers a simple dispatch callback.

 Synopsis
#include <trdce/trdce.h>

void trdce_RegisterSimpleDispatch(
IN rpc_if_id_t ifSpec,
IN rpc_thread_pool_handle_t poolHandle)

 Parameters
ifSpec

Specifies an RPC interface identifier.

poolHandle
Specifies a handle for the thread pool to be used for calls.

 Description

The trdce_RegisterSimpleDispatch function causes all calls on a given RPC interface to be assigned to
a particular thread pool. Once registered, a pool handle must not be destroyed while the interface with
which it is associated is in use.

 Related Information

trdce_CreateThreadPool

564 Encina Toolkit Executive Guide and Reference  



  trdce_ReturnCallbackBinding
 

 trdce_ReturnCallbackBinding

Obtains a binding string that a server uses to call a local application.

 Synopsis
#include <trdce/trdce.h>

void trdce_ReturnCallbackBinding(
IN rpc_binding_handle_t handle,
OUT unsigned_char_p_t GcallbackBindingStringP,
OUT unsigned32 GstatusP)

 Parameters
handle

Specifies a binding handle.

callbackBindingStringP
Returns the generated string binding.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ReturnCallbackBinding function generates a string binding, returned in the
callbackBindingStringP parameter, that a server can use to make an RPC back to the local application. If
the string binding is transmitted to the server identified by the handle parameter, and the server generates
a binding handle corresponding to the string binding, then the server can make RPCs to the client using
that corresponding string binding.

This function allocates memory for the callbackBindingStringP parameter. The caller must use the
trdce_Free function to de-allocate the memory used by this parameter.

 Related Information

trdce_BindingImport
trdce_Free

  Chapter 41. TRDCE Functions 565



 trdce_ReturnKeyFile  
 

 trdce_ReturnKeyFile

Obtains the current key file.

 Synopsis
#include <trdce/trdce.h>

void trdce_ReturnKeyFile(
OUT unsigned_char_t GGkeyFileNameP,
OUT unsigned32 GstatusP)

 Parameters
keyFileNameP

Returns a key file name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ReturnKeyFile function returns the current key file in the keyFileNameP parameter. If no key
file was previously set using the trdce_SetKeyFile function or specified in the ENCINA_KEY_FILE
environment variable, the keyFileNameP parameter is set to an empty string.

This function allocates memory for the keyFileNameP parameter. The caller must use the trdce_Free
function to de-allocate the memory used by this parameter.

 Related Information

trdce_Free
trdce_SecKeyManagement
trdce_SetKeyFile

566 Encina Toolkit Executive Guide and Reference  



  trdce_ReturnPrincipal
 

 trdce_ReturnPrincipal

Obtains the current principal.

 Synopsis
#include <trdce/trdce.h>

void trdce_ReturnPrincipal(
OUT unsigned_char_t GGprincipalNameP,
OUT unsigned32 GstatusP)

 Parameters
principalNameP

Returns a principal name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ReturnPrincipal function gets the current principal and returns it in the principalNameP
parameter. If no principal was previously set using the trdce_SetPrincipal function or specified in the
ENCINA_PRINCIPAL environment variable, the principalNameP parameter is set to an empty string.

This function allocates memory for the principalNameP parameter. The caller must use the trdce_Free
function to de-allocate the memory used by this parameter.

 Related Information

trdce_Free
trdce_IsPrincipalSet
trdce_SetPrincipal

  Chapter 41. TRDCE Functions 567



 trdce_ReturnSupportedProtseqs  
 

 trdce_ReturnSupportedProtseqs

Returns a vector of supported protocol sequences.

 Synopsis
#include <trdce/trdce.h>

void trdce_ReturnSupportedProtseqs(
OUT rpc_protseq_vector_t GGprotseqVectorPP
OUT unsigned32 GstatusP)

 Parameters
protseqVectorPP

Returns a vector of supported protocol sequences.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ReturnSupportedProtseqs function returns a vector of RPC protocol sequences that are
supported by the DCE RPC runtime and by Encina components in the application. The set of available
protocol sequences is limited by the RPC runtime library and the RPC_SUPPORTED_PROTSEQS and
ENCINA_RPC_SUPPORTED_PROTSEQS environment variables.

This function allocates memory for the protseqVectorPP parameter. The caller must use the
trdce_FreeProtseqVector function to de-allocate the memory used by this parameter.

 Related Information

trdce_FreeProtseqVector

568 Encina Toolkit Executive Guide and Reference  



  trdce_ReturnWkEndpoints
 

 trdce_ReturnWkEndpoints

Returns a vector of server well-known endpoints.

 Synopsis
#include <trdce/trdce.h>

void trdce_ReturnWkEndpoints(
OUT rpc_binding_vector_t GGbindingVectorPP,
OUT unsigned32 GstatusP)

 Parameters
bindingVectorPP

Returns an address of a vector of server binding handles for well-known endpoints.

statusP
Returns a DCE RPC status code.

 Description

The trdce_ReturnWkEndpoints function returns a vector of server binding handles for the well-known
endpoints that were registered via the trdce_ServerRegister function.

If there are no well-known endpoints in use, the statusP parameter is set to rpc_s_no_bindings, and the
bindingVectorPP parameter is set to NULL.

This function allocates memory for the bindingVectorPP parameter. The caller must use the
trdce_FreeBindingVector function to de-allocate the memory used by this parameter.

 Related Information

trdce_FreeBindingVector
trdce_ServerRegister

  Chapter 41. TRDCE Functions 569



 trdce_SecKeyManagement  
 

 trdce_SecKeyManagement

Changes the key for a principal periodically.

 Synopsis
#include <trdce/trdce.h>

void trdce_SecKeyManagement(
IN unsigned_char_p_t principalId,
IN unsigned_char_p_t keyFile,
OUT unsigned32 GstatusP)

 Parameters
principalId

Specifies a principal name.

keyFile
Specifies a key file name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_SecKeyManagement function periodically changes the key in the key file specified in the
keyFile parameter for the principal specified in the principalId parameter. The period and policies used in
changing the key are automatically set with the intent of preventing the expiration of the key. Programs
that require a specific policy should call the DCE functions directly.

The trdce_SecLoginContextRefresh function should only be used in programs that have dedicated
principals for which all use of the principal is though its key file—it should not be used in programs that
adopt real user's principals. This function changes the principal's key regardless of the key expiration
policy in use.

 Related Information

trdce_SecLoginContextRefresh
trdce_SecManagement

570 Encina Toolkit Executive Guide and Reference  



  trdce_SecLoginContextCertify
 

 trdce_SecLoginContextCertify

Enables and disables certification of new login contexts.

 Synopsis
#include <trdce/trdce.h>

int trdce_SecLoginContextCertify(
IN int certify)

 Parameters
certify

Indicates whether certification should be performed.

 Description

The trdce_SecLoginContextCertify function is used to specify whether certification should be performed
automatically when new login contexts are created. By default, Encina does not certify new login contexts.

Specifying the value of the certify parameter as zero (FALSE) disables certification. A nonzero value
(TRUE) enables certification. The setting affects calls to both the trdce_SecLoginContextCreate and
trdce_SecLoginContextRefresh functions made by the same thread.

The value of the setting prior to calling this function is returned.

 Related Information

trdce_SecLoginContextCreate
trdce_SecLoginContextRefresh
trdce_SecManagement

  Chapter 41. TRDCE Functions 571



 trdce_SecLoginContextCreate  
 

 trdce_SecLoginContextCreate

Creates a new login context.

 Synopsis
#include <trdce/trdce.h>

void trdce_SecLoginContextCreate(
IN unsigned_char_p_t principalId,
IN unsigned_char_p_t keyFile,
OUT unsigned32 GstatusP)

 Parameters
principalId

Specifies a principal name.

keyFile
Specifies a key file name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_SecLoginContextCreate function creates a new login context based on the principal specified
in the principalId parameter and the key file specified in the keyFile parameter. The new login context
automatically becomes the current context.

 Related Information

trdce_SecLoginContextCertify
trdce_SecLoginContextRefresh
trdce_SecManagement

572 Encina Toolkit Executive Guide and Reference  



  trdce_SecLoginContextRefresh
 

 trdce_SecLoginContextRefresh

Refreshes the current login context.

 Synopsis
#include <trdce/trdce.h>

void trdce_SecLoginContextRefresh(
IN unsigned_char_p_t principalId,
IN unsigned_char_p_t keyFile,
OUT unsigned32 GstatusP)

 Parameters
principalId

Specifies a principal name.

keyFile
Specifies a key file name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_SecLoginContextRefresh function periodically refreshes the current login context based on
the principal specified in the principalId parameter and the key file specified in the keyFile parameter. The
period and policies used in refreshing the login context are automatically set with the intent of preventing
the expiration of the login context. Programs that require a specific policy should call the DCE functions
directly.

Long-running server programs can use the trdce_SecLoginContextRefresh function to periodically
refresh the login context. Refreshing the login context not only prevents it from expiring but also accounts
for any changes made in security registry information for the principal since the login context was created
or refreshed.

 Related Information

trdce_SecLoginContextCertify
trdce_SecLoginContextCreate
trdce_SecManagement

  Chapter 41. TRDCE Functions 573



 trdce_SecManagement  
 

 trdce_SecManagement

Handles security for the current principal and key file.

 Synopsis
#include <trdce/trdce.h>

void trdce_SecManagement(
OUT unsigned32 GstatusP)

 Parameters
statusP

Returns a DCE RPC status code.

 Description

The trdce_SecManagement function performs basic security functions for the current principal and key
file. This function creates a login context and initiates the periodic refresh for the login context and the
periodic changing of the principal's key. It also calls the rpc_server_register_auth_info function to
register an authentication service. A principal and key file must be set before the trdce_SecManagement
function is called.

The periods and policies used in refreshing the login context and key are automatically set with the intent
of preventing the expiration of the login context and key. Programs that require a specific policy should
call the DCE functions directly.

 Related Information

trdce_SecKeyManagement
trdce_SecLoginContextCreate
trdce_SecLoginContextRefresh

574 Encina Toolkit Executive Guide and Reference  



  trdce_ServerListen
 

 trdce_ServerListen

Ensures that the application is listening.

 Synopsis
#include <trdce/trdce.h>

void trdce_ServerListen(
IN unsigned32 maxCalls,
OUT unsigned32 GstatusP)

 Parameters
maxCalls

Specifies the number of threads (or zero to get a default number) for the default thread pool.

statusP
Returns a DCE RPC status code.

 Description

An application module should call the trdce_ServerListen function to ensure that RPC calls are received
by the DCE RPC runtime. If called with a zero value as the maxCalls parameter, the function first checks
the value of the ENCINA_TPOOL_SIZE environment variable for the number of threads to create to
handle RPCs. If this environment variable is not set, by default, a reasonable number of threads are
created to handle RPCs.

Library modules that act as servers should call this function with a zero value for the maxCalls parameter.
Server applications should call this function with the desired number of threads for the default pool before
using functions from any library modules that might also make this call.

The trdce_ServerListen function can only be called once in the life of a server to set the default number
of threads in a pool for that server. Subsequent calls to this function do not reset the maxCalls value
originally set by the first call to it.

This function returns only when the application invokes the rpc_mgmt_stop_server_listening function.
Servers can give privileged clients the ability to stop the server from listening with the
rpc_mgmt_stop_server_listening function.

 Related Information

trdce_CreateThreadPool
trdce_RegisterSimpleDispatch

  Chapter 41. TRDCE Functions 575



 trdce_ServerRegister  
 

 trdce_ServerRegister

Obtains and registers server binding handles.

 Synopsis
#include <trdce/trdce.h>

void trdce_ServerRegister(
IN unsigned_char_t GentryName,
OUT unsigned32 GstatusP)

 Parameters
entryName

Specifies a fully-qualified entry name under which the server is to be registered.

statusP
Returns a DCE RPC status code.

 Description

A server calls the trdce_ServerRegister function to create binding handles through which RPC requests
are received. Both dynamic and well-known endpoints can be used and are automatically registered with
the RPC runtime.

� If the entryName parameter is a string binding, it is considered to be a well-known endpoint (for the
purpose of the trdce_ReturnWkEndpoints function), and only that binding is used.

� If the entryName parameter is a Directory Service name, it is considered to be a dynamic endpoint.
Bindings are generated for all appropriate protocol sequences and registered under the entry name.
Bindings previously registered under the same server name might be removed. Only one server can
be registered at a given Directory Service name using the trdce_ServerRegister function.

Dynamic endpoints are automatically exported to the endpoint mapper and name service. The
trdce_ServerRegister function obtains an object UUID for the server, or creates one if one does not
already exist, and it unexports any other object UUID that has been exported.

The trdce_ServerRegister function sets the statusP parameter to rpc_s_ok if successful; otherwise, the
statusP parameter contains a DCE status code. In addition, the function may pass through status codes
returned by the RPC runtime.

The caller should use the rpc_server_register_auth_info and rpc_server_register_if DCE RPC
functions to register the appropriate information with the RPC runtime.

 Related Information

trdce_BindingImport
trdce_ReturnWkEndpoints

576 Encina Toolkit Executive Guide and Reference  



  trdce_SetKeyFile
 

 trdce_SetKeyFile

Sets the current key file.

 Synopsis
#include <trdce/trdce.h>

void trdce_SetKeyFile(
IN unsigned_char_t GkeyFileName,
OUT unsigned32 GstatusP)

 Parameters
keyFileName

Specifies a key file name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_SetKeyFile function sets the key file for the application to the file named in the keyFileName
parameter. The caller can de-allocate the string naming the key file after the trdce_SetKeyFile function is
called, since the function makes a copy of this string.

 Related Information

trdce_ReturnKeyFile

  Chapter 41. TRDCE Functions 577



 trdce_SetPrincipal  
 

 trdce_SetPrincipal

Sets the current principal.

 Synopsis
#include <trdce/trdce.h>

void trdce_SetPrincipal(
IN unsigned_char_t GprincipalName,
OUT unsigned32 GstatusP)

 Parameters
principalName

Specifies a principal name.

statusP
Returns a DCE RPC status code.

 Description

The trdce_SetPrincipal function sets the current principal for the application to the principal named in the
principalName parameter. The caller can de-allocate the string naming the principal after the
trdce_SetPrincipal function is called, since the function makes a copy of this string.

 Related Information

trdce_IsPrincipalSet
trdce_ReturnPrincipal

578 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 42. Abort Facility Functions

The Encina Abort Facility provides support for setting and retrieving abort reasons. Abort reasons are
used to determine why a transaction aborted and are typically presented as strings or codes. Several
Encina components support the use of abort reasons. The functionality of the Abort Facility is generalized
to allow it to be used with any component that requires abort reasons.

 Header Files

Applications that link to the Abort Facility must include the header file encina/afac.h.

 Functions

The Abort Facility exports functions for the following types of operations:

� Setting abort reasons
 – encina_SetAbortCode
 – encina_SetAbortReason
 – encina_SetAbortString

� Retrieving abort reasons
 – encina_GetAbortCode
 – encina_GetAbortReason
 – encina_GetAbortString

� Formatting abort reasons
 – encina_FormatAbortReason
 – encina_RegisterAbortFormatter

� Freeing memory allocated for abort reasons
 – encina_FreeAbortReason

 Copyright IBM Corp. 1989, 2001  579



 encina_FormatAbortReason  
 

 encina_FormatAbortReason

Formats an abort reason into a string.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_FormatAbortReason(
 IN encina_abortReason_t GreasonP,

OUT char GGstringPP)

 Parameters
reasonP

Specifies an abort reason.

stringPP
Returns a formatted string.

 Description

The encina_FormatAbortReason function uses the registered abort formatting functions to convert an
abort reason into a null-terminated character string. The abort reason in the reasonP parameter is
converted to a string and returned in the stringPP parameter. If no formatting function is registered for the
format UUID defined for the abort reason, this function returns ENCINA_ABORT_FACILITY_NO_FORMATTER.

The string returned in the stringPP parameter is only valid until the next call in the same thread to the
encina_FormatAbortReason function.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_PTR
ENCINA_ABORT_FACILITY_NO_FORMATTER

 Related Information

encina_abortReason_t
encina_status_t

580 Encina Toolkit Executive Guide and Reference  



  encina_FreeAbortReason
 

 encina_FreeAbortReason

Frees the memory used to return an abort reason.

 Synopsis
#include <encina/afac.h>

void encina_FreeAbortReason(
IN encina_abortReason_t GabortReasonP)

 Parameters
abortReasonP

Specifies an abort reason information.

 Description

The encina_FreeAbortReason function deallocates the memory allocated by the
encina_GetAbortReason function. This function only needs to be called when an abort reason contains
abort data (that is, when the ptr and len fields of the abort reason data structure are non-NULL).

 Related Information

encina_abortReason_t
encina_GetAbortReason

  Chapter 42. Abort Facility Functions 581



 encina_GetAbortCode  
 

 encina_GetAbortCode

Retrieves the abort code for a transaction.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_GetAbortCode(
IN tran_tid_t tid,
OUT uuid_t GformatUuidP,
OUT long GabortCodeP)

 Parameters
tid Specifies a transaction identifier.

formatUuidP
Returns a format UUID.

abortCodeP
Returns an integer abort code.

 Description

The encina_GetAbortCode function retrieves the abort code and format UUID for the transaction
specified in the tid parameter. The abort code returned in the abortCodeP parameter and the format UUID
returned in the formatUuidP parameter are only valid while the transaction identifier is valid.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_TID
ENCINA_ABORT_FACILITY_INVALID_PTR
ENCINA_ABORT_FACILITY_NOT_SET

 Related Information

encina_status_t
tran_tid_t

582 Encina Toolkit Executive Guide and Reference  



  encina_GetAbortReason
 

 encina_GetAbortReason

Retrieves the abort reason for a transaction.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_GetAbortReason(
 IN tran_tid_t tid,

OUT encina_abortReason_t GabortReasonP)

 Parameters
tid Specifies a transaction identifier.

abortReasonP
Returns abort reason information.

 Description

The encina_GetAbortReason function retrieves the abort reason associated with the transaction specified
by the tid parameter. The abort reason is returned in the abortReasonP parameter. The
encina_FormatAbortReason function can then be used to retrieve the abort string for the abort reason.
Calls to this function are only valid while the transaction identifier is valid.

If the abort reason for the transaction was not set using either the encina_SetAbortReason or
encina_SetAbortCode functions, the abort reason is assumed to be a null-terminated string. The format
UUID for the abort reason is set to ENCINA_STRING_FORMAT_UUID so that the encina_FormatAbortReason
function can retrieve the abort string from the abort reason.

If the transaction has no abort reason set, the ENCINA_ABORT_FACILITY_NOT_SET status code is returned.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_TID
ENCINA_ABORT_FACILITY_INVALID_PTR
ENCINA_ABORT_FACILITY_NOT_SET

 Related Information

encina_abortReason_t
encina_FormatAbortReason
encina_SetAbortCode
encina_SetAbortReason

  Chapter 42. Abort Facility Functions 583



 encina_GetAbortString  
 

 encina_GetAbortString

Retrieves the abort string for a transaction.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_GetAbortString(
 IN tran_tid_t tid,

OUT char GGabortStringPP)

 Parameters
tid Specifies a transaction identifier.

abortReasonP
Returns a null-terminated character string.

 Description

The encina_GetAbortString function retrieves the abort string for the abort reason associated with the
transaction specified in the tid parameter. A pointer to the abort string is returned in the abortStringPP
parameter. The returned abort string only remains valid until the next call in the same thread to the
encina_GetAbortString function.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_TID
ENCINA_ABORT_FACILITY_INVALID_PTR
ENCINA_ABORT_FACILITY_NOT_SET

 Related Information

encina_status_t
tran_tid_t

584 Encina Toolkit Executive Guide and Reference  



  encina_RegisterAbortFormatter
 

 encina_RegisterAbortFormatter

Registers a function to format abort reasons.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_RegisterAbortFormatter(
 IN uuid_t GformatUuidP,

IN void formatterFunc(
IN encina_abortReason_t GabortReasonP,
OUT char GbufferP))

 Parameters
formatUuidP

Specifies a format UUID.

formatterFunc
Specifies a function that formats an abort reason and returns a null-terminated character string
describing the reason that a transaction aborted

 Description

The encina_RegisterAbortFormatter function registers a formatting function for a specified format UUID.
The formatting function interprets the abort reason in the abortReasonP parameter and returns a
null-terminated character string in the bufferP parameter. The registered formatting function must be
careful to keep the length of this string less than or equal to ENCINA_MAX_STATUS_STRING_SIZE bytes.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_PTR

 Related Information

encina_abortReason_t
encina_status_t

  Chapter 42. Abort Facility Functions 585



 encina_SetAbortCode  
 

 encina_SetAbortCode

Registers an abort code for a transaction.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_SetAbortCode(
IN tran_tid_t tid,
IN uuid_t GformatUuidP,
IN long abortCode)

 Parameters
tid Specifies a transaction identifier.

formatUuidP
Specifies a format UUID.

abortCode
Specifies an integer abort code.

 Description

The encina_SetAbortCode function sets the abort reason for the transaction specified in the tid
parameter. The abortCode parameter specifies the abort reason as an abort code, and the formatUuidP
parameter specifies the format UUID to use for formatting the abort reason.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_TID
ENCINA_ABORT_FACILITY_INVALID_PTR

 Related Information

encina_status_t

586 Encina Toolkit Executive Guide and Reference  



  encina_SetAbortReason
 

 encina_SetAbortReason

Registers an abort reason for a transaction.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_SetAbortReason(
 IN tran_tid_t tid,

IN encina_abortReason_t GabortReasonP)

 Parameters
tid Specifies a transaction identifier.

abortReasonP
Specifies an abort reason information.

 Description

The encina_SetAbortReason function sets the abort reason for the transaction specified in the tid
parameter to the abort reason structure in the abortReasonP parameter.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_TID
ENCINA_ABORT_FACILITY_INVALID_PTR

 Related Information

encina_abortReason_t
encina_status_t
tran_tid_t

  Chapter 42. Abort Facility Functions 587



 encina_SetAbortString  
 

 encina_SetAbortString

Registers an abort string for a transaction.

 Synopsis
#include <encina/afac.h>

encina_status_t encina_SetAbortString(
 IN tran_tid_t tid,

IN char GabortStringP)

 Parameters
tid Specifies a transaction identifier.

abortStringP
Specifies a null-terminated string.

 Description

The encina_SetAbortString function sets the abort reason for the transaction specified in the tid
parameter. The abort reason is specified as the abort string in the abortStringP parameter.

 Return Values
ENCINA_SUCCESS
ENCINA_ABORT_FACILITY_INVALID_TID
ENCINA_ABORT_FACILITY_INVALID_PTR

 Related Information

encina_abortReason_t
encina_status_t
tran_tid_t

588 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 43. Abort Facility Data Types

The Abort Facility defines the following data types:

 � encina_abortReason_t
 � encina_status_t

 Constants

The Abort Facility exports two constants that define Encina format universal unique identifiers (UUIDs),
identifiers that associate a formatting function with an abort reason-in string form. Encina components that
require that a format UUID be specified as a string use the following constants:

 � ENCINA_STANDARD_FORMAT_UUID_STRING
 � ENCINA_STRING_FORMAT_UUID_STRING

The Abort Facility also exports two variables of type uuid_t that correspond to the exported constants.
Encina provides functions to format abort reasons that use either of the following format UUIDs:

� ENCINA_STANDARD_FORMAT_UUID - This variable is used to label an abort reason that follows the
format used by Encina status codes. Encina components that return an Encina status code when a
transaction is aborted use this format UUID.

� ENCINA_STRING_FORMAT_UUID - This variable is used to label an abort reason that has been
specified as a string using the encina_SetAbortString function.

 Copyright IBM Corp. 1989, 2001  589



 encina_abortReason_t  
 

 encina_abortReason_t

Contains abort reason information.

 Synopsis
typedef struct {
 uuid_t formatUuid;
 long code;
 void Gptr;

unsigned int len;
 } encina_abortReason_t;

 Fields
formatUuid

Contains a unique identifier indicating the format of an abort reason.

code
Contains an abort code.

ptr Contains abort data.

len
Defines the length of the data to which the ptr parameter points.

 Description

The structure represented by the data type encina_abortReason_t contains information about an abort
reason. It contains a format identifier, an abort code, and/or abort data and the length of that data.

The format identifier specified in the formatUuid field is a DCE universal unique identifier that identifies the
format of the abort reason. The abort code is specified in the code field as a signed, 32-bit integer. The
abort data specified in the ptr field is used to provide component-specific information about an aborted
transaction. For example, the ptr field could contain a null-terminated string describing the reason why the
transaction aborted. The length of the data in the ptr field is specified as an integer in the len field.

When initializing an abort reason, an abort code must be specified. If the abort reason is defined entirely
by the abort data (and the length of the data), the abort code must be initialized to zero.

590 Encina Toolkit Executive Guide and Reference  



  encina_status_t
 

 encina_status_t

Encina status code.

 Synopsis
typedef enum {...} encina_status_t;

 Description

The abort facility functions return a value of the encina_status_t type. Any call that is successful returns
the status value ENCINA_SUCCESS. A status code can be converted into a string using the
encina_StatusToString function.

  Chapter 43. Abort Facility Data Types 591



 encina_status_t  
 

592 Encina Toolkit Executive Guide and Reference  



  
 

 Chapter 44. TRPC Functions

TRPC enhances the DCE RPC interface. TRPC provides the same basic interface as DCE RPC;
however, unlike DCE RPC, TRPC implements transactional and nontransactional RPCs for use by Encina
applications. DCE RPC implements only nontransactional RPCs.

 Header Files

Applications that link with TRPC must include the header file trpc/trpc.h.

 Functions

TRPC provides an application interface that includes functions for performing primary application tasks
such as initialization and termination. In addition, the TRPC interface provides wrapper functions that
parallel the DCE RPC functions for manipulating binding handles.

The TRPC application interface exports functions for the following types of operations:

 � Initializing TRPC
 – trpc_BindWkEndpoints
 – trpc_GetEnvironment
 – trpc_Init
 – trpc_InitWithTrdce
 – trpc_SetEnvironment
 – trpc_SetTranTimeout
 – trpc_Terminate
 – trpc_UseProtseqVector
 – trpc_UseWkEndpoints

 � Registering callbacks
 – trpc_CallAfterReceivingReply
 – trpc_CallAfterReceivingRequest
 – trpc_CallBeforeSendingReply
 – trpc_CallBeforeSendingRequest
 – trpc_CallOnClientException
 – trpc_CallOnServerException
 – trpc_CallToGetTid
 – trpc_ReceiveCallbackData
 – trpc_SendCallbackData

 � Aborting RPCs
 – trpc_CallOnRpcTermination
 – trpc_TerminateRpc

� Manipulating application addresses
 – trpc_GetCompatibleLocalAddress

� Manipulating transactional handles
 – trpc_BindingCopy
 – trpc_BindingFromStringBinding
 – trpc_BindingToStringBinding
 – trpc_ConsBinding
 – trpc_CreateBinding
 – trpc_FreeBinding
 – trpc_GetAddressFromBinding

 Copyright IBM Corp. 1989, 2001  593



  
 

 – trpc_GetApplIdFromBinding
 – trpc_GetRpcHandleFromBinding
 – trpc_InqObjectFromBinding
 – trpc_InqTimeoutFromBinding
 – trpc_ResetBinding
 – trpc_SetObjectBinding
 – trpc_SetTimeoutBinding

� Getting information on server-side transactions
 – trpc_GetWrapTid
 – trpc_IsLocallyWrapped
 – trpc_ServerSideAbortReason

� Freeing memory allocated by TRPC
 – trpc_Free

 � Diagnosing problems
 – trpc_DumpState

594 Encina Toolkit Executive Guide and Reference  



  trpc_BindingCopy
 

 trpc_BindingCopy

Copies the binding from the source to the destination.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_BindingCopy(
IN trpc_handle_t trpcHandle,
OUT trpc_handle_t GtrpcHandleP)

 Parameters
trpcHandle

Specifies the source transactional handle.

trpcHandleP
Returns the pointer to the destination transactional handle.

 Description

The trpc_BindingCopy function gets a duplicate handle. This function copies trpcHandle into a
transactional handle pointed by trpcHandleP. In addition to its own status code, the trpc_BindingCopy
function returns all the status codes returned by the rpc_binding_copy DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_copy DCE RPC function

 Related Information

trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 595



 trpc_BindingFromStringBinding  
 

 trpc_BindingFromStringBinding

Returns a transactional handle from string representations of a binding.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_BindingFromStringBinding (
IN unsigned_char_p_t stringBindingP,
IN tran_applId_t applId,
IN tran_address_t address,
OUT trpc_handle_t GtrpcHandleP)

 Parameters
stringBindingP

Specifies the pointer to the string representation of the binding.

applId
Specifies the application identifier of the remote application.

address
Specifies the application address of the remote application.

trpcHandleP
Returns the pointer to the output transactional handle.

 Description

The trpc_BindingFromStringBinding function creates a transactional handle from the string
representation of the binding. The function uses the applId and the address parameters to create the
transactional handle. The application must use TRAN_APPL_ID_NULL and TRAN_ADDRESS_NULL if it does not
know the application identifier and the address of the remote application.

After calling the trpc_BindingFromStringBinding function, the application is responsible for destroying
the address and applId parameters. The application must call the tran_AddressDestroy function to
destroy the address parameter and the tran_ApplIdDestroy function to destroy the applId parameter.
(See “Object Destruction Functions” on page 129, “tran_ApplIdDestroy” on page 357, and
“tran_AddressDestroy” on page  342 for more information.)

In addition to its own status codes, the trpc_BindingFromStringBinding function returns all the status
codes returned by the rpc_binding_from_string_binding DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_from_string_binding DCE RPC function

596 Encina Toolkit Executive Guide and Reference  



  trpc_BindingFromStringBinding
 

 Related Information

tran_address_t
tran_AddressDestroy
tran_applId_t
tran_ApplIdDestroy
trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 597



 trpc_BindingToStringBinding  
 

 trpc_BindingToStringBinding

Returns a string representation of a binding from a transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_BindingToStringBinding(
IN trpc_handle_t trpcHandle,
OUT unsigned_char_p_t GstringBindingP)

 Parameters
trpcHandle

Specifies the transactional handle.

stringBindingP
Returns the string representation of the binding.

 Description

The trpc_BindingToStringBinding function gets the string representation of the binding from the
transactional handle. The string containing the binding representation must be freed by the application by
calling the trpc_Free function.

In addition to its own status codes, the trpc_BindingToStringBinding function returns all the status
codes returned by the rpc_binding_to_string_binding DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_to_string_binding DCE RPC function

 Related Information

trpc_Free
trpc_handle_t
trpc_status_t

598 Encina Toolkit Executive Guide and Reference  



  trpc_BindWkEndpoints
 

 trpc_BindWkEndpoints

Binds to well-known endpoints.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_BindWkEndpoints(
IN unsigned long nbrOfEndpoints,
IN char Gprotseqs[],
IN char Gendpoints[])

 Parameters
nbrOfEndpoints

Specifies the number of well-known endpoints.

protseqs
Specifies the array of char pointers of size nbrOfEndpoints to protocols.

endpoints
Specifies the array of char pointers of size nbrOfEndpoints to strings containing endpoints.

 Description

The trpc_BindWkEndpoints function is called by the application to create well-known endpoints for
communication protocols. If the application calls the trpc_BindWkEndpoints function, it must not call the
trpc_UseWkEndpoints function. Only one endpoint initialization function can be called. Otherwise, the
TRPC_USE_WK_ALREADY_CALLED status code is returned. The application must call the
trpc_BindWkEndpoints function before calling the trpc_Init function. If the initialization has already been
done (the default is to use all communication protocols with dynamic endpoints) the
TRPC_ALREADY_INITIALIZED status code is returned. Duplicate calls to the trpc_BindWkEndpoints
function are not permitted; such calls return the TRPC_DUPLICATE_CALL status code. If an invalid protocol is
specified, or if a binding cannot be created for any of the specified endpoints, a fatal error occurs and the
Transactional RPC Service (TRPC) exits.

In the absence of a directory service, all recoverable applications must use well-known communication
endpoints. Most recoverable applications can call the trpc_BindWkEndpoints function followed by the
trpc_Init function, as part of the TRPC initialization. The other possibility is that the applications can
create well-known communication endpoints, and then call the trpc_UseWkEndpoints function and finally
call the trpc_Init function. If well-known endpoints are to be specified, they must be specified before
calling the trpc_Init function.

 Return Values
TRPC_SUCCESS
TRPC_ALREADY_INITIALIZED
TRPC_DUPLICATE_CALL
TRPC_USE_WK_ALREADY_CALLED

  Chapter 44. TRPC Functions 599



 trpc_BindWkEndpoints  
 

 Related Information

trpc_Init
trpc_status_t
trpc_UseWkEndpoints

600 Encina Toolkit Executive Guide and Reference  



  trpc_CallAfterReceivingReply
 

 trpc_CallAfterReceivingReply

Registers the after-receiving-reply callback.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallAfterReceivingReply(
IN void (GcallbackAfterReceivingReply)(IN rpc_binding_handle_t,

IN void G,
IN trpc_tranInfo_t G,
IN trpc_ifSpec_t G),

IN void GargP)

 Parameters
callbackAfterReceivingReply

Specifies the callback procedure to be invoked.

argP
Specifies an argument to be passed to the callback procedure.

 Description

The trpc_CallAfterReceivingReply function requests that a callback be executed after the RPC reply
arrives at the client.

The callback procedures are executed in the reverse order of their registration. The first callback
registered is the last to be executed. The Transactional RPC Service (TRPC) guarantees that all or none
of these callbacks are executed during the course of a single RPC. Applications should not register
additional callbacks during the execution of a callback.

After-receiving-reply Callback: The callbackAfterReceivingReply parameter points to a function
that TRPC calls after receiving an RPC reply at the client. The callback function can cause the RPC to
abort by calling trpc_CallOnRpcTermination.

The function must be defined to take four arguments and return no value. The RPC handle is passed as
the first argument. The value of the argP parameter is passed as the second argument. A pointer to a
structure that contains the application identifier of the remote application and the transaction identifier is
passed as the third argument. A pointer to a structure that contains the name of the RPC, the name of
the interface, and another structure that contains the version number and the interface UUID is passed as
the fourth argument. The callback procedure must not modify the RPC handle or either of the structures
passed to the callback function.

 Return Values
TRPC_SUCCESS

  Chapter 44. TRPC Functions 601



 trpc_CallAfterReceivingReply  
 

 Related Information

trpc_CallOnRpcTermination
trpc_ifSpec_t
trpc_status_t
trpc_tranInfo_t

602 Encina Toolkit Executive Guide and Reference  



  trpc_CallAfterReceivingRequest
 

 trpc_CallAfterReceivingRequest

Registers the after-receiving-request callback.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallAfterReceivingRequest(
IN void (GcallbackAfterReceivingRequest)(IN rpc_binding_handle_t,

IN void G,
IN trpc_tranInfo_t G,
IN trpc_ifSpec_t G),

IN void GargP)

 Parameters
callbackAfterReceivingRequest

Specifies the callback procedure to be invoked.

argP
Specifies an argument to be passed to the callback procedure.

 Description

The trpc_CallAfterReceivingRequest function requests that a callback be executed after the RPC
request arrives at the server. An application can register multiple callbacks by making several successive
calls to the trpc_CallAfterReceivingRequest function.

The callback procedures are executed in the reverse order of their registration. The first callback
registered is the last to be executed. The Transactional RPC Service (TRPC) guarantees that all or none
of these callbacks are executed during the course of a single RPC. Applications should not register
additional callbacks during the execution of a callback.

After-receiving-request Callback: The callbackAfterReceivingRequest parameter points to a
function that TRPC calls after an RPC request arrives at the server. The callback function can cause the
RPC to abort by calling the trpc_TerminateRpc function.

The function must be defined to take four arguments and return no value. The RPC handle is passed as
the first argument. The value of the argP parameter is passed as the second argument. A pointer to a
structure that contains the application identifier of the remote application and the transaction identifier is
passed as the third argument. A pointer to a structure that contains the name of the RPC, the name of
the interface, and another structure that contains the version number and the interface UUID is passed as
the fourth argument.

For callback functions that call trpc_ReceiveCallbackData with the callbackDataId parameter equal to the
symbolic constant TRPC_NULL_CALLBACK_DATA_ID, and those for which no data is available, the message
parameter equals TRAN_MESSAGE_NULL.

  Chapter 44. TRPC Functions 603



 trpc_CallAfterReceivingRequest  
 

 Return Values
TRPC_SUCCESS

 Related Information

trpc_ifSpec_t
trpc_ReceiveCallbackData
trpc_status_t
trpc_TerminateRpc
trpc_tranInfo_t

604 Encina Toolkit Executive Guide and Reference  



  trpc_CallBeforeSendingReply
 

 trpc_CallBeforeSendingReply

Registers the before-sending-reply callback.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallBeforeSendingReply(
IN void (GcallbackBeforeSendingReply)(IN rpc_binding_handle_t,

IN void G,
IN trpc_tranInfo_t G,
IN trpc_ifSpec_t G),

IN void GargP)

 Parameters
callbackBeforeSendingReply

Specifies the callback procedure to be invoked.

argP
Specifies an argument to be passed to the callback procedure.

 Description

The trpc_CallBeforeSendingReply function requests that a callback be executed before the RPC reply is
shipped. An application can register multiple callbacks by making several successive calls to the
trpc_CallBeforeSendingReply function.

The callback procedures are executed in the reverse order of their registration. The first callback
registered is the last one to be executed. The Transactional RPC Service (TRPC) guarantees that all or
none of these callbacks are executed during a single RPC. Applications should not register additional
callbacks during the execution of a callback.

Before-sending-reply Callback: The callbackBeforeSendingReply parameter points to a function
that TRPC calls before shipping an RPC reply to the client. The callback function can cause the RPC to
abort by calling the trpc_TerminateRpc function.

The function must be defined to take four arguments and return no value. The RPC handle is passed as
the first argument. The value of the argP parameter is passed as the second argument. A pointer to a
structure that contains the application identifier of the remote application and the transaction identifier is
passed as the third argument. A pointer to a structure that contains the name of the RPC, the name of
the interface, and another structure that contains the version number and the interface UUID is passed as
the fourth argument. The callback procedure must not modify the RPC handle or either of the structures
passed to the callback function.

  Chapter 44. TRPC Functions 605



 trpc_CallBeforeSendingReply  
 

 Return Values
TRPC_SUCCESS
TRPC_MULTIPLE_REGISTRATION

 Related Information

trpc_ifSpec_t
trpc_status_t
trpc_TerminateRpc
trpc_tranInfo_t

606 Encina Toolkit Executive Guide and Reference  



  trpc_CallBeforeSendingRequest
 

 trpc_CallBeforeSendingRequest

Registers the before-sending-request callback.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallBeforeSendingRequest(
IN void (GcallbackBeforeSendingRequest)(IN rpc_binding_handle_t,

IN void G,
IN trpc_tranInfo_t G,
IN trpc_ifSpec_t G),

IN void GargP)

 Parameters
callbackBeforeSendingRequest

Specifies the callback procedure to be invoked.

argP
Specifies an argument to be passed to the callback procedure.

 Description

The trpc_CallBeforeSendingRequest function requests that a callback be executed before the RPC
request is shipped. Multiple callback procedures can be registered through multiple calls to this function.

The callback procedures are executed in the reverse order of their registration. The first callback
registered is the last to be executed. The Transactional RPC Service (TRPC) guarantees that all or none
of these callbacks shall be executed during the course of a single RPC. Applications should not register
additional callbacks during the execution of a callback.

Before-sending-request Callback: The callbackBeforeSendingRequest parameter points to a
function that TRPC calls before shipping an RPC request to the server. The callback function can cause
the RPC to abort by calling trpc_CallOnRpcTermination.

The function must be defined to take four arguments and return no value. The RPC handle is passed as
the first argument. The value of the argP parameter is passed as the second argument. A pointer to a
structure that contains the application identifier of the remote application and the transaction identifier is
passed as the third argument. A pointer to a structure that contains the name of the RPC, the name of
the interface, and another structure that contains the version number and the interface UUID is passed as
the fourth argument. The callback procedure must not modify either of the structures passed to the
callback function, and it must not modify the RPC handle other than to set security information on the
handle.

  Chapter 44. TRPC Functions 607



 trpc_CallBeforeSendingRequest  
 

 Return Values
TRPC_SUCCESS
TRPC_MULTIPLE_REGISTRATION

 Related Information

trpc_CallOnRpcTermination
trpc_ifSpec_t
trpc_status_t
trpc_tranInfo_t

608 Encina Toolkit Executive Guide and Reference  



  trpc_CallOnClientException
 

 trpc_CallOnClientException

Registers the client-side exception callback.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallOnClientException(
IN void (GcallbackOnClientException)(IN rpc_binding_handle_t,

IN void G,
IN trpc_tranInfo_t G,
IN trpc_ifSpec_t G,

 IN trpc_status_t),
IN void GargP)

 Parameters
callbackOnClientException

Specifies the callback to be invoked.

argP
Specifies an argument to be passed to the callback procedure.

 Description

The trpc_CallOnClientException function requests that a callback be invoked when an exception is
detected on the client side during an RPC. An application can register multiple callbacks by making
several successive calls to the trpc_CallOnClientException function.

The callback procedures are executed in the reverse order of their registration. The first callback
registered is the last to be executed. The Transactional RPC Service (TRPC) guarantees that all or none
of these callbacks shall be executed during the course of a single RPC. Applications should not register
additional callbacks during the execution of a callback.

On-client-exception Callback: The callbackOnClientException parameter points to a function that
TRPC calls when an exception is detected on the client side during an RPC. The callback function can
cause the RPC to return to the client by calling the trpc_CallOnRpcTermination function.

The function must be defined to take five arguments and return no value. The RPC handle is passed as
the first argument. The value of the argP parameter is passed as the second argument. A pointer to a
structure that contains the application identifier of the remote application and the transaction identifier is
passed as the third argument. A pointer to a structure that contains the name of the RPC, the name of
the interface, and another structure that contains the version number and the interface UUID is passed as
the fourth argument. An exception status code is passed as the fifth argument.

The callback procedure must not modify the RPC handle or either of the structures passed to the callback
function.

  Chapter 44. TRPC Functions 609



 trpc_CallOnClientException  
 

 Return Values
TRPC_SUCCESS

 Related Information

trpc_CallOnRpcTermination
trpc_ifSpec_t
trpc_status_t
trpc_tranInfo_t

610 Encina Toolkit Executive Guide and Reference  



  trpc_CallOnRpcTermination
 

 trpc_CallOnRpcTermination

Aborts the transaction and calls the registered function.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t
trpc_CallOnRpcTermination(

IN void (GcallOnRpcTermination)(IN void G,
 IN trpc_status_t),

IN void GargP)

 Parameters
callOnRpcTermination

Specifies the function called by the Transactional RPC Service (TRPC) when aborting the client. All
the client-side exception callbacks are invoked before the RPC is aborted.

argP
Specifies an argument to be passed to the RPC-termination callback.

 Description

The trpc_CallOnRpcTermination function causes the RPC to abort at the client. This function can be
called from within the before-sending-request, after-receiving-reply, or on-client-exception callbacks.
TRPC guarantees that all the callback procedures of a type shall be executed before the RPC is aborted.
Execution control is then transferred to the function that is registered by this function.

If the RPC has already been aborted, then calling this function from within the on-client-exception callback
merely transfers execution control to the function trpc_CallOnRpcTermination registered.

TRPC does not allow this function to be invoked multiple times within a shadow client stub. If multiple
calls are made to this function, the TRPC_MULTIPLE_REGISTRATION status code is returned. The application
can do a longjmp within the callback function to unwind the stack and to restore a previously saved
context in which the abort can be handled.

On-rpc-termination Callback: The callbackOnRpcTermination parameter points to a function that
TRPC calls when an exception occurs and the RPC must be aborted. This function is invoked after all the
callback procedures of a type (all the after-receiving-request callbacks, for instance) are executed.

The function must be defined to take two arguments and return no value. The value of the argP
parameter is passed as the first argument. A status code for the exception condition is passed as the
second argument.

  Chapter 44. TRPC Functions 611



 trpc_CallOnRpcTermination  
 

 Note

Certain transactional runtime environments like Transactional-C call this function within the callbacks.
Application developers, therefore, should not call this function in a Transactional-C environment.

 Return Values
TRPC_SUCCESS
TRPC_MULTIPLE_REGISTRATION

 Related Information

trpc_status_t
trpc_TerminateRpc

612 Encina Toolkit Executive Guide and Reference  



  trpc_CallOnServerException
 

 trpc_CallOnServerException

Registers server-side exception callback.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallOnServerException(
IN void (GcallbackOnServerException)(IN rpc_binding_handle_t,

IN void G,
IN trpc_tranInfo_t G,
IN trpc_ifSpec_t G,

 IN trpc_status_t),
IN void GargP)

 Parameters
callbackOnServerException

Specifies the callback to be invoked.

argP
Specifies an argument to be passed to the callback procedure.

 Description

The trpc_CallOnServerException function requests that a callback be invoked when an exception is
detected on the server side during an RPC. An application can register multiple callbacks by making
several successive calls to the trpc_CallOnServerException function.

The callback procedures are executed in the reverse order of their registration. The first callback
registered is the last to be executed. The Transactional RPC Service (TRPC) guarantees that all or none
of these callbacks shall be executed during the course of a single RPC. Applications should not register
additional callbacks during the execution of a callback.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

On-server-exception Callback: The callbackOnServerException parameter points to a function
that TRPC calls when an exception is detected on the server side during an RPC. The callback function
can cause the RPC to return to the client by calling the trpc_CallOnRpcTermination function.

The function must be defined to take five arguments and return no value. The RPC handle is passed as
the first argument. The value of the argP parameter is passed as the second argument. A pointer to a
structure that contains the application identifier of the remote application and the transaction identifier is
passed as the third argument. A pointer to a structure that contains the name of the RPC, the name of
the interface, and another structure that contains the version number and the interface UUID is passed as
the fourth argument. A status code for an exception condition is passed as the fifth argument.

The callback procedure must not modify the RPC handle or either of the structures passed to the callback
function.

  Chapter 44. TRPC Functions 613



 trpc_CallOnServerException  
 

 Return Values
TRPC_SUCCESS

 Related Information

trpc_CallOnRpcTermination
trpc_ifSpec_t
trpc_status_t
trpc_tranInfo_t

614 Encina Toolkit Executive Guide and Reference  



  trpc_CallToGetTid
 

 trpc_CallToGetTid

Returns the transaction identifier.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CallToGetTid(
IN tran_tid_t (GcallbackToGetTid)())

 Parameters
callbackToGetTid

Specifies the callback function that provides a transaction identifier.

 Description

The trpc_CallToGetTid function requests that a callback be invoked by the Transactional RPC Service
(TRPC) in the client. The callback procedure is used to return the transaction identifier of the transaction
on whose behalf the RPC is made. The client must register this callback if any remote procedure that it
invokes does not have a parameter of type tran_tid_t.

Only one callback procedure of this type can be registered. If an application attempts to register multiple
callbacks of this type, the TRPC_MULTIPLE_REGISTRATION status code is returned.

Get-Tid Callback: The callbackToGetTid parameter points to a function that TRPC calls on the client
side if the RPC that is being invoked does not have a parameter of type tran_tid_t. The transaction
identifier of the transaction on whose behalf the RPC is made must be returned.

 Return Values
TRPC_SUCCESS
TRPC_MULTIPLE_REGISTRATION

 Related Information

tran_tid_t
trpc_status_t

  Chapter 44. TRPC Functions 615



 trpc_ConsBinding  
 

 trpc_ConsBinding

Constructs a transactional handle from an application identifier, address, and an RPC handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_ConsBinding(
IN rpc_binding_handle_t rpcHandle,
IN tran_applId_t applId,
IN tran_address_t address,
IN int freeWhenDestroyed,
OUT trpc_handle_t GtrpcHandleP)

 Parameters
rpcHandle

Specifies the RPC handle.

applId
Specifies the application identifier of the remote application.

address
Specifies the address of the remote application.

freeWhenDestroyed
Specifies the flag that indicates whether the fields of the transactional handle must be destroyed when
it is destroyed.

trpcHandleP
Returns the pointer to where the transactional handle is returned.

 Description

The trpc_ConsBinding function constructs a transactional handle from the RPC binding handle, the
application address, and the application identifier. When the freeWhenDestroyed parameter is set to
TRUE, calling the trpc_FreeBinding function destroys the rpcHandle, address, and applId fields of the
transactional handle. If the freeWhenDestroyed parameter is FALSE, calling the trpc_FreeBinding
function only destroys the transactional handle and leaves its components intact. In this situation the
application owns responsibility for destroying the rpcHandle, applId, and address fields.

 Return Values
TRPC_SUCCESS

 Related Information

tran_address_t
tran_applId_t
trpc_FreeBinding
trpc_handle_t
trpc_status_t

616 Encina Toolkit Executive Guide and Reference  



  trpc_CreateBinding
 

 trpc_CreateBinding

Creates a transactional handle from an application identifier, an address, and an RPC handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_CreateBinding(
IN rpc_binding_handle_t rpcHandle,
IN tran_applId_t applId,
IN tran_address_t address,
OUT trpc_handle_t GtrpcHandleP)

 Parameters
rpcHandle

Specifies the RPC handle.

applId
Specifies the application identifier of the remote application.

address
Specifies the address of the remote application.

trpcHandleP
Returns the pointer to where the transactional handle is returned.

 Description

The trpc_CreateBinding function creates a transactional handle from the RPC binding handle, application
identifier, and the address. The trpc_CreateBinding function generates its own copy of the rpcHandle,
applId, and address parameters that it uses to create the transactional handle.

The application owns the responsibility for destroying the rpcHandle, applId, and address parameters after
use.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_copy DCE RPC function

 Related Information

tran_address_t
tran_applId_t
trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 617



 trpc_DumpState  
 

 trpc_DumpState

Dumps state of TRPC.

 Synopsis
#include <trpc/trpc.h>

void trpc_DumpState()

 Description

The trpc_DumpState function dumps the state of the Transactional RPC Service (TRPC) at an
application. The function dumps the state of the transactional handle cache, containing information about
transactional handles that the local application has cached for each remote application that it has been
communicating with. Transactional handles that were explicitly freed may not show up in the dump
because they are kept in the cache for only a short time beyond the call to trpc_FreeBinding before they
are actually removed from the cache.

The format for the dump consists of the application identifier of each remote application followed by the
number of transactional handles in the cache for that application. For each handle, it prints out the
following information:

� refCount: number of transactions using the handle.
� invalidFlag: whether the handle is valid.
� freeFlag: whether the handle has been freed.
� invalidCount: how many times the handle has been invalid.

 Output

The following is an example of output from the trpc_DumpState function:

1 D TRPC state dump:
1 D <<applId: B1B122d3BBBB5756a519981dB26B8c2ef1a6, num of trpc handles: 2>
1 D <refCount: B, invalidFlag: B, freeFlag: B, invalidCount: B>>
1 D <refCount: B, invalidFlag: B, freeFlag: B, invalidCount: B>>

 Related Information

trpc_FreeBinding

618 Encina Toolkit Executive Guide and Reference  



  trpc_Free
 

 trpc_Free

Frees previously allocated memory.

 Synopsis
#include <trpc/trpc.h>

void trpc_Free(
IN void Gaddr)

 Parameters
addr

Specifies the address of block to free.

 Description

The trpc_Free function frees a block of memory that was dynamically allocated by the Transactional RPC
Service (TRPC).

  Chapter 44. TRPC Functions 619



 trpc_FreeBinding  
 

 trpc_FreeBinding

Frees the transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_FreeBinding(
IN trpc_handle_t trpcHandle)

 Parameters
trpcHandle

Specifies the transactional handle that must be freed.

 Description

The trpc_FreeBinding function frees the transactional handle. In addition to its own status code, the
trpc_FreeBinding function returns all the status codes returned by the rpc_binding_free DCE RPC
function.

 Caution

This function also removes the cached version of the transactional handle. The application should use
this function with caution.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_free DCE RPC function

 Related Information

trpc_handle_t
trpc_status_t

620 Encina Toolkit Executive Guide and Reference  



  trpc_GetAddressFromBinding
 

 trpc_GetAddressFromBinding

Obtains the address from the transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t
trpc_GetAddressFromBinding (

IN trpc_handle_t trpcHandle,
OUT tran_address_t GaddressP)

 Parameters
trpcHandle

Specifies the transactional handle that contains the address.

addressP
Returns the pointer where the address is returned.

 Description

The trpc_GetAddressFromBinding function obtains the address of the remote application from the
transactional handle. The application must eventually destroy the address by calling the
tran_AddressDestroy function. See “Object Destruction Functions” on page 129 and
“tran_AddressDestroy” on page 342 for more information.

 Return Values
TRPC_SUCCESS

 Related Information

tran_address_t
tran_AddressDestroy
trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 621



 trpc_GetApplIdFromBinding  
 

 trpc_GetApplIdFromBinding

Gets the application identifier from the transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t
trpc_GetApplIdFromBinding(

IN trpc_handle_t trpcHandle,
OUT tran_applId_t GapplIdP)

 Parameters
trpcHandle

Specifies the transactional handle that contains the application identifier.

applIdP
Returns the pointer to where the application identifier is returned.

 Description

The trpc_GetApplIdFromBinding function gets the application identifier from the transactional handle.
The application must allocate space for the application identifier. If the application identifier in the
transactional RPC handle is NULL, TRAN_APPLID_NULL is returned in applIdP. The application must
eventually call the tran_ApplIdDestroy function to destroy the application identifier. See “Object
Destruction Functions” on page 129 and “tran_ApplIdDestroy” on page 357 for more information.

 Return Values
TRPC_SUCCESS

 Related Information

tran_applId_t
trpc_ApplIdDestroy
trpc_handle_t
trpc_status_t

622 Encina Toolkit Executive Guide and Reference  



  trpc_GetCompatibleLocalAddress
 

 trpc_GetCompatibleLocalAddress

Gets a compatible local address.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t
trpc_GetCompatibleLocalAddress(

IN unsigned char GprotocolSequence,
OUT tran_address_t GlocalAddressP)

 Parameters
protocolSequence

Specifies the DCE RPC protocol sequence.

localAddressP
Returns the TRAN address for this application.

 Description

The trpc_GetCompatibleLocalAddress function returns a TRAN address for this application that is
compatible with the given DCE RPC protocol sequence. If no compatible address exists, the
localAddressP parameter contains the TRAN_ADDRESS_NULL constant. If the localAddressP parameter
contains a non-null address, the application should call tran_AddressDestroy when it is no longer
needed.

 Return Values
TRPC_SUCCESS

 Related Information

tran_address_t
tran_AddressDestroy
trpc_status_t

  Chapter 44. TRPC Functions 623



 trpc_GetEnvironment  
 

 trpc_GetEnvironment

Retrieves the DCE Directory Service and Security environment values.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t
trpc_GetEnvironment(

OUT rpcauth_name_t GprincipalIdP,
OUT rpcauth_level_t GsecLevelP,
OUT char GGnsPathPP,
OUT unsigned32 GnameSyntaxP,
OUT int GuseNameServiceP)

 Parameters
principalIdP

Returns the pointer to the DCE principal name identifying the user under whom the application runs.

secLevelP
Returns the pointer to the DCE protection level used when out-of-band data is sent on behalf of
TRAN.

nsPathPP
Returns the pointer to the path name specifying a DCE Directory Service entry in which the
Transactional RPC Service (TRPC) can store information.

nameSyntaxP
Returns the pointer to a value describing the syntax of the name provided in nsPathPP.

useNameServiceP
Returns the pointer to an integer value specifying whether the TRPC runtime library can internally
perform DCE Directory Service lookups.

 Description

The trpc_GetEnvironment function retrieves the environment values that affect how TRPC uses the DCE
Security and Directory Services. TRPC provides default values for these environment values; the default
values can be altered by using the trpc_SetEnvironment function. In order to retrieve the complete set
of environment values registered by Encina, this function should be called after the tran_Ready function
has been called.

No value is returned in any of the parameters of this function that have been set to NULL. If the value
specified for either the nsPathPP or principalIdP parameters is not NULL, then TRPC allocates a string for
the returned value, which the application must later de-allocate using the trpc_Free function. See the
trpc_SetEnvironment function for more information on the values of the parameters used in this function.

624 Encina Toolkit Executive Guide and Reference  



  trpc_GetEnvironment
 

 Return Values
TRPC_SUCCESS
TRPC_NOT_INITIALIZED

 Related Information

trpc_Free
tran_Ready
trpc_SetEnvironment
trpc_status_t

  Chapter 44. TRPC Functions 625



 trpc_GetRpcHandleFromBinding  
 

 trpc_GetRpcHandleFromBinding

Obtains the RPC handle from a TRPC handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_GetRpcHandleFromBinding (
IN trpc_handle_t trpcHandle,
OUT rpc_binding_handle_t GhandleP)

 Parameters
trpcHandle

Specifies the transactional handle that contains the RPC handle.

handleP
Returns a pointer to the RPC handle.

 Description

The trpc_GetRpcHandleFromBinding function retrieves the RPC handle associated with a transactional
handle specified in the trpcHandle parameter. The associated RPC handle is returned in the handleP
parameter.

An application may need to access the RPC handle directly so that any DCE functions not covered by
TRPC can be performed. For example, TRPC clients may need to access the RPC handle to query or
reset the authentication policy. The caller must not destroy the RPC handle.

 Return Values
TRPC_SUCCESS

 Related Information

trpc_handle_t
trpc_status_t

626 Encina Toolkit Executive Guide and Reference  



  trpc_GetWrapTid
 

 trpc_GetWrapTid

Returns a transaction identifier for use in server-side transactions.

 Synopsis
#include <trpc/trpc.h>

tran_tid_t trpc_GetWrapTid()

 Description

The trpc_GetWrapTid function returns a special transaction identifier that the Transactional RPC Service
(TRPC) reserves for use in server-side transactions. A server-side transaction is a transaction that is
initiated by a client application but executed at the server.

A client application can specify that a transactional RPC should be executed in a server-side transaction
by associating the special transaction identifier with a transactional RPC (either through an explicit
transaction identifier parameter on the transactional RPC or through the callback mechanism). The
manager function in the server is executed within a transaction begun and ended by the transactional RPC
runtime in the server; no transactional information is sent to the server on the transactional RPC.
Nontransactional RPCs cannot be executed in server-side transactions; their manager functions are
always executed nontransactionally.

Because the special transaction identifier does not refer to a TRAN transaction in the client, the normal
mechanism for retrieving abort data cannot be used. Instead, a client can call the
trpc_ServerSideAbortReason function to retrieve the abort data for the last server-side transactional
RPC.

A server can determine whether a manager function is being executed within a server-side transaction by
calling the trpc_IsLocallyWrapped function. A manager function that is executed within server-side
transactions can be written to take advantage of the fact that it is the only work being done within the
transaction. For example, a manager function might normally use subtransactions to isolate internal
failures from the client. But, if the manager function determines that it is being executed in a server-side
transaction, the manager function can abort the transaction instead because the client's transaction is not
affected by the outcome of a server-side transaction.

 Note

Server-side transactions should be used only by client applications that do not rely on transactional
guarantees or that cannot create transactions locally.

 Related Information

trpc_IsLocallyWrapped
trpc_ServerSideAbortReason
tran_tid_t

  Chapter 44. TRPC Functions 627



 trpc_Init  
 

 trpc_Init

Initializes TRPC.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_Init ()

 Description

The trpc_Init function initializes the Transactional RPC Service (TRPC) interface. Do not call any
Transactional RPCs until after this function and the tran_Ready function are called.

The trpc_Init function uses all the protocols that are supported by DCE RPC if the application has not
already called the trpc_UseProtseqVector function. The function trpc_Init also creates dynamic
communication endpoints for protocols in use but for which no bindings exist.

To initialize TRAN and TRPC, an application must invoke their initialization routines in the proper order:
first tran_Init, then trpc_Init, and finally tran_Ready.

Duplicate calls to this function has no effect. When an application calls the trpc_Init function multiple
times, repeated calls return the TRPC_DUPLICATE_CALL status code.

 Return Values
TRPC_SUCCESS
TRPC_DUPLICATE_CALL
TRPC_TRAN_NOT_INITIALIZED

 Related Information

tran_Ready
trpc_status_t
trpc_UseProtseqVector

628 Encina Toolkit Executive Guide and Reference  



  trpc_InitWithTrdce
 

 trpc_InitWithTrdce

Uses the well-known endpoints registered with the server.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_InitWithTrdce(
 void)

 Description

The trpc_InitWithTrdce function informs the Transactional RPC Service (TRPC) that Transarc/Encina
DCE (TRDCE) functions were used for server registration and requests that TRPC use any protocol
sequences and well-known endpoints described by those TRDCE calls. The trdce_ServerRegister
function can be used to create and register server bindings. If the name provided to the
trdce_ServerRegister function is a well-known endpoint, that endpoint is used; otherwise, bindings are
created for all appropriate protocol sequences, and those bindings are registered with the DCE Directory
Service. See “trdce_ServerRegister” on page  576 for more information.

The trpc_InitWithTrdce function is useful in applications that use well-known endpoints or restrict the use
of protocol sequences. These applications must make special pre-initialization calls to notify TRPC that
well-known endpoints are used or that protocol sequences are restricted (see “trpc_UseProtseqVector” on
page 647, “trpc_UseWkEndpoints” on page 649, and “trpc_BindWkEndpoints” on page 599). The
trpc_InitWithTrdce function can perform these pre-initialization steps if the application has already used
the TRDCE functions for server registration.

These TRDCE functions enforce the use of the RPC_SUPPORTED_PROTSEQS environment variable that
controls the use of RPC protocol sequences. The trpc_InitWithTrdce function can also be used in clients
that may require protocol sequence restrictions.

The trpc_InitWithTrdce function does not replace the trpc_Init function; other pre-initialization steps can
be performed in addition to those done by trpc_InitWithTrdce, although none are necessary. The
trpc_InitWithTrdce function must be called after any relevant DCE or TRDCE functions, but before the
trpc_Init function.

 Return Values
TRPC_SUCCESS
TRPC_ALREADY_INITIALIZED
TRPC_ALREADY_READIED
TRPC_BIND_WK_ALREADY_CALLED
TRPC_DUPLICATE_CALL
TRPC_NO_PROTSEQ_SUPPORTED

  Chapter 44. TRPC Functions 629



 trpc_InitWithTrdce  
 

 Related Information

trpc_BindWkEndpoints
trpc_Init
trdce_ServerRegister
trpc_UseProtseqVector

630 Encina Toolkit Executive Guide and Reference  



  trpc_IsLocallyWrapped
 

 trpc_IsLocallyWrapped

Determines whether a transaction executing at the server is a server-side transaction.

 Synopsis
#include <trpc/trpc.h>

int trpc_IsLocallyWrapped()

 Description

The trpc_IsLocallyWrapped function can be used by a server application to determine whether the
calling thread is executing a manager function on behalf of a server-side transaction. The
trpc_IsLocallyWrapped function returns a nonzero value (TRUE) if the transaction executing in the calling
thread is a server-side transaction, and 0 (FALSE) otherwise. See “trpc_GetWrapTid” on page  627 for
more information on server-side transactions.

 Notes

An ephemeral client should not use this API. Doing so produces incorrect results.

 Related Information

trpc_GetWrapTid
trpc_ServerSideAbortReason

  Chapter 44. TRPC Functions 631



 trpc_InqObjectFromBinding  
 

 trpc_InqObjectFromBinding

Returns the object UUID from within a transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_InqObjectFromBinding(
IN trpc_handle_t trpcHandle,
OUT uuid_t GobjUuidP)

 Parameters
trpcHandle

Specifies the transactional handle.

objUuidP
Returns the pointer to the UUID.

 Description

The trpc_InqObjectFromBinding function gets the object UUID from within the transactional handle. The
application must allocate space for the object UUID.

In addition to its own status codes, the trpc_InqObjectFromBinding function returns all the status codes
returned by the rpc_binding_inq_object DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_inq_object function

 Related Information

trpc_handle_t
trpc_status_t

632 Encina Toolkit Executive Guide and Reference  



  trpc_InqTimeoutFromBinding
 

 trpc_InqTimeoutFromBinding

Returns the timeout value from the transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_InqTimeoutFromBinding(
IN trpc_handle_t trpcHandle,
OUT signed32 GtimeoutP)

 Parameters
trpcHandle

Specifies the transactional handle.

timeoutP
Returns the pointer to where the timeout value is returned.

 Description

The tnc_InqTimeoutFromBinding function gets the value of timeout from the transactional handle. The
application must allocate space for the timeout.

In addition to its own status codes, the trpc_InqTimeoutFromBinding function returns all the status
codes returned by the rpc_mgmt_inq_com_timeout DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_mgmt_inq_com_timeout DCE RPC function

 Related Information

trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 633



 trpc_ReceiveCallbackData  
 

 trpc_ReceiveCallbackData

Picks up data piggybacked on a transactional RPC.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_ReceiveCallbackData (
IN unsigned long callbackDataId,
OUT unsigned long GcallbackDataLengthP,
OUT void GGcallbackDataBufferP)

 Parameters
callbackDataId

Specifies the module for which data should be retrieved.

callbackDataLengthP
Returns the length of the data returned in the buffer specified in the callbackDataBufferP parameter.

callbackDataBufferP
Returns the buffer containing the piggyback data.

 Description

The trpc_ReceiveCallbackData function is called within a transactional RPC receiving-request callback to
retrieve the piggyback data provided by its client-side counterpart using the trpc_SendCallbackData
function. The callbackDataId identifies the module for which data should be retrieved. The Transactional
RPC Service (TRPC) returns a buffer (callbackDataBufferP) containing the data and its length
(callbackDataLengthP). The caller must use the buffer before returning from the receiving-request callback;
it must not destroy the buffer.

 Return Values
TRPC_CALLBACK_DATA_OVERFLOW

 Related Information

trpc_SendCallbackData
trpc_status_t

634 Encina Toolkit Executive Guide and Reference  



  trpc_ResetBinding
 

 trpc_ResetBinding

Disassociates an endpoint from a transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_ResetBinding(
IN trpc_handle_t trpcHandle)

 Parameters
trpcHandle

Specifies the transactional handle.

 Description

The trpc_ResetBinding function disassociates the endpoint information from the transactional handle. In
addition to its own status codes, the trpc_ResetBinding function returns all the status codes returned by
the rpc_binding_reset DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_reset DCE RPC function

 Related Information

trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 635



 trpc_SendCallbackData  
 

 trpc_SendCallbackData

Provides data to be piggybacked on a transactional RPC.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_SendCallbackData (
IN unsigned long callbackDataId,
IN unsigned long callbackDataLength,
OUT void GGcallbackDataBufferP)

 Parameters
callbackDataId

Specifies the module calling the RPC.

callbackDataLengthP
Specifies the length of the data to be sent with an RPC.

callbackDataBufferP
Returns a buffer of the size specified in the callbackDataLengthP parameter.

 Description

The trpc_SendCallbackData function is called within a transactional RPC sending-request callback to add
piggyback data to the RPC. The callbackDataId parameter identifies the module calling the function; the
same identifier must be used by the module in the server application to retrieve the piggyback data. The
callbackDataLength parameter specifies how much piggyback data the module needs to send with the
RPC. The Transactional RPC Service (TRPC) returns a pointer to a buffer of that size in the
callbackDataBufferP parameter. The caller must fill in this buffer with its piggyback data before returning
from the sending-request callback. This function is intended as a mechanism that system modules (for
example, programming language run time) can use to transmit external state (for example, environment
variables) to a server transparently to the client RPC.

 Return Values
TRPC_CALLBACK_DATA_OVERFLOW

 Related Information

trpc_ReceiveCallbackData
trpc_status_t

636 Encina Toolkit Executive Guide and Reference  



  trpc_ServerSideAbortReason
 

 trpc_ServerSideAbortReason

Retrieves the abort reason for a server-side transaction.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_ServerSideAbortReason(
OUT encina_abortReason_t Greason)

 Parameters
reason

Returns an abort reason structure indicating why the transaction aborted.

 Description

The trpc_ServerSideAbortReason function can be called by a client application to retrieve the reason
that a server-side transaction aborted. The trpc_ServerSideAbortReason function must be called in the
same thread that started the server-side transaction. See “trpc_GetWrapTid” on page  627 for more
information on server-side transactions.

The trpc_ServerSideAbortReason function returns the TRPC_ABORT_REASON_UNKNOWN status code if the
server does not provide an abort reason. The TRPC_ABORT_REASON_UNKNOWN status code is also returned if
the transactional RPC fails (for example, due to a communication failure).

 Return Values
TRPC_SUCCESS
TRPC_ABORT_REASON_UNKNOWN

 Related Information

trpc_GetWrapTid
trpc_IsLocallyWrapped
trpc_status_t

  Chapter 44. TRPC Functions 637



 trpc_SetEnvironment  
 

 trpc_SetEnvironment

Specifies the DCE Directory Service and Security environments.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t
trpc_SetEnvironment(

IN rpcauth_name_t principalId,
IN rpcauth_level_t secLevel,
IN char GnsPathP,
IN unsigned32 nameSyntax,
IN int useNameService)

 Parameters
principalId

Specifies the DCE principal name of the user under whom the application runs.

secLevel
Specifies the DCE protection level used when out-of-band data is sent on behalf of TRAN.

nsPathP
Specifies the path name of a DCE Directory Service entry in which the Transactional RPC Service
(TRPC) can store information. This entry must exist when this function executes, and the application
must have full access to this directory.

nameSyntax
Specifies the syntax of the name provided in nsPathP.

useNameService
Specifies whether the TRPC runtime library can internally perform DCE Directory Service lookups.
This parameter has no impact on whether the application calling this function uses the Directory
Service directly.

 Description

The trpc_SetEnvironment function specifies the DCE Directory Service and Security environments. To
coordinate transactions, TRAN requires the underlying communication mechanism to provide a way for
TRAN at one application (for example, a client) to exchange information with TRAN at other applications
(for example, servers) involved in the same transaction. The Transactional RPC Service (TRPC) passes
some TRAN information when executing remote procedure calls (RPCs), but may also need to send data
when TRPC is not sending any RPCs on behalf of the application. These auxiliary TRAN messages are
referred to as out-of-band data.

Part of initializing TRPC potentially involves customizing its runtime environment for sending out-of-band
data. Applications rarely need to do this because TRPC provides a reasonable default environment, but
when they need to alter the environment, they call the trpc_SetEnvironment function. During TRPC
initialization, an application can customize how the runtime environment handles out-of-band
communication. The defaults used by TRPC are sufficient for most cases, but applications can call the
trpc_SetEnvironment function to specify a certain out-of-band communications mode.

The value supplied for principalId is used when authenticating the out-of-band data and must be a
completely specified principal name, including the DCE cell name. An application can pass NULL instead

638 Encina Toolkit Executive Guide and Reference  



  trpc_SetEnvironment
 

to indicate that this function should get a value from the runtime environment. This function first looks at
the ENCINA_TRPC_PRINCIPAL environment variable. If this environment variable is undefined, then this
function looks at the ENCINA_PRINCIPAL environment variable.

The value supplied for secLevel determines the protection level for out-of-band data sent on behalf of
TRAN. If this argument is the rpc_c_protect_level_default constant, this function first looks at the
ENCINA_TRPC_AUTHN environment variable. If this environment variable is undefined,
rpc_c_protect_level_none is used as the protection level.

The final default protection level chosen by TRPC may be different than DCE's default. If an application
needs to guarantee that it uses the DCE default protection level, it should call the DCE
rpc_mgmt_inq_dflt_protect_level function to get the DCE default protection level and explicitly pass this
value to the trpc_SetEnvironment function.

The value supplied for nsPathP names a DCE Directory Service entry in which TRPC can store
information. The path name specified must exist before the call to trpc_SetEnvironment. If NULL is
supplied, this function first looks at the ENCINA_TRPC_DS_PATH environment variable. If it is undefined,
then this function looks at the ENCINA_CDS_ROOT environment variable. If ENCINA_CDS_ROOT is
used, TRPC appends the string "/trpc" to the retrieved value.

TRPC name registration is independent of any other Directory Service registration performed by the
application. For example, an application server called foo_server can export its binding information in the
directory /com/acme/servers/foo_server and provide the directory /com/acme/servers/trpc for TRPC to
use for names.

The value supplied for nameSyntax describes the syntax of the name provided in nsPathP. The valid
values are the same as those defined by DCE RPC. If rpc_c_ns_syntax_default is supplied, this function
looks at the ENCINA_TRPC_NS_SYNTAX environment variable. If it is undefined, TRPC uses
rpc_c_ns_syntax_dce.

The value supplied for useNameService determines whether TRPC is able to perform DCE Directory
Service lookups on behalf of the application. TRPC may use the Directory Service to locate applications
in order to deliver out–of–band data on behalf of TRAN. A nonzero value indicates that Directory Service
lookups are permitted. The default value for this parameter is TRUE. Whether TRPC can perform
Directory Service lookups is independent of whether the application itself uses the DCE Directory Service.
An application should enable TRPC to perform Directory Service lookups unless there is a very good
reason to prohibit it; for example, executing in an environment without a directory service, or using
well-known endpoints for providing or finding services, is a good reason.

If an application calls the trpc_SetEnvironment function, it must be called before the tran_Init and
trpc_Init functions. If the application calls the tran_Init function first, it returns the status code
TRPC_ALREADY_READIED.

 Return Values
TRPC_SUCCESS
TRPC_ALREADY_READIED

  Chapter 44. TRPC Functions 639



 trpc_SetEnvironment  
 

 Related Information

tran_Init
trpc_Init
trpc_status_t

640 Encina Toolkit Executive Guide and Reference  



  trpc_SetObjectBinding
 

 trpc_SetObjectBinding

Sets the object UUID in the transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_SetObjectBinding(
INOUT trpc_handle_t trpcHandle,
IN uuid_t GuuidP)

 Parameters
trpcHandle

Specifies the transactional handle.

uuidP
Specifies the pointer to the object UUID.

 Description

The trpc_SetObjectBinding function sets the object UUID in the trpcHandle transactional handle. The
object UUID is passed by reference for efficiency.

In addition to its own status codes, the trpc_SetObjectBinding function returns all the status codes
returned by the rpc_binding_set_object DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_binding_set_object DCE RPC function

 Related Information

trpc_handle_t
trpc_status_t

  Chapter 44. TRPC Functions 641



 trpc_SetTimeoutBinding  
 

 trpc_SetTimeoutBinding

Sets the timeout in the transactional handle.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_SetTimeoutBinding(
INOUT trpc_handle_t trpcHandle,
IN signed32 timeout)

 Parameters
trpcHandle

Specifies the transactional handle.

timeout
Specifies the timeout value.

 Description

The trpc_SetTimeoutBinding function sets the value of the timeout in the transactional handle. In
addition to its own status codes, the trpc_SetTimeoutBinding function returns all the status codes
returned by the rpc_mgmt_set_com_timeout DCE RPC function.

 Return Values
TRPC_SUCCESS
Status codes returned by the rpc_mgmt_set_com_timeout DCE RPC function

 Related Information

trpc_handle_t
trpc_status_t

642 Encina Toolkit Executive Guide and Reference  



  trpc_SetTranTimeout
 

 trpc_SetTranTimeout

Sets a timer for aborting a transaction family at the server.

 Synopsis
#include <trpc/trpc.h>

void trpc_SetTranTimeout(
IN tran_tid_t tid,
IN unsigned long seconds)

 Parameters
tid Specifies the transaction identifier of the transaction to be timed.

seconds
Specifies the number of seconds after which the transaction is aborted.

 Description

The trpc_SetTranTimeout function specifies the maximum amount of time that transactions can remain
inactive in an application before being aborted. The timeout value can be changed or disabled as
appropriate to the application. Some applications may want to permit long delays between calls to the
server on behalf of a transaction to prevent an inactive transaction from aborting, for example, while
waiting for user input.

The Transactional RPC Service (TRPC) calls the trpc_SetTranTimeout function automatically to set or
update a timer on a transaction family each time a new transactional RPC arrives at the server; if more
than one transactional RPC is sent on behalf of transactions in a transaction family, the timer is reset at
the arrival of each transactional RPC, and only the most recent timer is used for that family. The default
timeout value given to each transaction family is 3 minutes.

A server application can call the trpc_SetTranTimeout function to specify a different timeout value or
disable the facility. There are four ways this function can be used:

� If the timeout value is nonzero and a particular tid is specified, TRPC uses this timeout value for the
specified transaction family. In applications where delays are expected to occur between RPCs made
by the same transaction, each manager function should set the timeout value such that the transaction
does not abort during those delays. The timeout is changed only for the current transactional RPC;
the default timeout is used for the next transactional RPC from the same transaction family.

� If the timeout value is 0 and a particular tid is specified, TRPC cancels the timer on the specified
transaction family.

� If the timeout value is nonzero and tid is set to TRAN_TID_NULL, TRPC uses this timeout value as the
default for all future transactions.

� If the timeout value is 0 and tid is set to TRAN_TID_NULL, TRPC does not set a timer on any transaction
family that propagates to the server.

Transactions that remain inactive for more than 3 minutes are aborted automatically unless the default
timeout is changed, reset, or disabled. If the trpc_SetTranTimeout function causes a transaction to
abort, the abort reason code for the transaction is set to TRCP_DEFAULT_TIMEOUT_EXPIRED.

  Chapter 44. TRPC Functions 643



 trpc_SetTranTimeout  
 

 Related Information

tran_tid_t

644 Encina Toolkit Executive Guide and Reference  



  trpc_Terminate
 

 trpc_Terminate

Invokes an orderly shutdown procedure.

 Synopsis
#include <trpc/trpc.h>

void trpc_Terminate()

 Description

The trpc_Terminate function must be called by the application to orderly shutdown a server, or to orderly
exit a client application. The trpc_Terminate function ensures that the shutting down application delivers
all of its outstanding out-of-band RPCs before returning. It also cleans up any names that the
Transactional RPC Service (TRPC) exports to the name space.

Applications must call the tran_Terminate function before calling the trpc_Terminate function.

 Related Information

tran_Terminate

  Chapter 44. TRPC Functions 645



 trpc_TerminateRpc  
 

 trpc_TerminateRpc

Terminates the RPC at the server.

 Synopsis
#include <trpc/trpc.h>

void trpc_TerminateRpc(
IN trpc_status_t status)

 Parameters
status

Specifies the status code that indicates why the RPC is being terminated.

 Description

The trpc_TerminateRpc function is called by transaction programming environments like Transactional-C
to cause the RPC to abort on the server side. The server writer can call this function from within the RPC
manager function, the after-receiving-request callback, or the before-sending-reply callback. The
Transactional RPC Service (TRPC) guarantees that all the callback procedures of a type are executed
before the RPC is aborted. When TRPC causes the RPC to abort, it also executes the exception
callbacks at the server.

An application can set the trpcStatus field of the status parameter to be a value greater than or equal to
the symbolic constant TRPC_APPLICATION_ERROR. The value must be carefully selected as it must not collide
with the status value used by the DCE RPC.

All the exception callbacks on the server side see the status code that was passed to the
trpc_TerminateRpc function. However, the client side exception callbacks see the value of the status
code as TRPC_MGR_ABORTED.

 Related Information

trpc_CallOnRpcTermination
trpc_status_t

646 Encina Toolkit Executive Guide and Reference  



  trpc_UseProtseqVector
 

 trpc_UseProtseqVector

Uses communication protocols provided in the vector.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_UseProtseqVector(
IN rpc_protseq_vector_t GprotseqVectorP)

 Parameters
protseqVectorP

Specifies the pointer to the protocol sequence vector.

 Description

The trpc_UseProtseqVector function is called by the application to provide a list of protocols that the
application supports. The Transactional RPC Service (TRPC) must know the communication protocols
that are supported so that it can create the appropriate communication endpoints (dynamic ones) for
protocols that have no specified endpoints. The application can obtain the protocol-sequence vector by
calling the rpc_network_inq_protseqs DCE RPC function.

If an application does not use all the supported communication protocols, it must remove the protocols that
it does not use from the protocol-sequence vector. Unused protocols can be removed from the
protocol-sequence vector by setting the corresponding vector entries to NULL.

An application that does not use all the protocols must call the trpc_UseProtseqVector function before
calling the trpc_Init function. Otherwise, the TRPC_ALREADY_INITIALIZED status code is returned. Further,
if the application does not call the trpc_UseProtseqVector function, TRPC assumes that the application
does use all the communication protocols supported. It subsequently creates dynamic endpoints for
protocols that have no specified endpoints. Because dynamic endpoints in an environment without a
directory service make recovery after a failure impossible, TRPC does not allow communication protocols
with dynamic endpoints to be used in such an environment. When applications try to use dynamic
endpoints in an environment without a directory service, TRPC exits and displays an error message. Even
in environments with a directory service, we recommend that applications use only one protocol,
ncadg_udp_ip, also known as ip. Currently, it is the only communication protocol that is completely
implemented by the DCE RPC.

If an application does use all the protocols supported by the DCE RPC implementation, the application can
take one of the following actions:

� Pass the vector of protocols obtained through the rpc_network_inq_protseq DCE RPC function
without changing it.

� Pass NULL to the trpc_UseProtseqVector function.
� Omit calling the trpc_UseProtseqVector function. By default, the trpc_Init function uses all of the

supported communication protocols.

The application is responsible for destroying the protocol-sequence vector that it passes to the
trpc_UseProtseqVector function. This should be done after the function executes. An application can
destroy the protocol sequence vector by calling the rpc_protseq_vector_free DCE RPC function.

  Chapter 44. TRPC Functions 647



 trpc_UseProtseqVector  
 

Duplicate calls to the trpc_UseProtseqVector function are not permitted. In response to a duplicate call,
the TRPC_DUPLICATE_CALL status code is returned. If an invalid protocol is specified in the protocol vector,
TRPC causes a fatal error to occur and exits. The error code TRPC_NO_PROTSEQ_SUPPORTED is rarely
returned since it signals that the DCE RPC does not support any communication protocols that is
theoretically impossible.

 Return Values
TRPC_SUCCESS
TRPC_ALREADY_INITIALIZED
TRPC_DUPLICATE_CALL
TRPC_NO_PROTSEQ_SUPPORTED

 Related Information

trpc_Init
trpc_status_t

648 Encina Toolkit Executive Guide and Reference  



  trpc_UseWkEndpoints
 

 trpc_UseWkEndpoints

Uses the well-known endpoints provided in the binding vector.

 Synopsis
#include <trpc/trpc.h>

trpc_status_t trpc_UseWkEndpoints (
IN rpc_binding_vector_t GbindingVectorP)

 Parameters
bindingVectorP

Specifies the binding vector containing the bindings pertaining to well-known endpoints.

 Description

The trpc_UseWkEndpoints function is called by the application to supply the Transactional RPC Service
(TRPC) with a list of well-known endpoints already created for the communication protocols that it uses.
The application must call the trpc_UseWkEndpoints function before calling the trpc_Init function.
Otherwise, the TRPC_ALREADY_INITIALIZED status code is returned. If the trpc_Init function is called before
defining endpoints, it assumes that all the supported communication protocols are used and that they use
dynamic endpoints. Typically, an application that uses well-known endpoints calls the
rpc_server_use_protseq_ep, the rpc_server_use_all_protseqs_if, and the rpc_server_use_protseq_if
DCE RPC functions to supply the endpoint information.

To get the binding vector (to see the well-known endpoints of communication protocols), the application
must call the rpc_server_inq_bindings DCE RPC function. If the application has not created any
dynamic endpoints by calling the rpc_server_use_protseq or the rpc_server_use_all_protseqs DCE
RPC functions, then it can pass the binding vector, unchanged, to the trpc_UseWkEndpoints function.
However, if the application uses both well-known and dynamic endpoints, it must remove the bindings
from the binding vector that correspond to the dynamic endpoints. The resulting binding vector, containing
well-known endpoints only, can then be passed to the trpc_UseWkEndpoints function. If all the
endpoints to be used are dynamic, applications can skip this initialization call and proceed to the trpc_Init
function.

Duplicate calls to the trpc_UseWkEndpoints function are not allowed. If a duplicate call is made, the
TRPC_DUPLICATE_CALL status code is returned. Further, both endpoint initialization calls are not allowed.
That is, an application cannot call both the trpc_UseWkEndpoints and the trpc_BindWkEndpoints
functions. If the trpc_BindWkEndpoints function has already been called when an application calls the
trpc_UseWkEndpoints function, the TRPC_BIND_WK_ALREADY_CALLED status code is returned. If an error is
detected in a binding in the binding vector, a fatal error occurs and TRPC exits.

 Return Values
TRPC_SUCCESS
TRPC_ALREADY_INITIALIZED
TRPC_BIND_WK_ALREADY_CALLED
TRPC_DUPLICATE_CALL

  Chapter 44. TRPC Functions 649



 trpc_UseWkEndpoints  
 

 Related Information

trpc_Init
trpc_status_t

650 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 45. TRPC Data Types

The TRPC interface defines the following data types:

 � trpc_handle_t
 � trpc_ifSpec_t
 � trpc_outOfBandMode_t
 � trpc_status_t
 � trpc_tranInfo_t

 Constants

The TRPC interface exports the constant TRPC_NULL_CALLBACK_DATA_ID. It can be used by any
callback registration function that takes an IN parameter representing the callback data ID as long as the
function does not expect or provide callback data.

 Cautions

The DCE threading model permits the cancelation of threads. However, TRPC assumes its work will not
be interrupted by such cancelations. Calls to TRPC must be made only from threads that have thread
cancelation disabled. Should a thread executing a TRPC function be canceled, the results are undefined.

 Copyright IBM Corp. 1989, 2001  651



 trpc_handle_t  
 

 trpc_handle_t

Defines a substitute handle.

 Description

The trpc_handle_t data type defines a pointer that is used by the application in the following situations:

� When writing interface definition files, the server writer must use this type in place of the handle_t
type that is exported by DCE RPC.

� All the wrappers for the DCE RPC runtime library functions that the Transactional RPC Service
(TRPC) interface exports take parameters of this type in place of the rpc_binding_handle_t type that
is exported by DCE RPC.

The application developer must use only the wrapper functions Chapter 26, “Wrapper Functions” on
page 181 describes to create, manipulate, and delete this data type.

652 Encina Toolkit Executive Guide and Reference  



  trpc_ifSpec_t
 

 trpc_ifSpec_t

Defines interface specifications.

 Synopsis
typedef struct {
char GfuncNameP;
char GinterfaceNameP;
rpc_if_handle_t ifId;
} trpc_ifSpec_t;

 Fields
funcNameP

Specifies a pointer to a string that contains the name of the operation that corresponds to a certain
RPC. The application must not modify or destroy this field.

interfaceNameP
Specifies a pointer to a string that contains the name of the interface in the interface definition file.
The application must not modify or destroy this field.

ifId
Specifies the DCE interface handle for the RPC being issued.

 Description

The trpc_ifSpec_t data type defines a structure that contains the name of the operation, the name of the
interface to which the operation belongs, and another structure that contains the version number and the
UUID of the interface. It is accessible from within the callback functions for the duration of an RPC. This
type appears as an IN parameter, passed by reference, in the following callback functions:

� after receiving reply
� after receiving request
� before sending reply
� before sending request
� on client exception
� on server exception

  Chapter 45. TRPC Data Types 653



 trpc_outOfBandMode_t  
 

 trpc_outOfBandMode_t

Defines an out-of-band mode.

 Synopsis
typedef enum {
TRPC_DEFAULT_OOB_MODE,
TRPC_PARALLEL_RPCS,
TRPC_SERIAL_RPCS,
TRPC_MAYBE_RPCS
} trpc_outOfBandMode_t;

 Enumerated Constants
TRPC_DEFAULT_OOB_MODE

Indicates that the Transactional RPC Service (TRPC) should use the most appropriate out-of-band
mode for the implementation. This allows TRPC to use the best mode based on platform, kind of
program (client versus server), other tuning parameters, or runtime load information.

TRPC_PARALLEL_RPCS
Indicates that TRPC should create multiple threads for delivering messages, one for each destination
specified in the comm-send upcall.

TRPC_SERIAL_RPCS
Indicates that TRPC should use the current thread to do serial RPCs with each of the destinations
specified in the comm-send upcall.

TRPC_MAYBE_RPCS
Indicates that TRPC should use the current thread to use maybe RPCs to deliver messages to each
destination specified in the comm-send upcall.

 Description

The trpc_outOfBandMode_t data type defines the global variable trpc_outOfBandMode. The value of
this variable determines the mechanism TRPC uses to deliver out-of-band TRAN messages. Out-of-band
TRAN messages deliver TRAN data asynchronously using separate messages rather than piggybacking
the data on application RPCs.

Applications can set the value of this variable depending upon their performance requirements. The
default value of this variable is TRPC_DEFAULT_OOB_MODE.

654 Encina Toolkit Executive Guide and Reference  



  trpc_status_t
 

 trpc_status_t

Defines a TRPC status code.

 Synopsis
typedef enum {...}
trpc_status_t;

 Description

The trpc_status_t data type defines a Transactional RPC Service (TRPC) interface status code. Most
functions in the interface return a value of type trpc_status_t. Any function that is successful returns the
value TRPC_SUCCESS. The encina_StatusToString function can be used to convert a status code into a
descriptive string.

See “TRPC Diagnostics” on page 720 for information about TRPC status codes.

 Related Information

encina_StatusToString

  Chapter 45. TRPC Data Types 655



 trpc_tranInfo_t  
 

 trpc_tranInfo_t

Defines TRAN information.

 Synopsis
typedef struct {
tran_tid_t localTid;
tran_applId_t remoteApplId;
int isTransactional;
} trpc_tranInfo_t;

 Fields
localTid

Specifies the transaction identifier of the transaction at the local application. The application must not
modify or destroy the value of this field.

remoteApplId
Specifies the application identifier of the remote application. The application must not modify or
destroy this field.

isTransactional
Specifies the transactional status of the RPC. A zero value indicates a nontransactional RPC; a
nonzero value indicates a transactional RPC.

 Description

The trpc_tranInfo_t data type defines a structure that contains the transaction identifier and the
application identifier of the remote application. It is accessible from within the callback functions during the
duration of an RPC.

This type appears as an IN parameter, passed by reference, in the following callback functions:

� after receiving reply
� after receiving request
� before sending reply
� before sending request
� on client exception
� on server exception

656 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 46. X/Open TX Interface Functions

The Encina X/Open TX Interface provides functions that an application program can use to open and
close resource managers43, start and end global transactions, direct the completion of transactions, and
obtain information about the status of a transaction. The interface implements the preliminary specification
from X/Open described in Distributed Transaction Processing.

The Encina TX Interface is intended as an alternative to Transactional-C (Tran-C); within a single
application process, you must use either Tran-C or TX exclusively.

Note:  Differences between the X/Open specification and the Encina implementation are described in the
C function descriptions. For additional information, refer to the X/Open TX specification. COBOL
interfaces are not supported on z/OS.

 Header Files

The file tx/tx.h contains the TX Interface declarations; this file must be included in any C application that
uses the TX Interface functions. The file tx/tx_extensions.h contains structure and data type declarations
the extensions to the TX Interface use.

Standard TX Functions

The TX Interface exports standard functions for the following types of operations:

� Opening and closing resource managers
 – tx_close
 – tx_open

� Beginning and ending transactions
 – tx_begin
 – tx_commit
 – tx_rollback

� Setting and retrieving transaction information
 – tx_info
 – tx_set_commit_return
 – tx_set_transaction_control
 – tx_set_transaction_timeout

Encina TX Extension Functions

The TX Interface for Encina provides additional functions that are not part of the X/Open TX specification.
The TX Interface exports extended functions for the following types of operations:

 � Nesting transactions
 – tx_allow_nesting

� Setting and retrieving abort information
 – tx_get_rollback_code

43 Interface is provided for completeness, but z/OS does not provide TM-XA support (or Encina Server Core support) to make
operations.

44 The Transaction Manager-XA Service (TM-XA) is not included in the z/OS Encina Toolkit Executive.

 Copyright IBM Corp. 1989, 2001  657



  
 

 – tx_get_rollback_string
 – tx_set_rollback_code
 – tx_set_rollback_string

� Dumping the state of TX
 – tx_DumpState

� Registering upcalls with the Transaction Manager-XA Service
 – tx_RegisterXaUpcalls44

See “TX Diagnostics” on page 730 for information about abort codes.

658 Encina Toolkit Executive Guide and Reference  



  tx_allow_nesting
 

 tx_allow_nesting

Allows nested TX transactions.

 Synopsis
#include <tx/tx.h>

#include <tx/tx_extensions.h>

int tx_allow_nesting()

 Description

An application calls the tx_allow_nesting function to enable the use of nested transactions with the TX
Interface. The tx_allow_nesting function must be called before any tx_open function calls are made.

After the tx_allow_nesting function is called, the behavior of other TX functions changes as follows:

� The tx_begin function allows the creation of nested transactions. When the tx_begin function is
called within a transaction, a subtransaction is started.

� The tx_commit and tx_rollback functions affect only the current transaction. A call to either function
within a subtransaction completes only that subtransaction and, if chaining is enabled, starts a new
subtransaction.

The tx_allow_nesting function returns TX_PROTOCOL_ERROR if the tx_open function has already been
called. This function is an extension of the TX interface.

 Return Values
TX_OK
TX_PROTOCOL_ERROR

 Related Information

tx_begin
tx_commit
tx_open
tx_rollback

  Chapter 46. X/Open TX Interface Functions 659



 tx_begin  
 

 tx_begin

Begins a global transaction.

 Synopsis
#include <tx/tx.h>

int tx_begin()

 Description

The tx_begin function begins a transaction and associates the thread that invoked the function with the
new transaction. Other threads within the application are not affected. After the tx_begin function has
been called, the threadTid_Lookup function can be used to obtain the transaction identifier (TID).

If no transaction is already associated with the invoking thread when the tx_begin function is called, the
function creates a new top-level transaction and associates the transaction with the thread. If a
transaction is already associated with the invoking thread, the tx_begin function returns the
TX_PROTOCOL_ERROR status code.

For Nested Transactions:  If a transaction is already associated with the invoking thread and
nesting is enabled (with the tx_allow_nesting function), the tx_begin function creates a subtransaction,
whose parent is the transaction currently associated with the thread, and associates the subtransaction
with the thread.

 Return Values
TX_OK
TX_OUTSIDE
TX_PROTOCOL_ERROR
TX_ERROR
TX_FAIL

 Related Information

threadTid_Lookup
tx_allow_nesting

660 Encina Toolkit Executive Guide and Reference  



  tx_close
 

 tx_close

Closes the Encina resources for the application.

 Synopsis
#include <tx/tx.h>

int tx_close()

 Description

The tx_close function closes the TX Interface. This function affects all existing threads within an Encina
application.

As per the X/Open specification, if called within a transaction, the tx_close function fails and returns
TX_PROTOCOL_ERROR. The tx_close function also returns TX_PROTOCOL_ERROR if called while any TX
transactions are outstanding in any thread in the application.

If called by a manager function within the scope of a transactional RPC, the tx_close function returns
TX_PROTOCOL_ERROR. After the tx_close function has closed TX, subsequent transactional RPCs are
rejected until a call to the tx_open function reopens TX.

 Return Values
TX_OK
TX_PROTOCOL_ERROR
TX_ERROR
TX_FAIL

 Related Information

tx_open

  Chapter 46. X/Open TX Interface Functions 661



 tx_commit  
 

 tx_commit

Commits a global transaction.

 Synopsis
#include <tx/tx.h>

int tx_commit()

 Description

The tx_commit function attempts to commit the transaction associated with the thread that invokes the
function. Other threads within the application are not affected.

Only the initiator of a transaction can call the tx_commit function to resolve (terminate and determine the
outcome of) a transaction. The initiator is the thread that created the transaction using the tx_begin
function. When a thread that did not initiate the transaction calls the tx_commit function, the status code
TX_PROTOCOL_ERROR is returned. (Note that the transaction can still abort even though the initiator calls
tx_commit.)

The behavior or the tx_commit function also depends on whether transactions are chained. Chaining45

affects the behavior of resolved transactions as follows:

� If chaining is disabled, the association between the transaction and the thread ends.

� If chaining is enabled, a new top-level transaction is created and becomes associated with the thread.

The return values of the tx_commit function differ slightly from the X/Open specification for transactions
that are heuristically completed. When a transaction is heuristically completed and its heuristic outcome
does not match the distributed outcome, the transaction may have been partially committed and partially
rolled back. In the X/Open specification, different values are returned if this result is definite or only
suspected. Because the Encina Transaction Service does not make this distinction, neither can TX.
Therefore, the tx_commit function returns the same value (either TX_HAZARD or TX_HAZARD_NO_BEGIN)
regardless of whether this result is definite. If chaining is enabled, a return value of TX_HAZARD also
indicates that a new transaction is started, and a return value of TX_HAZARD_NO_BEGIN indicates that a new
transaction could not be started; if chaining is not enabled, only TX_HAZARD can be returned.

For Nested Transactions:  When nested transactions are enabled, whether the transaction is a
top-level transaction or a subtransaction also affects the behavior of the tx_commit function. If the
transaction is a top-level transaction (or a transaction that came in on a TRPC), the behavior is the same
as for transactions that are not nested. If the transaction is a subtransaction, the behavior of tx_commit
differs with respect to how associations are made after the subtransaction resolves. The tx_commit
function makes the following associations for resolved subtransactions, based on whether chaining is
enabled:

� If chaining is disabled, the parent transaction becomes associated with the thread.

� If chaining is enabled, a sibling transaction is created and becomes associated with the thread.

45 Chaining is not supported for z/OS ephemeral clients.

662 Encina Toolkit Executive Guide and Reference  



  tx_commit
 

 Return Values
TX_OK
TX_NO_BEGIN
TX_ROLLBACK
TX_ROLLBACK_NO_BEGIN
TX_HAZARD
TX_HAZARD_NO_BEGIN
TX_PROTOCOL_ERROR
TX_FAIL

 Related Information

tx_begin
tx_rollback

  Chapter 46. X/Open TX Interface Functions 663



 tx_get_rollback_code  
 

 tx_get_rollback_code

Retrieves the last abort code.

 Synopsis
#include <tx/tx.h>

#include <tx/tx_extensions.h>

int tx_get_rollback_code(
OUT uuid_t GformatUuidP
OUT long GabortCode)

 Parameters
formatUuidP

Returns a pointer to a format UUID.

abortCode
Returns a pointer to an abort code.

 Description

The tx_get_rollback_code function retrieves the abort code and format UUID for the last transaction that
aborted. The abort code is returned in the abortCode parameter and the format UUID is returned in the
formatUuidP parameter.

This function is an extension to the TX interface.

 Return Values
TX_OK
TX_ERROR

 Related Information

tx_get_rollback_string
tx_set_rollback_code
tx_set_rollback_string

664 Encina Toolkit Executive Guide and Reference  



  tx_get_rollback_string
 

 tx_get_rollback_string

Retrieves the last abort string.

 Synopsis
#include <tx/tx.h>

#include <tx/tx_extensions.h>

char Gtx_get_rollback_string()

 Description

The tx_get_rollback_string function retrieves the last abort string from the TX transaction associated with
the calling thread. The function returns a pointer to an abort string if an associated transaction aborted
with an abort string. The function returns NULL if TX is not open, if no associated transaction has
aborted, or if the last associated transaction to abort did not have an abort string.

The returned abort code pointer is valid until the next call to tx_get_rollback_string or until the invoking
thread exits, whichever comes first.

This function is an extension to the TX interface.

 Related Information

tx_get_rollback_code
tx_set_rollback_code
tx_set_rollback_string

  Chapter 46. X/Open TX Interface Functions 665



 tx_info  
 

 tx_info

Retrieves current transaction information.

 Synopsis
#include <tx/tx.h>

int tx_info(
OUT TXINFO Ginfo)

 Parameters
info

Returns a pointer to a TXINFO structure. The TXINFO structure is described in the X/Open
specification, Distributed Transaction Processing: The TX (Transaction Demarcation) Specification.

 Description

The tx_info function obtains information about the transaction currently associated with the thread that
calls the function. The tx_info function stores the transaction characteristics for the current thread in the
when_return, transaction_control, and transaction_timeout fields of the TXINFO structure to which the info
parameter points. The state of the current transaction is stored in the transaction_state field of the
structure and can be examined to check whether the transaction is still active or marked as rollback-only;
unlike transaction characteristics, the transaction state is not specific to the current thread.

If the Encina Transaction Manager-XA Service (TM-XA)46 has been initialized, the tx_info function stores
the XA transaction identifier (XID) that TM-XA defines in the structure to which the info parameter points.
Otherwise, the tx_info function generates an XID as follows:

� formatID is 113577 (the Encina format identifier).

� gtrid is the Encina Global Transaction Identifier (GTID).

� bqual is a byte of 0 followed by the application identifier.

The tx_info function returns 1 if the caller is in transaction mode, and it returns 0 if the caller is not in
transaction mode.

 Return Values
1
B
TX_PROTOCOL_ERROR
TX_FAIL

46 The Transaction Manager-XA Service (TM-XA) is not included in the z/OS Encina Toolkit Executive.

666 Encina Toolkit Executive Guide and Reference  



  tx_info
 

 Related Information

tx_set_commit_return
tx_set_transaction_control
tx_set_transaction_timeout

  Chapter 46. X/Open TX Interface Functions 667



 tx_open  
 

 tx_open

Opens the Encina resources for the application.

 Synopsis
#include <tx/tx.h>

int tx_open()

 Description

The tx_open function opens the TX Interface. This function affects all existing threads within an Encina
application.

The tx_open function automatically initializes the Transaction Service, the Thread-to-Tid Mapping Service,
and the Transactional RPC Service modules of the Encina Toolkit. If the application does not use any
other Encina Toolkit modules, no additional Encina Toolkit initialization is necessary.

Additional initialization should be performed based on the requirements of the application as follows:

� If the application requires a special environment for the Encina Transaction Service, call the
tran_SpecialEnvironment function before calling the tx_open function. The tx_open function
internally calls the tran_Init, trpc_Init, and tran_Ready functions.

� If the application is using other Encina Toolkit components, initialize these components according to
their requirements. Call the tx_open function at any point after calling the tran_Init function. If the
application uses TM-XA,46 the tmxa_Init function must be called before the tx_open function. Note
that using both Transactional-C and the TX Interface in the same application process is not
recommended. See Chapter 5, “Transactional-C Concepts” on page  39 for more information.

 Return Values
TX_OK
TX_ERROR
TX_FAIL

 Related Information

tran_Init
tran_Ready
tran_SpecialEnvironment
trpc_Init
tx_close

668 Encina Toolkit Executive Guide and Reference  



  tx_RegisterXaUpcalls
 

 tx_RegisterXaUpcalls

Registers upcalls to TM-XA.

 Synopsis
#include <tx/tx.h>

#include <tx/tx_extensions.h>

int tx_RegisterXaUpcalls(
IN void (GupcallGetXid)(),
IN int (GupcallOpenRms)(),
IN int (GupcallCloseRms)()

 )

 Parameters
upcallGetXid

Specifies an upcall which translates a transaction identifier to an XID.

upcallOpenRms
Specifies an upcall which opens resource managers.

upcallCloseRms
Specifies an upcall which closes resource managers.

 Description

The tmxa_Init function calls the tx_RegisterXaUpcalls function exactly once. The tx_RegisterXaUpcalls
function should be called after the tran_Init function, but before the tx_open function. This function and
the upcalls that it registers are intended for use by the Transaction Manager-XA Service (TM-XA46) only,
and application programs should not use them.

The tx_RegisterXaUpcalls function takes three function pointers as parameters. The tx_info function
calls the function the upcallGetXid parameter specifies to translate a Encina transaction identifier to an XA
transaction identifier (XID). The tx_open function calls the function the upcallOpenRms parameter
specifies to open all resource managers associated with the application. The tx_close function calls the
function the upcallCloseRms parameter specifies to close all resource managers associated with the
application.

The tx_RegisterXaUpcalls function returns TRUE if it is successful or FALSE if the tx_open function has
already been called.

This function is an extension to the TX interface.

Get-XID Upcall: The tx_info function calls the function the upcallGetXid parameter specifies to
translate an Encina transaction identifier to an XID. The value of the transaction identifier passed as the
first argument is translated and then stored in the structure to which the second argument points.

  Chapter 46. X/Open TX Interface Functions 669



 tx_RegisterXaUpcalls  
 

Open-resource-manager Upcall: The tx_open function calls the function the upcallOpenRms
parameter specifies to open all resource managers associated with the application. The upcall returns one
of the following values:

TX_ERROR

TX_OK

TX_OUTSIDE

Close-resource-manager Upcall: The function specified by the upcallOpenRms parameter is
called by the tx_close function to close all resource managers associated with the application. The upcall
returns one of the following values to indicate success or failure:

TX_ERROR

TX_OK

 Notes

An ephemeral client should not use this API. (Doing so produces incorrect results.)

 Related Information

tmxa_Init
tran_Init
tx_close
tx_info
tx_open

670 Encina Toolkit Executive Guide and Reference  



  tx_rollback
 

 tx_rollback

Rolls back a global transaction.

 Synopsis
#include <tx/tx.h>

int tx_rollback()

 Description

The tx_rollback function aborts the transaction associated with the thread that invokes the function.
Other threads within the application are not affected. If an abort reason is set for the transaction before
the tx_rollback function is called, that abort reason can be retrieved after the tx_rollback function is
called. See “TRAN Abort Reasons” on page 712 for more information on retrieving abort reasons.

When the initiator of a transaction calls the tx_rollback function, the transaction is resolved (it is
terminated and its outcome is determined). The initiator is the thread that created the transaction using
the tx_begin function or through chaining. If a thread that did not initiate the transaction calls the
tx_rollback function, the transaction is marked as aborted, but it is not resolved, and the function returns
TX_OK; the thread that called tx_rollback remains associated with the unresolved transaction. No work is
actually undone until the initiator of an unresolved transaction calls either tx_commit or tx_rollback.

The behavior or the tx_rollback function also depends on whether transactions are chained. Chaining47

affects the behavior of resolved transactions as follows:

� If chaining is disabled, the association between the transaction and the thread ends.

� If chaining is enabled, a new top-level transaction is created and becomes associated with the thread.

The return values for the tx_rollback function differ slightly from the X/Open specification for transactions
that are heuristically completed. When a transaction is heuristically completed and its heuristic outcome
does not match the distributed outcome, the transaction may have been partially committed and partially
rolled back. In the X/Open specification, different values are returned if this result is definite or only
suspected. Because the Encina Transaction Service does not make this distinction, neither can TX.
Therefore, the tx_rollback function returns the same value (either TX_HAZARD or TX_HAZARD_NO_BEGIN)
regardless of whether this result is definite. If chaining is enabled, a return value of TX_HAZARD also
indicates that a new transaction is started, and a return value of TX_HAZARD_NO_BEGIN indicates that a new
transaction could not be started; if chaining is not enabled, only TX_HAZARD is returned.

In addition, the tx_rollback function does not return the TX_COMMITTED or TX_COMMITTED_NO_BEGIN codes as
described in the X/Open specification. This is because if TRAN is instructed to use the tx_rollback
function to abort a transaction, and a participant in the transaction reports that it heuristically committed its
work on behalf of the transaction, TRAN assumes that the heuristic outcome does not match the
distributed outcome, because TRAN may have already instructed other participants to abort.

47 Chaining is not supported for z/OS ephemeral clients.

  Chapter 46. X/Open TX Interface Functions 671



 tx_rollback  
 

For Nested Transactions:  When nested transactions are enabled, whether the transaction is a
top-level transaction or a subtransaction also affects the behavior of the tx_rollback function. If the
transaction is a top-level transaction (or a transaction that came on a TRPC), the behavior of the
tx_rollback function is the same as for transactions that are not nested. If the transaction is a
subtransaction, the behavior of tx_rollback differs in how associations are made after the subtransaction
resolves. The tx_rollback function makes the following associations for resolved subtransactions, based
on whether chaining is enabled:

� If chaining is disabled, the parent transaction becomes associated with the thread.

� If chaining is enabled, a sibling transaction is created and becomes associated with the thread.

 Return Values
TX_OK
TX_NO_BEGIN
TX_HAZARD
TX_HAZARD_NO_BEGIN
TX_PROTOCOL_ERROR
TX_FAIL

 Related Information

tx_begin
tx_commit

672 Encina Toolkit Executive Guide and Reference  



  tx_set_commit_return
 

 tx_set_commit_return

Sets a return point of commit.

 Synopsis
#include <tx/tx.h>

int tx_set_commit_return(
IN COMMIT_RETURN when_return)

 Parameters
when_return

Indicates the point at which a call to the tx_commit function should return in a two-phase commit
protocol: when the commit is completed or when the commit is logged.

 Description

The tx_set_commit_return function sets the commit_return characteristic for the calling thread only. New
threads do not inherit the characteristics of the parent thread.

The value of the when_return parameter must be either TX_COMMIT_DECISION_LOGGED or
TX_COMMIT_COMPLETED. The default value of the commit_return characteristic is TX_COMMIT_COMPLETED.

Because subtransactions are not logged until the top-level transaction commits, setting this characteristic
affects only top-level transactions. This function, therefore, has no effect if a manager function calls it
within the scope of a transactional RPC.

 Return Values
TX_OK
TX_NOT_SUPPORTED
TX_EINVAL
TX_PROTOCOL_ERROR
TX_FAIL

 Related Information

tx_commit
tx_info

  Chapter 46. X/Open TX Interface Functions 673



 tx_set_rollback_code  
 

 tx_set_rollback_code

Sets the abort code for rolled-back transactions.

 Synopsis
#include <tx.h>

#include <tx/tx_extensions.h>

int tx_set_rollback_code(
IN uuid_t GformatUuidP,
IN int abortCode)

 Parameters
formatUuidP

Specifies a pointer to a format UUID.

abortCode
Specifies an abort code.

 Description

The tx_set_rollback_code function sets the abort code and format UUID for the next transaction that
aborts. The abortCode parameter specifies the abort code, the formatUuidP parameter specifies the
format UUID.

This function is an extension to the TX interface.

 Return Values
TX_OK
TX_PROTOCOL_ERROR
TX_EINVAL
TX_ROLLBACK

 Related Information

tx_get_rollback_code
tx_get_rollback_string
tx_set_rollback_string

674 Encina Toolkit Executive Guide and Reference  



  tx_set_rollback_string
 

 tx_set_rollback_string

Sets the abort string for a transaction.

 Synopsis
#include <tx.h>

#include <tx/tx_extensions.h>

int tx_set_rollback_string(
IN char GabortString)

 Parameters
abortString

Specifies a null-terminated string describing the reason for aborting.

 Description

The tx_set_rollback_string function sets the abort string for the next transaction that aborts to the value
of the abortReason parameter. The tx_get_rollback_string function can retrieve the abort string after the
tx_rollback has aborted the transaction.

This function is an extension to the TX interface.

 Return Values
TX_OK
TX_PROTOCOL_ERROR
TX_EINVAL
TX_ROLLBACK

 Related Information

tx_rollback
tx_get_rollback_code
tx_get_rollback_string
tx_set_rollback_code

  Chapter 46. X/Open TX Interface Functions 675



 tx_set_transaction_control  
 

 tx_set_transaction_control

Selects a chaining mode.

 Synopsis
#include <tx/tx.h>

int tx_set_transaction_control(
IN TRANSACTION_CONTROL control)

 Parameters
control

Indicates if the tx_commit and tx_rollback functions start new transactions before returning to their
caller.

 Description

The tx_set_transaction_control function sets the transaction_control characteristic for the calling thread
only. New threads do not inherit the characteristics of the parent thread.

The value of the control parameter must be either TX_CHAINED or TX_UNCHAINED. The default value of the
transaction_control characteristic is TX_UNCHAINED.

If a manager function calls the tx_set_transaction_control function within the scope of a transactional
RPC, the function sets the characteristic, but affects only subtransactions the manager function has
created; it does not affect the transaction on the incoming RPC.

 Notes

This is not supported on z/OS ephemeral client.

 Return Values
TX_OK
TX_EINVAL
TX_PROTOCOL_ERROR
TX_FAIL

 Related Information

tx_commit
tx_info
tx_rollback

676 Encina Toolkit Executive Guide and Reference  



  tx_set_transaction_timeout
 

 tx_set_transaction_timeout

Sets a timeout value for the transaction.

 Synopsis
#include <tx/tx.h>

int tx_set_transaction_timeout(
IN TRANSACTION_TIMEOUT timeout)

 Parameters
timeout

Specifies the number of seconds allowed for the transaction to complete before the transaction times
out.

 Description

The tx_set_transaction_timeout function sets the transaction_timeout characteristic for the calling thread
only. New threads do not inherit the characteristics of the parent thread.

The maximum value allowed for the timeout parameter is system-dependent. The timeout variable is
defined as type long, but its maximum value may be less than the maximum value that type allows.

If a manager function calls the tx_set_transaction_timeout function within the scope of a transactional
RPC, the function sets the characteristic, but affects only subtransactions the manager function has
created; it does not affect the timeout of the transaction on the incoming RPC.

 Return Values
TX_OK
TX_EINVAL
TX_PROTOCOL_ERROR
TX_FAIL

 Related Information

tx_info

  Chapter 46. X/Open TX Interface Functions 677



 tx_DumpState  
 

 tx_DumpState

Dumps the state of the TX Interface.

 Synopsis
#include <tx/tx.h>

void tx_DumpState()

 Description

The tx_DumpState function dumps the state of the TX Interface at an application for the calling thread
only. The dump contains the global state of the TX Interface, the transaction characteristics, and the
thread state, as shown in the sample output that follows.

 Output
1 D TX state dump for thread 1
1 D
1 D tx_globals:
1 D initialized=1 opened=1 nestingAllowed=B
1 D uncompletedTransactionCount=1
1 D threadSlot=64 txSlot=65 upcallGetXid=B
1 D upcallOpenRms=B upcallCloseRms=B
1 D
1 D txState:
1 D whenReturn=TX_COMMIT_COMPLETED
1 D transactionControl=TX_UNCHAINED
1 D timeout=B
1 D
1 D threadState:
1 D refCount=2
1 D lastAbortReasonStatus=The operation completed successfully.
1 D lastAbortReason.code=ENC-txx-BBB2: tx_rollback was called.
1 D stack:
1 D 1e8B58: tid=1BBBB abortReasonSet=1 initiator=1 alarmId=B
1 D transactionState=TX_ACTIVE
1 D abortReasonStatus=ENC-enc-1B31: The abort reason was not set.
1 D abortReason.code=The operation completed successfully.
1 D
1 D End of TX state dump

678 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 47. General Functions and Commands

This chapter describes the following:

 � encina_StatusToString
 � encina_StatusToSymbol
 � encina_StringToStatus
 � encina_SymbolToStatus
 � tidl

 Copyright IBM Corp. 1989, 2001  679



 encina_StatusToString  
 

 encina_StatusToString

Converts a status code to an internationalized string.

 Synopsis
unsigned long encina_StatusToString(

IN unsigned long status,
IN unsigned int bufferLength,
OUT char GbufferP)

 Parameters
status

Specifies a return code from an Encina interface.

bufferLength
Specifies the length (in bytes) of bufferP.

bufferP
Returns a user-allocated buffer to return null-terminated string.

 Description

The encina_StatusToString function converts any Encina return code into an internationalized string.
The returned string is null-terminated. The data copied into the buffer cannot exceed
ENCINA_MAX_STATUS_STRING_SIZE (currently 1024 bytes). To help identify the return code, a prefix is
returned with the string, for instance: “VOL-123: Mensaje en espan˜ol no esta´ disponible.”

When the status code provided in the status parameter is a recognized Encina status code, the function
will return successfully. A nonzero return value indicates that the function failed to translate the message.

 Return Values
ENCINA_STS_CATOPEN_FAILED
ENCINA_STS_UNKNOWN_FACILITY
ENCINA_STS_UNKNOWN_ERROR
ENCINA_STS_BUFFER_TOO_SMALL

 Related Information

encina_StatusToSymbol
encina_StringToStatus
encina_SymbolToStatus

680 Encina Toolkit Executive Guide and Reference  



  encina_StatusToSymbol
 

 encina_StatusToSymbol

Converts a status code to a symbolic constant.

 Synopsis
unsigned long encina_StatusToSymbol(

IN unsigned long status,
IN unsigned int bufferLength,
OUT char GbufferP)

 Parameters
status

Specifies a return code from an Encina or DCE interface.

bufferLength
Specifies the length (in bytes) of bufferP.

bufferP
Identifies a buffer in which to store a return string.

 Description

The encina_StatusToSymbol function converts a numeric return code into a symbolic name for that
return code. The data copied into the buffer cannot exceed the value of the
ENCINA_MAX_STATUS_STRING_SIZE constant.

If a translation is found for the status code provided in the status parameter, the function returns a 0
(zero). If the function cannot translate the status code into a symbolic name, it returns a nonzero value.

 Return Values
ENCINA_STS_BUFFER_TOO_SMALL
ENCINA_STS_CATOPEN_FAILED
ENCINA_STS_UNKNOWN_FACILITY
ENCINA_STS_UNKNOWN_ERROR

 Related Information

encina_StatusToString
encina_StringToStatus
encina_SymbolToStatus

  Chapter 47. General Functions and Commands 681



 encina_StringToStatus  
 

 encina_StringToStatus

Converts an internationalized string to a status code.

 Synopsis
unsigned long encina_StringToStatus(
 IN char Gstring,

OUT unsigned long GstatusP)

 Parameters
string

Specifies an internationalized string.

statusP
Returns an Encina return code.

 Description

The encina_StringToStatus function inverts the result of a call to the encina_StatusToString function.
That is, it converts a string into an Encina return code based on the language-independent symbolic
coding at the beginning of an error translation (for example, ENC-tra-0001, DCE-rpc-0004).

If the encina_StringToStatus function returns zero, then the string translation was recognized and the
appropriate status code is returned in the statusP parameter. A nonzero status indicates that the string is
improperly formed or cannot be translated.

 Return Values
ENCINA_STS_BAD_FORMAT

 Related Information

encina_StatusToString
encina_StatusToSymbol
encina_SymbolToStatus

682 Encina Toolkit Executive Guide and Reference  



  encina_SymbolToStatus
 

 encina_SymbolToStatus

Converts a symbolic constant to a status code.

 Synopsis
unsigned long encina_SymbolToStatus(

IN char Gstring,
OUT unsigned long GstatusP)

 Parameters
string

Specifies the symbolic name of a return code.

statusP
Specifies the address to receive the corresponding return code.

 Description

The encina_SymbolToStatus function converts a symbolic name for an Encina or DCE return code into
the numeric value of that return code.

If a symbolic name provided in the string parameter is a recognized symbolic name, the function returns a
0 (zero). If the function cannot translate the status code into a symbolic name, it returns a nonzero value.

 Return Values
ENCINA_STS_CATOPEN_FAILED
ENCINA_STS_UNKNOWN_FACILITY

 Related Information

encina_StatusToString
encina_StatusToSymbol
encina_StringToStatus

  Chapter 47. General Functions and Commands 683



 tidl  
 

 tidl

Invokes the TIDL compiler.

 Synopsis
tidl [-stub {none | client | server | both}] [-out output_file_directory]
[-scstub shadow_client_stub_file] [-smstub shadow_manager_stub_file] [-cswtch
client_switch_file] [-idl IDL_file] [-header header_file]
[-I include_path] [-no_cpp]
[-cpp_cmd cpp_path_name] [-cpp_opt cpp_options]
[-Dname[=value]] [-Uname]
[-ots] [-ots_cstub ots_shadow_client_stub_file] [-ots_sstub
ots_shadow_manager_stub_file] [-ots_cheader ots_client_header_file] [-ots_sheader
ots_server_header_file] [-dceOnlyRpc] [-dceOnlyUuid uuid] [-dceOnlyRpc_idl
idl_file]
[-dceOnlyRpc_mstub manager_stub_file] [-dceOnlyRpc_mepv manager_epv_file]
[-mon client] [-fs file_system] [-txrpc_semantics] [-idl_customized_handles]
[-noExceptions]
[-prefix prefix_name] [-E number] [-version] [-h] filename

Note:  The following arguments are not for ephemeral clients (but you can use them to generate files for
other systems):

 � –stub server
 � –stub both
 � –cswtch
� –ots with any of its suboptions

 � –dceOnlyRPC_mstub
 � –dceOnlyRPC_mepv
 � –mon client
 � –fs

 Arguments

-stub file_type
Specifies which stub files to generate. The header file is always produced, regardless of
which file type is specified as the argument. The following are the possible file types:

� none – None of the stub files are produced. It is useful if the user wishes only the
header file to be produced.

� client – Only the client stubs and the client switch files are produced.

� server – Only the server stubs are produced.48

� both – Both the client and the server stubs files are produced.49

If you omit the -stub option, the file type used for generating stub files is both.

-out output_file_directory
Specifies the name of the directory where the output files are placed. To override this
option, the user can use any of the other options that specify output files, using complete
path names. The default output directory is the user's current directory.

48 The –stub server option is not for ephemeral clients.

49 The –stub both option is not for ephemeral clients.

684 Encina Toolkit Executive Guide and Reference  



  tidl
 

-scstub shadow_client_stub_file
Specifies the name of the shadow client stub file TIDL produces. If the user specifies a
complete path name, the directory specified by the -out switch is not used. The default
name of the shadow client stub file is formed by replacing the extension of the TIDL file with
the suffix _client.c. For example, if the name of the TIDL file is jill.tidl, the default
name of the shadow client stub file is jill_client.c.

-smstub shadow_manager_stub_file
Specifies the name of the shadow manager file produced by TIDL. If the user specifies a
complete path name, the directory specified by the -out switch is not used. The default
name of the shadow manager file is formed by replacing the extension of the TIDL file with
the suffix _manager.c. For example, if the name of the TIDL file is jill.tidl, the default
name of the shadow manager file is jill_manager.c.

-cswtch client_switch_file50

Specifies the name of the client switch file produced by TIDL. If the user specifies a
complete path name, the directory specified by the -out switch is not used. The default
name of the client switch file is formed by replacing the extension of the TIDL file with the
suffix _cswtch.c. For example, if the name of the TIDL file is jill.tidl, the default name of
the client switch file is jill_cswtch.c.

-idl IDL_file Specifies the name of the Interface Definition Language (IDL) file produced by TIDL. If the
user specifies a complete path name, the directory specified by the -out switch is not used.
The default name of the IDL file is formed by adding the prefix _ (underscore) to the name of
the TIDL file and replacing the extension .tidl with .idl. For example, if the name of the TIDL
file is jill.tidl, the default name of the client switch file is _jill.idl.

-header header_file
Specifies the name of the header file produced by TIDL. If the user specifies a complete
path name, the directory specified by the -out switch is not used. The default name of the
header file produced by TIDL is formed by replacing the extension of the TIDL file with the .h
extension. For example, if the name of the TIDL file is jill.tidl, then the default name of
the header file is jill.h.

-I include_path
Specifies the path where imported TIDL files can be found. The TIDL compiler searches for
files in the current working directory first, and then in each directory specified with a separate
-I option.

-no_cpp Specifies that the C preprocessor is not to be invoked. If this switch is not present on the
tidl command line, tidl passes the TIDL input file, the corresponding Transactional Attribute
Configuration File (TACF), and each imported file through the C preprocessor; TIDL files that
contain C preprocessor directives (such as #ifdef) must be run through the C preprocessor.

-cpp_cmd cpp_path_name
Specifies a path name indicating the location of a C preprocessor. If this option is omitted,
the C preprocessor at the default location is used.

-cpp_opt cpp_options
Specifies additional options to be used by the C preprocessor. These options are added to
the command line used to invoke the C preprocessor.

-Dname[=value]
Defines a name and an optional value for a C preprocessor symbol.

50 The –cswtch option is not for ephemeral clients.

  Chapter 47. General Functions and Commands 685



 tidl  
 

-Uname Specifies that a value for a C preprocessor symbol should be undefined.

-ots51 Specifies that C++ files, rather than C files, should be generated for the interfaces described
in the TIDL file. The root of the TIDL file name is used to construct the default names for the
generated C++ stub and header files and the IDL file. For example, for a TIDL file named
account.tdl, the generated files are named accountTC.C (client stub file), accountTS.C
(server stub file), accountTC.H (client header file), accountTS.H (server header file), and
account.idl (IDL file). This option is available only for use with the DATA TYPE++>
interface.

-ots_cstub ots_shadow_client_stub_file
Specifies the name of the client shadow stub file produced by TIDL. If the user specifies a
complete path name, the directory specified for the -out switch is not used. This option can
be used only in conjunction with the -ots switch.

-ots_sstub ots_shadow_manager_stub_file
Specifies the name of the server shadow stub file produced by TIDL. If the user specifies a
complete path name, the directory specified by the -out switch is not used. This option can
be used only in conjunction with the -ots switch.

-ots_cheader ots_client_header_file
Specifies the name of the client header file produced by TIDL. If the user specifies a
complete path name, the directory specified by the -out switch is not used. This option can
be used only in conjunction with the -ots switch.

-ots_sheader ots_server_header_file
Specifies the name of the server header file produced by TIDL. If the user specifies a
complete path name, the directory specified by the -out switch is not used. This option can
be used only in conjunction with the -ots switch.

-dceOnlyRpc
Specifies that additional DCE-only RPC interface and server stub files are to be created.
These additional files let you create DCE clients that can issue RPCs to Encina interfaces
exported by Encina Monitor52 application servers.

Note:  DCE-only RPC interfaces are intended to be used with Encina Monitor application
servers.

-dceOnlyUuid uuid
Specifies the interface UUID to be used for the DCE-only RPC interface. If this argument is
not used, TIDL looks for an interface UUID defined for the dceOnlyRpcUuid interface attribute
in the TIDL file; if this attribute is not defined, TIDL generates a new interface UUID.

-dceOnlyRpc_idl idl_file
Specifies the name used for the DCE-only RPC interface definition file produced by TIDL if a
name other than the default is desired. The default name of the interface definition file is
formed by replacing the extension of the TIDL file with the suffix _dceOnlyRpc.idl. For
example, if the name of the TIDL file is jill.tidl, the default name of the manager stub file
is jill_dceOnlyRpc.idl. This switch is valid only when used in conjunction with the
-dceOnlyRpc switch.

-dceOnlyRpc_mstub manager_stub_file53

Specifies the name used for the DCE-only RPC manager stub file produced by TIDL if a
name other than the default is desired. The default name of the manager stub file is formed

51 The –ots option (including its suboptions) is not for ephemeral clients.

52 The z/OS Encina Toolkit Executive does not include the Encina Monitor.

53 The –dceOnlyRpc_mstub option is not for ephemeral clients.

686 Encina Toolkit Executive Guide and Reference  



  tidl
 

by replacing the extension of the TIDL file with the suffix _dceOnlyRpc_manager.c. For
example, if the name of the TIDL file is jill.tidl, the default name of the manager stub file
is jill_dceOnlyRpc_manager.c. This switch is valid only when used in conjunction with the
-dceOnlyRpc switch.

-dceOnlyRpc_mepv manager_epv_file54

Specifies the name used for the DCE-only RPC manager entry point vector (EPV) file
produced by TIDL if a name other than the default is desired. The default name of the
manager EPV file is formed by replacing the extension of the TIDL file with the suffix
_dceOnlyRpc_mepv.c. For example, if the name of the TIDL file is jill.tidl, the default name
of the manager EPV file is jill_decOnlyRpc_mepv.c. This switch is valid only when used in
conjunction with the -dceOnlyRpc switch.

-mon client55

Generates special data structures that are required by applications using the interpretive
RPC facility of the Encina Monitor.

-fs file_system56

Specifies a file system for which file names generated by TIDL are to be valid. This option is
available only on systems that have length or format restrictions on file names. Valid file
systems include the following:

� fat – the FAT file system

� dos – equivalent to fat

-txrpc_semantics
Specifies that attributes specific to the TxRPC specification (the transaction_mandatory and
transaction_optional attributes) have been used in the input file and that the input file
should be parsed according to the semantics specified in the X/Open TX and TxRPC
documentation. See these documents for more information. Applications that use TIDL files
written according to TxRPC specifications should not use TRPC-specific data types such as
trpc_status_t and trpc_handle_t.

-idl_customized_handles
Prevents TIDL from using the customized_type_name_tranBind and
customized_type_name_tranUnBind calls for customized handles, as well as from
generating prototypes for these functions. Instead, TIDL uses the
customized_type_name_bind and customized_type_name_unbind calls used by the IDL
compiler, which may be preferred when using basic binding handles such as the DCE
handle, handle_t.

If this option is used, the following prototypes are generated in the header file:

 handle_t type_id_bind(customized_handle);
void type_id_unbind(customized_handle, handle_t);

For more information, see the z/OS DCE Application Development Guide: Introduction and
Style and z/OS DCE Application Development Guide: Core Components.

54 The –dceOnlyRpc_mepv option is not for ephemeral clients.

55 The –mon client option is not for ephemeral clients.

56 The –fs option is not for ephemeral clients.

  Chapter 47. General Functions and Commands 687



 tidl  
 

-noExceptions
Prevents the named exceptions defined for Encina system exceptions from being included in
generated IDL and ACF files. This switch is required only if the generated files will be
compiled with an earlier version of the IDL compiler that does not support named exceptions.

-prefix prefix_name
Specifies a prefix for the interface name in the generated .idl file. For example, if the TIDL
interface name is jill, and temp is specified as the prefix name, the interface name
generated for the IDL file is temp_jill; if the prefix option is omitted, the default interface
name generated for the IDL file is _jill.

-E number Specifies the maximum number of syntax errors tolerated by the TIDL compiler. The default
number of syntax errors allowed is 10. If the maximum number of syntax errors is exceeded,
the TIDL compiler exits.

-version Displays the current version of the TIDL generated stubs format. This option must be the
only argument specified on the tidl command line.

-h Displays a list of the available tidl command arguments. This option must be the only
argument specified on the tidl command line.

filename Specifies the name of the TIDL file. TIDL looks for the file in the current working directory if
a directory path is not specified. If a TIDL extension is not specified in the filename, TIDL
appends a TIDL extension to the name specified and looks for a file with that name. For
example, if the TIDL interface definition file is jill.tidl and jill is specified as the filename
argument to the tidl command, TIDL looks for a file named jill.tidl.

 Description

The tidl command invokes the TIDL compiler. The TIDL compiler preprocesses an interface definition file
written in TIDL and generates output files that include transactional semantics.

The tidl command requires the name of the TIDL interface definition file to preprocess as an argument.
TIDL expects the TIDL file name to have a TIDL extension. If you pass a filename argument to the tidl
command without including a TIDL extension, TIDL automatically appends a TIDL extension to the
argument and looks for a file with that name. For example, if the TIDL interface definition file is jill.tidl
and jill is specified as the filename argument to the tidl command, TIDL assumes jill.tidl as the name of
the TIDL interface definition file. The example file names used throughout this topic reflect the default
names generated by TIDL.

By default, TIDL accepts input files and generates output files with names that are valid on UNIX-type file
systems. The names generated for the default file system may violate the length and format restrictions
that other file systems place on file names, such as the 8.3 format imposed by the FAT file system used,
for example, by PC-DOS and OS/2. To specify that TIDL use file names that are valid for a file system
other than the default, the optional -fs option can be used. See Chapter 4, “TIDL” on page  23 for
information on the format of file names TIDL uses on various other file systems.

The tidl command also accepts several other optional arguments. Some of these arguments determine
which files are generated and where they are stored, which directories are searched for input files, and
what names are given to the output files generated by TIDL. Other arguments control the use of the C
preprocessor. Arguments to the -cpp_cmd, -cpp_opt, -D, -U, and -I options are used to construct the
command line for the C preprocessor.

In addition to the default set of output files generated by TIDL, a DCE-only RPC interface and associated
stub files can also be generated. These additional files allow you to create a DCE client that can issue

688 Encina Toolkit Executive Guide and Reference  



  tidl
 

nontransactional RPCs to an Encina Monitor server. Specifying the -dceOnlyRpc57 option on the tidl
command line generates a DCE-only RPC .idl file containing only the nontransactional subset of
operations defined in the .tidl file, as well as a DCE-only RPC stub file, manager EPV file, and ACF file.
Other options let the user specify names for DCE-only RPC output files and an interface UUID for the
DCE-only RPC interface. See Chapter 4, “TIDL” on page  23 for more information.

Alternately, TIDL can produce C++ stub and header files for use whit DATA TYPE++>. Specifying the -ots
option on the tidl command line generates C++ client and server shadow stub files, client and server
header files, and an IDL file for the interfaces described in the TIDL file. Other options enable the user to
specify names for output files. (Note that this can be created on z/OS and used on another system.)

 Notes

To avoid inconsistencies, specify the same values for the -no_cpp, -cpp_cmd, -cpp_opt, -D, -U, and -I
arguments for TIDL as you do for IDL.

 Examples

The following command compiles the transactional interface definition file jill.tidl, generating only the
server stub output files. The generated output files are placed in a subdirectory called server_output
located under the current directory.

% tidl -stub server -out ./server_output jill.tidl

The following command compiles the transactional interface definition file jill.tidl but does not run the
C preprocessor on the TIDL file. TIDL searches the include directory—a subdirectory of the current
parent directory—for files that can be imported. The generated IDL file is named jill2.idl and placed in
a subdirectory called idl_files under the parent directory of the current directory.

% tidl -no_cpp -I../include -idl ../idl_files/jill2.idl jill.tidl

The following command compiles the transactional interface definition file jill.tidl and also generates
the nontransactional interface files used for creating a DCE client application for an Encina Monitor server
application.

Note:  This can be created on z/OS and used on another system.

The UUID specified on the command line is used as the interface UUID for the DCE-only RPC interface;
this UUID overrides the one provided by the dceOnlyRpcUuid interface attribute (if any).

% tidl -dceOnlyRpc -dceOnlyUuid e9cB1d4a-Bc85-11ce-868a-B8BBB912c4a4 jill.tidl

The following command compiles the transactional interface definition file account.tidl, generating only
C++ output files for use with DATA TYPE++>.

Note:  This can be created on z/OS and used on another system.

% tidl -ots account.tidl

57 This option is not valid on z/OS.

  Chapter 47. General Functions and Commands 689



 tidl  
 

690 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 48. Trace Facility Functions

This chapter describes the following functions:

 � indentTrace
 � interpretTrace
 � trace_DumpRingBuffer
 � trace_FileUpcall
 � trace_FormatBuffer
 � trace_Register
 � trace_Unregister
 � traceListener
 � translateError
 � translateTraceId

 Copyright IBM Corp. 1989, 2001  691



 indentTrace  
 

 indentTrace
Indents nested functions in formatted trace output.

 Synopsis
indentTrace [-u] [file]

 Arguments
[-u]

Causes the output to be unbuffered.

[file]
Specifies an input file name.

 Description

The indentTrace program is a filter that takes formatted trace output and indents it so that each nested
function or event within a function is clearly visible. One way of formatting output is by using the
interpretTrace program.

The -u option may be used with indentTrace to cause output to be unbuffered.

 Examples

The following example indents output using the file trace.out as input:

% indentTrace trace.out

The following command uses the interpretTrace program and | (pipe) to format the binary file
EncinaTraceBuffer.3390, and send it through the indentTrace program:

% interpretTrace -fEncinaTraceBuffer.339B | indentTrace

 Output

The following is an example of indented output:

1 > ReadCMRuntimeRecords cmAd1.c tpm
1 > cmFs_ReadyByKey cmFs.c tpm
1 E Opened file mySfs/myCell_cellRuntime_v1_B.
1 > ConsKey cmFs.c tpm
1 < ConsKey cmFs.c tpm
1 > ConsRecord cmFs.c tpm
1 < ConsRecord cmFs.c tpm
1 > monUtil_StatusToString monUtil.c tpm
1 <R monUtil_StatusToString monUtil.c tpm -> 4BB1bd18
1 <R cmFs_ReadByKey cmFs.c tpm -> BBBBBBBB
1 <R ReadCMRuntimeRecords cmAd1.c tpm -> BBBBBBBB

692 Encina Toolkit Executive Guide and Reference  



  indentTrace
 

 Related Information

interpretTrace 

  Chapter 48. Trace Facility Functions 693



 interpretTrace  
 

 interpretTrace
Converts binary ring buffer files to human-readable format.

 Synopsis
interpretTrace [-rrep] [-mmode] [-spid] [-ffile] [–] [files...]

 Arguments
[-rrep]

Specifies the byte ordering used to represent unsigned longs in the binary ring buffer file. The rep
argument is a series of hexadecimal digits. The number of digits indicates the word size. The first
digit indicates the relative position of the least significant byte, with subsequent digits indicating the
position of increasingly more significant bytes, as in -r3210 for z/OS This option can be used to format
a ring buffer dump generated on a platform with a different unsigned long representation.

[-mmode]
Specifies the format mode of the output. The format mode controls the amount of information that is
displayed. The default format mode displays the thread ID, process ID, timestamp, trace ID, trace
class abbreviation, and message. A format mode of 0 displays only the thread ID, trace class
abbreviation, and message.

[-spid]
Specifies the process ID associated with a ring buffer file. This ID is used to produce the name of the
ring buffer file, as in EncinaTraceBuffer.pid.

[-ffile]
Specifies the name of an input file.

[–] Specifies the server's standard input (stdin) stream as an input file. By default, stdin is used as the
input file with interpretTrace unless other file names are specified on the command line. In that case,
– (dash) should be used to specify stdin along with other file names.

[files...]
Specifies one or more names of files to be used as input.

 Description

The interpretTrace program converts binary ring buffer into human-readable format. By default,
interpretTrace reads input from the server's standard input (stdin) stream and sends output to the
server's standard output (stdout) stream. You can use command options to specify input from other
sources. You can use the -s option to specify the process ID associated with a ring buffer dump or the -f
option to specify a file name. You can also specify multiple file names. You can use the – (dash) option
to specify stdin along with other file names. The -m option lets you specify a format mode for the output.
No white space is allowed between options and their associated arguments.

 Examples

The following command specifies a process ID, 3390, associated with a ring buffer dump. The process ID
is used to produce the file name EncinaTraceBuffer.3390, which is used as the input file.

% interpretTrace -s339B

The following command specifies the file name EncinaTraceBuffer.3390, which is used as the input file:

694 Encina Toolkit Executive Guide and Reference  



  interpretTrace
 

% interpretTrace -fEncinaTraceBuffer.339B

The following command uses a – (dash) to specify stdin along with file names ringbuffer.out and
EncinaTraceBuffer.3390, which are used as input files:

% interpretTrace – ringbuffer.out EncinaTraceBuffer.339B

 Output

The following is an example of output using a format mode of 0:

1 > ReadCMRuntimeRecords cmAd1.c tpm
1 > cmFs_ReadyByKey cmFs.c tpm
1 E Opened file mySfs/myCell_cellRuntime_v1_B.
1 > ConsKey cmFs.c tpm
1 < ConsKey cmFs.c tpm
1 > ConsRecord cmFs.c tpm
1 < ConsRecord cmFs.c tpm
1 > monUtil_StatusToString monUtil.c tpm
1 <R monUtil_StatusToString monUtil.c tpm -> 4BB1bd18
1 <R cmFs_ReadByKey cmFs.c tpm -> BBBBBBBB
1 <R ReadCMRuntimeRecords cmAd1.c tpm -> BBBBBBBB

Note:  You can use the indentTrace program (see page 692) to make this output more readable.

 Related Information

indentTrace 

  Chapter 48. Trace Facility Functions 695



 trace_DumpRingBuffer  
 

 trace_DumpRingBuffer

Dumps contents of tracing buffer to trace destination.

 Synopsis
void trace_DumpRingBuffer(
 void GfileStream,
 int formatOutput)

 Parameters
fileStream

location to which the contents of the ring buffer should be written. This argument should be cast as a
FILE * pointer.

formatOutput
an integer, used as a Boolean value, which determines whether the contents of the ring buffer should
be written in formatted or binary format. If TRUE, the output is formatted in the same fashion as seen
in the sample trace output “Examples of Encina Messages” on page 225.

 Description

The Encina tracing facility provides the trace_DumpRingBuffer function to enable developers to
programmatically write the current contents of the trace ring buffer to a specific location. In most cases,
registering upcalls for tracing events eliminates the need to explicitly display or monitor the contents of the
ring buffer where trace output is stored.

696 Encina Toolkit Executive Guide and Reference  



  trace_FileUpcall
 

 trace_FileUpcall

Sets trace output destination to the UNIX standard I/O streams.

 Synopsis
extern void trace_FileUpcall(
 void Gcontext,
 trace_buffer_t GbufferP)

 Parameters
context

file output stream to which the formatted output should be written.

bufferP
instance of the data type used in the trace ring buffer retrieved by a specific upcall.

 Description

The Encina Toolkit tracing facility provides the trace_FileUpcall upcall to implement Encina tracing to the
UNIX standard I/O streams with the trace_Register function.

  Chapter 48. Trace Facility Functions 697



 trace_FormatBuffer  
 

 trace_FormatBuffer

Formats trace information.

 Synopsis
unsigned trace_FormatBuffer(
 trace_buffer_t GeventP,
 int bufferLen,
 char Gbuffer)

 Parameters
eventP

a pointer to the buffer containing the binary information about a tracing event.

bufferLen
an integer value specifying the length of the buffer provided to hold the formatted tracing even.

bufferP
a pointer to the buffer in which the formatted event description should be placed. The event
description is written to the buffer as a null-terminated string that ends with a line-feed character.

 Description

This function returns the length of the formatted event description written in the supplied buffer. If the
buffer provided to the trace_FormatBuffer function is too small to hold the entire formatted trace event
string, the string is truncated to fit in the buffer.

698 Encina Toolkit Executive Guide and Reference  



  trace_Register
 

 trace_Register

Registers an upcall for programmatically obtaining trace output.

 Synopsis
extern void trace_Register(

unsigned long outputClass,
void (Gupcall)( void Gcontext,

 trace_buffer_t Gbuffer),
 void Gcontext)

 Parameters
outputClass

an unsigned long containing a bit vector that represents the trace output classes for which this upcall
is being registered. This value must be some combination of the values of the trace output classes
defined by Encina—these values should be combined by using a bitwise OR operation.

upcall
the upcall that should be executed when events of this class are encountered. This upcall takes two
parameters; a function or output stream name, and the trace buffer data structure containing the
specified type of information. See the reference information for the trace_buffer_t for details
regarding how information is organized in the trace ring buffer.

context
a void argument passed to the upcall, providing a hook for other functions or output destinations which
can be used to preserve information about the state of the application or the tracing facility itself.

 Description

Within an application, you must call the trace_Register function to register an upcall for all of the classes
of tracing events you want to obtain. Note that this information is automatically extracted and formatted if
obtaining this information using the Toolkit administrative tool or the administrative RPC interfaces to the
Toolkit.

The limit on the number of upcalls that can be registered for each class of tracing output is specified in the
tracing constant TRACE_MAX_UPCALLS.

Once an upcall has been registered for a specific class of tracing event, that upcall will remain active until
the trace_Unregister function is called.

  Chapter 48. Trace Facility Functions 699



 trace_Unregister  
 

 trace_Unregister

Unregisters an upcall previously registered for obtaining trace output.

 Synopsis
extern void trace_Unregister(

unsigned long outputClass,
void (Gupcall)( void Gcontext, trace_buffer_t Gbuffer),

 void Gcontext)

 Parameters
outputClass

an unsigned long containing a bit vector that represents the trace output classes for which this upcall
is being registered. This value must be some combination of the values of the trace output classes
defined by Encina—these values should be combined by using a bitwise OR operation.

upcall
the upcall that should be executed when events of this class are encountered. This upcall takes two
parameters; a function or output stream name, and the trace buffer data structure containing the
specified type of information. See the reference information for the trace_buffer_t for details
regarding how information is organized in the trace ring buffer.

context
a void argument passed to the upcall, providing a hook for other functions or output destinations which
can be used to preserve information about the state of the application or the tracing facility itself.

 Description

The trace_Unregister function removes the associated between specific classes of tracing events and
specific upcalls that were previously registered for execution when that class of tracing is enabled.

Unregistering a single upcall for a specific class of tracing event does not affect any other upcalls
registered for that event. Each upcall for specific events must be separately registered and unregistered.

700 Encina Toolkit Executive Guide and Reference  



  traceListener
 

 traceListener

Starts a Trace Listener server.

 Synopsis
traceListener -n servername [-h] [-p principal_id [-k keytab_file]] [-A
exclusive_authority] [-Z auth_level] [-N min_auth_level]
[-t component:trace_mask[:component:trace_mask...]]
[-T trace_class[=trace_class...]=[[option...]]
destination_type[(context_string)]:destination]

 Arguments
-n servername

Specifies the name under which this instance of Trace Listener is to be registered with the DCE
Directory Service. (The name is registered each time the server is started). The argument servername
should be a complete DCE name. This option is required.

[-h]
Displays a brief help message about the available options for this command.

[-p principal_id [-k keytab_file]]
Specifies the DCE principal identifier of the server. The -k option specifies the keytab file to be used.
If the -k option is not specified, the default keytab file is used.

[-A exclusive_authority]
Specifies a principal to be granted exclusive authorization to administer the server and to modify
ACLs. This option is required each time a secure server is started so that a principal has access to
the server ACL. Permissions granted on ACLs are not checked until exclusive authorization is cleared
using the tkadmin clear exclusiveauthority command.

[-Z auth_level]
Specifies whether authorization is enabled in the server. A value of 1 (the default) means that
authorization is enabled—ACLs will be checked. In the case of a server with DCE security, it means
that the exclusive authority principal has sole authorization to the server. A value of 0 means that
authorization is disabled. Once a server is running, authorization can be enabled or disabled using
the tkadmin set authorization command.

[-N min_auth_level]
Specifies the minimum protection level at which client RPCs are considered to be authenticated. An
incoming RPC with a protection level below the specified minimum level is treated by the Trace
Listener as unauthenticated. The default value of min_authn_level is 2. See the DCE documentation
for more details.

[-t component:trace_mask [:component:trace_mask...]]
Enables tracing for the specified component and trace mask. The component argument specifies the
Trace Listener component to trace. The trace_mask argument specifies the trace class or
hexadecimal number representing the bits that activate different trace events for the server. You can
use this option multiple times on the command line, or can specify all components and trace masks
together, using a colon to separate each pair. See “Enabling and Disabling Tracing” on page  227 for
more information on tracing components.

[-T trace_class[=trace_class... ]=[[option...]] destination_type[(context_string)]:destination]
Directs tracing of the specified trace class to the specified destination for the Trace Listener server.
The trace_class argument can be one or more of the following: entry, event, param, trace, audit,
dump, error, or fatal. The optional [option...] argument can be one or more of the following:

  Chapter 48. Trace Facility Functions 701



 traceListener  
 

buffered, unbuffered, formatted, or unformatted. Multiple options must be separated with a comma
(,). The default is buffered and unformatted. The destination_type argument must appear in upper
case and can be one of the following: FILE, STREAM, or RPC. The (context_string) argument is an
arbitrary string used only with the RPC destination type. The destination argument can be one of the
following:

� A file name (for the FILE destination type).

� stdout or stderr (for the STREAM destination type).

 � trace

� DCE RPC binding string or DCE Directory Service name (for the RPC destination type).

This option may be used multiple times on the command line, where it is processed from left to right.
See “Directing Trace Output” on page  227 for more information on directing trace output.

 Description
The traceListener command starts the Trace Listener, a server provided with Encina that accepts
formatted or raw trace data RPCs, formats the messages if necessary, and writes the output to stdout.
The Trace Listener may accept trace output from multiple Encina servers.

The principal specified in exclusive_authority is automatically granted the administer (a) permission to the
server. The administer (a) permission to a Trace Listener server must be granted to the client before
clearing exclusive authority so that the server can be administered. Clients of the Trace Listener server
must be granted the write (w) permission so that they can redirect trace output to the Trace Listener.

The Trace Listener is a non-recoverable server. The ACLs must be recreated each time the Trace
Listener server is restarted.

 Examples

The following command starts a Trace Listener server and specifies the name of the server, the exclusive
authority principal, the server principal and keytab file:

% traceListener -n /.:/encina/trace/traceListener1
-A encina_admin -p encina/trace/traceListener1
-k keyfile

 Related Information

tkadmin clear exclusiveauthority
tkadmin set authorization

702 Encina Toolkit Executive Guide and Reference  



  translateError
 

 translateError

Translates status codes from one form to another.

 Synopsis
translateError {codes...}

 Arguments
{codes...}

Specifies the Encina or DCE status code to translate. You can specify multiple codes by separating
them with blank spaces.

 Description

The translateError program is used to translate Encina and DCE status codes from one form to another.
A status code can be represented in four different forms in Encina:

� An Encina, or DCE status string, such as ENC-enc-1025 or DCE-rpc-0036

� A decimal number, such as 1907401729

� A hexadecimal number, such as 0x16c9a024

� An Encina or DCE C constant, such as TRAN_NOT_READY or rpc_s_comm_failure

The output displays the associated Encina or DCE status string, the message string, and either the
hexadecimal number or C constant, or both, depending on the status code that was specified on the
command line. The NLSPATH and LANG environment variables must be set to the appropriate message
catalog for the message string to be displayed in the output.

 Examples
The following command displays the Encina status string, message string and hexadecimal number
associated with the C constant TRAN_ABORT_NO_SUITABLE_COORDINATOR:

% translateError TRAN_ABORT_NO_SUITABLE_COORDINATOR

ENC-tra-1135: All acceptable applications refused to
 coordinate (Bx7796846f)

The following command displays the Encina status string, message string and C constant associated with
the decimal number 2006353007:

% translateError 2BB6353BB7

ENC-tra-1135: All acceptable applications refused to
 coordinate [TRAN_ABORT_NO_SUITABLE_COORDINATOR]

The following command displays the Encina status string, message string, C constant and hexadecimal
number associated with the Encina status string ENC-tra-1135:

% translateError ENC-tra-1135

ENC-tra-1135: All acceptable applications refused to
 coordinate [TRAN_ABORT_NO_SUITABLE_COORDINATOR]
 (Bx7796846f)

  Chapter 48. Trace Facility Functions 703



 translateError  
 

The following command displays the Encina status string, message string, and C constant associated with
the hexadecimal number 0x7796846f:

% translateError Bx7796846f

ENC-tra-1135: All acceptable applications refused to
 coordinate [TRAN_ABORT_NO_SUITABLE_COORDINATOR]

704 Encina Toolkit Executive Guide and Reference  



  translateTraceId
 

 translateTraceId

Displays information associated with one or more trace IDs.

 Synopsis
translateTraceId [-fFh] {traceIds...}

 Arguments
[-f]

Displays the format string associated with the specified trace ID. This is the default.

[-F]
Disables the display of the format string associated with the specified trace ID.

[-h]
Displays help for this command.

{traceIds...}
Specifies one or more trace IDs for which information is displayed. The trace ID is a hexadecimal
number that uniquely identifies a trace message. Trace IDs should not be confused with Encina
hexadecimal status codes. The trace ID must include the 0x prefix when used with translateTraceId.
You must separate multiple trace IDs with spaces between them.

 Description

The translateTraceId program displays information associated with one or more trace IDs, including the
format string. This information is useful when an error message indicates that there is no format or a bad
format associated with a trace ID, and the message text cannot be displayed. The output from
translateTraceId includes the format string associated with the trace ID (unless the -F option is specified)
and the location where the error was detected in the source code, which should lead to more information
about why this error occurred.

 Examples

The following is an example of trace output in the default format. The fields, in order, are: thread ID,
process ID, timestamp, trace ID, trace class abbreviation, and message.

 1 14313 94/12/19,21:B1:26.285275 5B3458e7 W Failed To Refresh Identity:
DCE-krb-B191: No credentials cache file found.

The following command displays information for the trace ID found in the example above:

% translateTraceId Bx5B3458e7

component : sfs_svr
 file : server_sec.c
 function : RefreshIdentity

format : Failed to Refresh Identity - Retrying in %d secs: %k.

  Chapter 48. Trace Facility Functions 705



 translateTraceId  
 

706 Encina Toolkit Executive Guide and Reference  



  
 

Chapter 49. Trace Facility Data Types

This section describes the following:

 � trace_buffer_t
 � trace_uid_t

 Copyright IBM Corp. 1989, 2001  707



 trace_buffer_t  
 

 trace_buffer_t

Is the trace buffer header.

 Synopsis
typedef {...} trace_buffer_t

 Description

The trace buffer header is composed of a number of long words that provide information about the data
recorded in the ring buffer for a specific trace event. A trace buffer header is composed of the following
elements:

� total size of the trace buffer

This is the total size of the trace buffer, including the size of the header. Bits 0 through 27 contain this
size information. Bits 28 through 30 are reserved for future expansion, and must be set to zero. If bit
31 is zero, the data structure is an old-format Encina trace_buffer_t, and is only two long words in
length. See “Notes” for information about the structure and size of old-format trace buffer headers.

� unique identifier for the trace event

� version and header size information

Bits 0 through 15 specify the number of bytes in the header. Bits 16 through 23 contain a minor
version number, and bits 24 through 31 contain a major version number.

� time at which the event occurred

The time at which the trace event occurred, represented in standard UNIX format as the number of
seconds and microseconds since January 1, 1970 at 00:00 GMT.

 � process identifier

 � thread identifier

When interpreting long words in the trace buffer header, bit 0 is defined as the least significant bit. Encina
tracing requires that an unsigned long integer consist of at least 32 bits. On platforms where more bits
are used to represent instances of this type, the high-order bits are reserved for future use.

 Notes

The Encina tracing mechanism can use both header and data formats. If bit 31 of the first long word in
the trace buffer header is zero, the data structure is an old-format Encina trace_buffer_t. If this is the
case, the format of this data type is the following:

typedef struct {
unsigned short threadId;
unsigned short length;

 trace_uid_t uid;
 } trace_buffer_t;

The fields of old-format trace_buffer_t data types are the following:

threadId identifier for the thread that executed the trace construct.

length total length of the data associated with this event. This length includes the size of the
trace_buffer_t data structure that provides this information.

uid unique identifier for the trace event

708 Encina Toolkit Executive Guide and Reference  



  trace_buffer_t
 

Applications should not be developed that depend upon the old-format trace_buffer_t structures.

  Chapter 49. Trace Facility Data Types 709



 trace_uid_t  
 

 trace_uid_t

Is the unique identifier for a specific trace event.

 Synopsis
typedef unsigned long trace_uid_t

 Description

Instances of this data type are used in trace buffer headers to uniquely identify each trace event logged in
the ring buffer.

 Notes

This data type is not a union of a scalar integer and a structure containing integer bit fields. Applications
that depend upon such a type definition must be changed.

710 Encina Toolkit Executive Guide and Reference  



  
 

 Appendix A. Messages

This chapter provides diagnostic messages issued by the Encina components supported by z/OS. Encina
messages are actually trace records of the audit, warning and fatal classes. Encina believes that these
trace records are important and that the administrator should see them, even if trace is inactive. These
trace records are always sent to stderr in addition to the usual internal ring buffer.

Audit messages are administratively significant events. Warning messages, also known as errors, are
error conditions where the application is allowed to continue. Fatal and termination messages also result
in termination of the application.

 TRAN Diagnostics

This section documents the diagnostic support that the Transaction Service (TRAN) provides. This
support takes the form of recoverable or unrecoverable erroneous events (warnings or fatal-errors) during
use of TRAN, informative messages that trace calls on TRAN (tracing), and snapshots of the state of
TRAN (state dumps).

TRAN Fatal Error Messages

TRAN generates a fatal run-time error whenever an unrecoverable event occurs. The run-time error is
presented as an output message through the Encina Trace Facility and the application's execution is
terminated. You can define the destination of the error message by using the functions the Encina Trace
Facility provides. This section defines the fatal error messages that TRAN may output and briefly
describes why they occur and how they may be avoided or corrected.

TRAN provides the following fatal error messages:

Out of local transaction identifiers

Explanation:  All local transaction identifiers allocated have been used. Restart the application.

Threading package could not create alarm thread

Explanation:  The underlying thread package could not create an alarm thread.

Function was called with an invalid parameter: expected parameter

Explanation:  A TRAN call was made using an invalid parameter that was detected at runtime. Correct the call that
uses the illegal parameter.

TRAN Warning Messages

TRAN provides the following warning message.

A protocol violation was detected

Explanation:  Another application sent a properly formed, but illegal message at some point. The error may not be
detected until a later message arrives or some other event occurs. The transaction involved in the protocol violation
may need to be forcibly completed using the administrative tools.

 Copyright IBM Corp. 1989, 2001  711



  
 

A transaction was replayed under two different local identifiers

Explanation:  An internal Encina error occurred. A recovery service has given TRAN invalid log records.

Becoming prepared after family has committed

Explanation:  An attempt has been made to move a transaction to the prepared state after the transaction has been
committed.

TRAN Audit Messages

TRAN does not emit any audit messages.

TRAN Abort Reasons

TRAN generates an abort reason when it causes a transaction to abort. An application can retrieve a
permanent form of the abort reason using the conventional abort properties (see tran_Abort). An
application can call tran_AbortDataToReason to convert this permanent form, a property value, to a
value of type tran_abort_t for comparison with known reasons. An application can call
tran_AbortReason to get just the tran_abort_t form of the abort reason for a known transaction. An
application can call encina_StatusToString to get the textual description of an abort reason.

TRAN provides the following abort reasons.

 Client-Specified Abort

TRAN_ABORT_CLIENT_ABORT: "A client (not the transaction service) aborted"

TRAN_ABORT_HEURISTIC_ABORT: "Some application forced a partial outcome."

 System Errors

TRAN_ABORT_UNILATERAL_ABORT: "Abort information is unavailable due to crash or lost
communication"

TRAN_ABORT_REINFECTION: "A new request arrived after voting read-only"

TRAN_ABORT_WORK_AFTER_PREPARE_CRASHED: "Unprepared work was discovered after a crash"

TRAN_ABORT_INVALID_TRAN_MESSAGE: "A protocol violation was detected"

 Time-outs

TRAN_ABORT_PREPARE_INFERIORS_TIMEOUT: "The prepare phase timed out"

TRAN_ABORT_COORDINATOR_MIGRATION_FAILURE: "Coordinator migration timed out"

 Nesting Constraints

TRAN_ABORT_ANCESTOR_ABORTED: "An ancestor transaction aborted."

TRAN_ABORT_COMMITTED_CHILD_ABORTED: "A child transaction was aborted after it had ended."

TRAN_ABORT_FAMILY_ABORT: "The application aborted the entire family."

 Application Problems

TRAN_ABORT_PREPARE_FAILED: "A recovery service refused to prepare"

TRAN_ABORT_NO_SUITABLE_COORDINATOR: "All acceptable applications refused to coordinate"

TRAN_ABORT_MISMATCHED_COORDINATOR: "Coordinator selections conflicted"

TRAN_ABORT_ASYNCHRONOUS_WORK_DURING_PREPARE: "Prepare callbacks returned while requests were
outstanding"

712 Encina Toolkit Executive Guide and Reference  



  
 

TRAN_ABORT_ILLEGAL_LAST_CALL: "The last call optimization was used illegally"

TRAN Status Codes

The following table lists the status codes returned by the TRAN exported functions. These codes are
enumeration constants within the set defined by the tran_status_t type. The table is in alphabetic order
by status code name. The description shows the message text returned for the status code by the
encina_StatusToString function and may also include additional text describing the status code.

Table 11 (Page 1 of 2). TRAN Status Codes

Status Code Description

TRAN_APPL_INITIALIZED The application has already called tran_Init.

TRAN_APPL_NOT_INITIALIZED The application has not called tran_Init.

TRAN_APPL_NOT_READY The application has not called tran_Ready.

TRAN_APPL_READY The application has already called tran_Ready.

TRAN_COMM_INITIALIZED
The communication service has already called
tran_CommInit.

TRAN_COMM_NOT_INITIALIZED
The communication service has not called
tran_CommInit.

TRAN_COORDINATOR_CONFLICT
Some other application insisted on a different
coordinator.

TRAN_COORDINATOR_NOT_SET No coordinator has been specified yet.

TRAN_ENVIRONMENT_INCOMPLETE
The application has not established one or more of
the environment functions.

TRAN_INSECURE_MESSAGE The message was not authentic.

TRAN_INTERNAL_ERROR TRAN has encountered an internal error.

TRAN_INVALID_MESSAGE The message cannot be interpreted.

TRAN_INVALID_RECORD The log record cannot be interpreted.

TRAN_NESTING_DISABLED
The application disabled nested transactions when it
called tran_Init.

TRAN_NESTING_NOT_SUPPORTED
This version of the Transaction Service does not
support nested transactions.

TRAN_NOT_BEGINNER This application did not begin the transaction.

TRAN_NOT_SUPPORTED
The requested function is not supported in this
implementation.

TRAN_PROPERTY_KEY_NOT_FOUND No properties with the specified key were found.

TRAN_PROPERTY_KEY_RESERVED
The property key is reserved for use by the
transaction service.

Applications may not store values for this key.

TRAN_REC_INITIALIZED
The recovery service has already called
tran_RecInit.

TRAN_REC_NOT_INITIALIZED The recovery service has not called tran_RecInit.

TRAN_SECURITY_KEY_ALREADY_SET
A security key has already been associated with the
transaction.

TRAN_SUCCESS Success.

  Appendix A. Messages 713



  
 

Table 11 (Page 2 of 2). TRAN Status Codes

Status Code Description

TRAN_TID_ACTIVE_CHILDREN
The transaction has children that have neither
committed or aborted.

The transaction has active children.

TRAN_TID_NOT_VALID
The transaction identifier that was passed as an
argument did not meet the requirements for the
function.

TRAN_TID_OUTSTANDING_REQUESTS
The transaction has sent requests for which replies
have not yet been received.

The transaction has outstanding requests.

TRAN_TRANSACTION_ABORTED

The message refers to a transaction that has been
aborted.

The RPC piggyback message refers to a transaction
that has been aborted.

714 Encina Toolkit Executive Guide and Reference  



  
 

 Tran-C Diagnostics

This section documents the diagnostic support Tran-C provides.

Tran-C Fatal Error Messages

Size of thread data block is greater than the constant defining the size (i.e. sizeof(tc_threadDB_t) >
TC_THREAD_DB_SIZE).

Explanation:  initTC or preInitTC found that the size of the thread data block defined in tc_client.h is less than the
real size.

Failed to handle signal signal: status

Explanation:  An error occurred while Tran-C was trying to declare its intent with the BDE component to wait for
certain signals, for example, an unsupported signal was specified.

Failed to wait for signals: status

Explanation:  An error occurred while Tran-C was trying to wait for a signal to occur.

Transactional-C internal component error: error, file (line)

Explanation:  An error internal to Tran-C occurred.

tc_serial_AbortNamedTran: looped numSleeps times waiting for transfer of control for tid tid — reason reason,
module module

Explanation:  More than one thread was aborting the transaction. A loop was run to wait for the other abort to
complete, but that did not happen before the loop ended.

exc_illaddr_e exception caught in module: module, unknown function

Explanation:  An S/390 or zSeries 900 protection addressing exception (X'0C4') occurred.

Tran-C Warning Messages

Tran-C emits warning messages when an uncaught exception is handled by the Tran-C run-time system.
An uncaught exception generally aborts the containing transaction, but if there is no transaction to abort,
then the warning messages are emitted. Two events generate warning messages. One is an uncaught
exception in a thread created using subThread, and the other is an uncaught exception during a
transaction's prepare callback. The system outputs two forms of warning message. One is for an
uncaught address exception, the other is for an uncaught value exception. This results in four cases, and
in each the system includes the value of the exception in the warning message. The warning messages
are as follows:

Could not convert abort module name to ASCII

Explanation:  An error occurred while trying to convert the EBCDIC module name specified in inModule to ASCII
before sending it to the client. The error occurred in either iconv_open or iconv.

Application exiting while unterminated transactions are in progress

Explanation:  A timeout occurred while the quiesce function was waiting for transactions to complete.

  Appendix A. Messages 715



  
 

Unexpected status exception in prepare callback: status

Explanation:  An exception occurred in a prepare callback routine.

Unexpected status exception from subThread: status

Explanation:  An exception occurred in a subThread.

Unable to retrieve Server-side Abort Reason

Explanation:  An internal call to trpc_ServerSideAbortReason failed.

Tran-C Audit Messages

Tran-C does not issue any audit messages.

Tran-C Abort Codes

When the Tran-C runtime system aborts a transaction, an abort code defined by Tran-C is returned to
indicate the reason for the abort. Each Tran-C abort code has an associated abort string. The
abortCode function can be used to retrieve the code and the abortReason function can be used to
retrieve the string.

The following table lists the Tran-C abort codes and strings and describes the reason for each abort:

Table 12 (Page 1 of 2). Transactional-C Abort Codes

Abort Code Abort String Description

TC_APPL_EXIT_CODE Application exited The exitTC function was
called while the transaction
was still active.

TC_CAUGHT_ABORT_EXCEPTION_CODE Uncaught abort exception The application raised an
ABORT_EXCEPTION
instead of calling a function
to abort the transaction and
supplying an abort reason.

TC_CAUGHT_ADDRESS_EXCEPTION_CODE Uncaught address exception The application raised an
exception outside any
catching scope, and a
transaction construct's
default catcher received the
exception. This exception is
the default DCE exception.

TC_CAUGHT_STATUS_EXCEPTION_CODE Uncaught status exception The application raised an
exception and associated a
status value with it outside
any catching scope, and a
transaction construct's
default catcher received the
exception.

716 Encina Toolkit Executive Guide and Reference  



  
 

Tran-C Status Codes

Table 12 (Page 2 of 2). Transactional-C Abort Codes

Abort Code Abort String Description

TC_CONC_STMT_ABORT_CODE One or more subtransactions
aborted

One or more subtransactions
of a concurrent or cofor
construct aborted. This is
the abort reason in the
onAbort clause for these
constructs.

TC_CONC_STMT_INSUFF_THREADS_CODE Failed to create requested
number of threads

A concurrent or cofor
construct was unable to
create all the requested
threads due to an insufficient
number of available threads.

TC_DEADLOCK_DETECTED_CODE Transaction was deadlocked The transaction was
deadlocked and as a result
was aborted to resolve the
deadlock.

TC_MEMORY_EXHAUSTED_CODE Transactional memory
allocation failed

No more memory could be
allocated in response to a
request by the
tranMemAlloc function.

TC_RPC_FAILURE_CODE RPC failure: failure code An RPC failed, and Tran-C
aborted the transaction
issuing the RPC. The RPC
failure code is appended to
the abort string.

TC_SERVER_SHUTDOWN_CODE Server was shutdown The server was stopped from
servicing requests from new
transactions because the
quiesceTC or exitTC
function was called.

TC_UNKNOWN_ABORT_REASON_CODE Unknown abort reason Tran-C was unable to
determine why the
transaction aborted.

Table 13 (Page 1 of 3). Tran-C Status Codes

Status Code Description

TC_NOT_INIT Transactional-C was not initialized.

TC_ALREADY_INIT Transactional-C was already initialized.

TC_ILLEGAL_SUSPEND Illegal use of the suspend clause.

TC_ILLEGAL_SUSPEND_ART The tran_tid_t pointer passed as an argument to the suspend clause was
NULL.

TC_ILLEGAL_RESUME The resumeTran statement was used in an illegal context (for example, in
a concurrent statement).

  Appendix A. Messages 717



  
 

Table 13 (Page 2 of 3). Tran-C Status Codes

Status Code Description

TC_ILLEGAL_RESUME_ARG The tran_tid_t argument passed to the resumeTran statement does not
belong to a suspended transaction.

TC_ILLEGAL_SUBTRAN The subTran clause was used outside a concurrent or cofor statement.

TC_ILLEGAL_SUBTHREAD The subThread clause was used outside a concurrent or cofor
statement.

TC_ILLEGAL_TRAN The transaction statement was executed within a concurrent or cofor
statement.

TC_ILLEGAL_TOPLEVEL The topLevel statement was executed within a concurrent or cofor
statement.

TC_ILLEGAL_CATCH The catchAbort statement was executed within a concurrent or cofor
statement.

TC_ILLEGAL_ABORT The abort call was made outside the scope of a transaction.

TC_ILLEGAL_CONCURRENT The concurrent or cofor statement was executed within a concurrent or
cofor statement.

TC_ILLEGAL_CONCTHREAD The concThread statement was executed within a concurrent or cofor
statement.

TC_ILLEGAL_CALLBACK An attempt was made to register a transaction service callback outside
the scope of a transaction.

TC_ILLEGAL_COMPLETED_TID The getCompletedTid function was called outside a commit or abort
clause.

TC_ILLEGAL_CONTAINING_TID The getContainingTid function called outside the scope of a transaction.

TC_ILLEGAL_MUTEX_TERMINATE The tranMutexTerminate function was called on an uninitialized
tranMutex_t.

TC_ILLEGAL_MUTEX_LOCK The tranMutexLock function was called on an uninitialized tranMutex_t.

TC_ILLEGAL_MUTEX_UNLOCK The tranMutexUnlock function was called on an uninitialized, or
unlocked, tranMutex_t.

TC_ILLEGAL_WATCHDOG Attempt to set a watch on TRAN_TID_NULL.

TC_ILLEGAL_MEMORY_ALLOC Call to tranMemAlloc made with either a size of zero or on behalf of a
nonexistent transaction.

TC_ILLEGAL_MEMORY_FREE Call to tranMemFree with a NULL pointer or memory that was not
allocated to the calling transaction.

TC_ILLEGAL_RPC Transactional RPC made on behalf of nonexistent transaction.

TC_ILLEGAL_ABORT_REASON The abortReason function was called outside the scope of an onAbort
clause.

TC_ILLEGAL_ABORT_NAME The abortModuleName function was called outside the scope of an
onAbort clause.

TC_ILLEGAL_ABORT_FUNCTION The abortFunctionName function was called outside the scope of an
onAbort clause.

TC_ILLEGAL_LAZY The lazyTran statement was executed before the recovery service was
initialized

TC_INIT_CALLBACK_FAILED An application initialization callback returned FALSE.

TC_TERM_CALLBACK_FAILED An application termination callback returned FALSE.

TC_MALLOC_ERROR Internal Transactional-C error -- vital memory allocation failed.

TC_ILLEGAL_CALL A Transactional-C construct was executed in a non-Tran-C thread.

718 Encina Toolkit Executive Guide and Reference  



  
 

Table 13 (Page 3 of 3). Tran-C Status Codes

Status Code Description

TC_INTERNAL_ERROR Internal Transactional-C error.

TC_DEFAULT_ERROR Unknown error.

  Appendix A. Messages 719



  
 

 TRPC Diagnostics

This section documents the diagnostic support TRPC provides. This support takes the form of informative
messages that trace or unrecoverable erroneous events (warnings or fatal-errors) may generate during
use of TRPC. It also documents the snapshot that the state dump may produce.

TRPC Fatal Error Messages

TRPC generates a fatal run-time error whenever an unrecoverable event occurs. The run-time error is
presented as an output message through the Encina Trace Facility and the application's execution
terminated. You can define the destination of the error message by using the functions the Encina Trace
Facility provides. This section defines the fatal error messages that TRPC may output and briefly
describes why they occur, suggesting how they may be avoided where possible.

TRPC has the following fatal error messages:

Runtime library could not determine which protocol sequences are in use.

Explanation:  The trpc_Init function finds that for some reason the underlying DCE does not support any protocol
sequences. This is really a very obscure error and should rarely occur. Verify the DCE protocol sequences.

Runtime library could not create a thread pool to handle asynchronous messages.

Explanation:  A DCE RPC call failed. Obtain a functional DCE library.

Runtime library could not acquire the identifier associated with its own interface specification.

Explanation:  A DCE RPC call failed. Obtain a functional DCE library.

Runtime library could not get the DCE RPC runtime to begin listening for asynchronous RPCs.

Explanation:  A DCE RPC call failed. Obtain a functional DCE library.

Runtime library could not use an endpoint specified in trpc_BindWkEndpoints.

Explanation:  This message is generated when TRPC finds that it cannot create a valid endpoint for one of the pairs
of protocol sequence endpoint specification pairs that are passed to it as parameters. Typically, this occurs if some
other process (including itself) on the host is already using the specified endpoint and protocol sequence. If this is the
case, the specified endpoint and protocol sequence pair can only be used after the other process has been killed. If
the same process has already created an endpoint, ensure that it does not try to create it again.

A call to trpc_BindWkEndpoints specified endpoints that have not been bound by the application.

Explanation:  Well-known endpoints have not been bound by the application. Bind the well-known endpoints.

Runtime library could not register its own interface with the DCE RPC runtime.

Explanation:  This message is generated when TRPC cannot register its interface with the DCE RPC runtime and
the rpc_server_register_if function returns an error. Another possible cause is that the TRPC interface is already
registered; however, this should not happen. TRPC guards against duplicate registration (unless the application
developer deliberately tries to do it). Typically, this would imply a serious failure, for instance, the process running out
of memory.

720 Encina Toolkit Executive Guide and Reference  



  
 

Runtime library could not register an endpoint with the DCE Directory Service. The Directory Service path
used was %s. The rpc_ns_binding_export function returned 0x%x.

Explanation:  TRPC cannot register its interfaces and endpoints with the DCE Directory Service. This will occur
during a call to tran_Ready. The other possible reason for this error is that the path specified in the
trpc_SetEnvironment call may not have been created in the name space, or the process does not have the privilege
to create entries in the path specified. Ensure that the DCE Directory Service is active and can be contacted from the
local host.

Runtime library could not register an endpoint with the endpoint mapper (rpcd). The rpc_ep_register function
returned 0x%x.

Explanation:  TRPC cannot register its interfaces and endpoints with the endpoint mapper. This occurs during a call
to tran_Ready. The other possible reason for this error is that the path specified in the trpc_SetEnvironment call
may not have been created in the name space, or the process does not have the privilege to create entries in the path
specified. Ensure that the DCE Directory Service is active and can be contacted from the local host.

Threading package could not create listener thread.

Explanation:  One of the threads that TRPC creates calls rpc_server_listen, which returns a failure. This can occur
if the application has already called rpc_server_listen. To avoid this, application developers are advised to call
bde_rpc_server_listen which waits on a condition variable until the server is shutdown.

Threading package could not create cleanup thread.

Explanation:  TRPC cannot use the underlying threading package to create the threads needed for the operation.
Typically, a thread package fails when the system runs out of memory.

The runtime library being used does not match the version of TIDL used.
Interface name name, function name name, stubs version version-number.

Explanation:  An outdated interface is in use. Run TIDL on the outdated interface.

TRAN gave TRPC an incorrect service identifier during a message-sending upcall.

Explanation:  TRAN provided an incorrect service identifier to TRPC. An incidence of this error would indicate a
problem with TRAN. Contact the service representative.

Runtime library could not acquire a string binding for a well-known endpoint.

Explanation:  A DCE RPC call failed. Obtain a functional DCE library.

Runtime library could not parse the string binding for a well-known endpoint.

Explanation:  A DCE RPC call failed. Obtain a functional DCE library.

Runtime library was provided a well-known endpoint that uses an invalid protocol sequence.

Explanation:  The trpc_BindWkEndpoints function was passed an invalid protocol sequence. See the z/OS DCE
Application Development Guide: Core Components for more information.

Runtime library was provided a well-known endpoint lacking network or endpoint information.

Explanation:  A well-known endpoint lacks network or endpoint information. Fix the endpoint.

Runtime library has been given a well-known endpoint that has not been bound by the application.

Explanation:  A well-known endpoint has not been bound by the application. Bind the endpoint.

  Appendix A. Messages 721



  
 

Runtime library needs either a well-known endpoint or the ability to use the name service because the
application is recoverable.

Explanation:  The application is recoverable and is not using the DCE Directory Service to register itself using
dynamic bindings. This check is performed when the application calls the tran_Ready function which then calls a
TRPC function. Provide a well-known endpoint or allow the application to use the DCE Directory Service.

Runtime library could not create a dynamic endpoint for some protocol sequence.

Explanation:  TRPC cannot create bindings (using rpc_server_use_protseq) for protocol sequences for which no
bindings currently exist. TRPC tries to create the additional bindings because the application wishes to use certain
protocol sequences but has not bothered to create bindings for them. This is a DCE problem, or perhaps, the system
is out of dynamic endpoints.

A transactional RPC was made using an implicit transaction identifier, but no callback was registered.

Explanation:  TRPC was not initialized correctly.

A transactional RPC was made before the TRPC runtime library was initialized.

Explanation:  TRPC was not initialized correctly. A transactional RPC was attempted before trpc_Init and tran_Init
completed.

The TRPC principal environment value does not contain a cell name, and the runtime library cannot determine
the local cell name.

Explanation:  The principal argument passed to the trpc_SetEnvironment function, or provided in the
ENCINA_TRPC_PRINCIPAL or ENCINA_PRINCIPAL environment variables does not contain a cell name. TRPC
must be able to obtain a fully-specified principal name, including the cell name. This error message means that the
runtime library has tried to get the local cell name in order to form a fully-specified name, but the DCE runtime
function dce_cf_get-cell_name has failed. The probable cause of this error is that the DCE is not installed, or is not
installed correctly, on the machine.

TRPC Warning Messages

TRPC has the following warning messages:

The runtime library could not establish authentication when sending an asynchronous message. The
rpc_binding_set_auth_info function returned 0x%x.

Explanation:  The DCE RPC function that is used to make a communication channel secure has failed, so TRPC
cannot use that channel for asynchronous (TRAN commitment) messages. Check to be sure that the DCE Security
Service is still running and that the principals used to make TRPCs are still valid. Look at the DCE RPC runtime
status code in the message for further information.

The runtime library could not establish authentication when caching an RPC handle. The
rpc_binding_set_auth_info function returned 0x%x.

Explanation:  The DCE RPC function that is used to make a communication channel secure has failed, so TRPC
cannot use that channel when caching an RPC handle. Check to be sure that the DCE Security Service is still
running and that the principals used to make TRPCs are still valid. Look at the DCE RPC runtime status code in the
message for further information.

The TRPC runtime library does not match compiled manager stubs. Interface name name, function name
name, stubs version version

Explanation:  The application is using stubs that do not match the Encina runtime library that is being used. The
stubs may have been generated by a later version of tidl.

722 Encina Toolkit Executive Guide and Reference  



  
 

TRPC Audit Messages

TRPC does not issue any audit messages.

TRPC Status Codes

The following table lists all of the status codes that the TRPC exported functions return. These codes are
enumeration constants within the set that the trpc_status_t type defines. The table is in alphabetic order
by status code name. The description shows the message text returned for the status code by the
encina_StatusToString function and may also include additional text describing the status code.

Table 14 (Page 1 of 2). TRPC Status Codes

Status Code Description

TRPC_ABORT_REASON_UNKNOWN
The abort reason for the server-side transaction
could not be determined.

TRPC_ALREADY_INITIALIZED TRPC interface has already been initialized.

TRPC_ALREADY_READIED
TRPC has already been readied with the
tran_Ready function.

TRPC_ASYNC_RPC_FAILED comm-send upcall (UpcallCommSend) fails

TRPC_BIND_WK_ALREADY_CALLED The trpc_BindWkEndpoints function has been called.

TRPC_CALLBACK_DATA_OVERFLOW
more callback data was supplied than could be
accommodated

TRPC_CAUGHT_RPC_FAILURE
(internal) An RPC was caught by a comm_status or
fault_status parameter.

TRPC_CLIENT_OP_DISALLOWED
 RPC disallowed because of client principal
mismatch

TRPC_DEFAULT_TIMEOUT_EXPIRED
The auto tran watch facility aborted the transaction
because the default timeout expired.

TRPC_DUPLICATE_CALL
Function has been erroneously called more than
once.

TRPC_GOT_DYN_BUT_NO_NS
Remote application's address has domain
information but there is no directory service.

TRPC_INVALID_ADDR_STRING invalid application string has been used

TRPC_INVALID_ASYNC_RPC parameters to an asynchronous RPC were invalid

TRPC_INVALID_BINDING_HANDLE Invalid RPC handle used.

TRPC_INVALID_SECURITY_LEVEL Invalid security level specified.

TRPC_LIBRARY_MISMATCH
The TRPC library does not match the version of
TIDL used by some interface.

TRPC_MGR_ABORTED Application provided manager function aborted.

TRPC_MULTIPLE_REGISTRATION Callback function is being registered multiply.

TRPC_NO_HANDLE Could not find handle in cache.

TRPC_NO_LOCAL_ADDRESS No relevant local address was found.

TRPC_NO_PROTSEQ_SUPPORTED No protocol is supported.

TRPC_NOT_INITIALIZED TRPC interface has not been initialized.

TRPC_NULL_APPLID Null application identifier was provided.

TRPC_NULL_HANDLE Null handle was provided.

  Appendix A. Messages 723



  
 

TRPC Abort Codes

TRPC does not abort transactions.

Table 14 (Page 2 of 2). TRPC Status Codes

Status Code Description

TRPC_PRINCIPAL_ID_MISMATCH Principal Id mismatch occurred.

TRPC_RPC_FAILED
RPC failed for unknown reasons (most likely that
DCE cannot pass right status)

TRPC_RREP_CALLBACK_ABORTED Received reply callbacks were aborted.

TRPC_RREP_FAILED Could not accept transactional data in the reply.

TRPC_RREQ_FAILED Could not accept transactional data in the request.

TRPC_SERVER_SIDE_ABORT
The server-side transaction was aborted or took an
exception.

TRPC_SREP_FAILED Could not send transactional data in the reply.

TRPC_SREP_PIGGYBACK_OVERFLOW
The Transaction Service state for a returning TRPC
was too large to be carried in the RPC message.

TRPC_SREQ_CALLBACK_ABORTED Sending request callbacks were aborted.

TRPC_SREQ_FAILED Could not send transactional data in the request.

TRPC_SREQ_PIGGYBACK_OVERFLOW
The Transaction Service state for an outgoing TRPC
was too large to be carried in the RPC message.

TRPC_SUCCESS Function returns successfully.

TRPC_TRAN_NOT_READIED
TRAN has not been readied with the tran_Ready
function.

TRPC_UNBOUND_TRAN_HANDLE Could not fully bind transactional handle.

TRPC_USE_WK_ALREADY_CALLED The trpc_UseWkEndpoints function has been called.

724 Encina Toolkit Executive Guide and Reference  



  
 

 ThreadTid Diagnostics

This section documents the diagnostic support the Thread-to-Tid Mapping Service provides.

ThreadTid Fatal Error Messages

The Thread-to-Tid Mapping Service has the following fatal error messages:

threadTid_End: No previous matching threadTid_Begin call provided.

Explanation:  The threadTid_End call was called when the previous matching call was not threadTid_Begin (there
may have been no matching threadTid_Begin call or a threadTid_Suspend call may have been made immediately
before the threadTid_End). This message signals a program error. You must correct the program error.

threadTid_Resume: No previous matching threadTid_Suspend call provided

Explanation:  The threadTid_Resume call was called when the previous matching call was not threadTid_Suspend
(there may have been no matching threadTid_Suspend call or a threadTid_Begin call may have been made
immediately before the threadTid_Resume). This message signals a program error. You must correct the program
error.

threadTid_Certify: No transaction

Explanation:  The threadTid_Certify call was made when the thread was not executing on behalf of a transaction.
This message signals a program error. You must correct the program error.

threadTid_Decertify: No transaction

Explanation:  The threadTid_Decertify call was made when the thread was not executing on behalf of a transaction.
This message signals a program error. You must correct the program error.

ThreadTid Warning Messages

The Thread-to-Tid Mapping Service generates a warning run-time error message whenever a
thread-specific error occurs. Since the errors are specific to a thread, threadTid does not cause the
application to terminate, but instead emits a warning message, and terminates the execution of the thread
by waiting on a condition variable that is never signaled. The run-time error is presented as an output
message through the Encina Trace Facility. You can define the destination of the error message by using
the functions the Encina Trace Facility provides. This section defines the warning error messages that
may be output by threadTid, and briefly describes why they occur, and how they may be avoided or
remedial action taken.

trpc_CallToGetTid failed: status

Explanation:  The threadTid_RegisterTrpcCallbacks function received the displayed status code from a call to
trpc_CallToGetTid.

  Appendix A. Messages 725



  
 

ThreadTid Audit Messages

The Thread-to-Tid Mapping Service does not issue any audit messages.

ThreadTid Status Codes

ThreadTid has no status codes.

ThreadTid Abort Codes

ThreadTid has no abort codes.

726 Encina Toolkit Executive Guide and Reference  



  
 

 TRDCE Diagnostics

This section documents the diagnostic support for the TRDCE functions.

TRDCE Fatal Error Messages

Key management error is not recoverable

Explanation:  A call to sec_key_mgmt_manage_key failed. The preceding warning message contains the status
code.

TRDCE Warning Messages

The TRDCE functions that support the use of well-known endpoints issue the following warning messages:

ENCINA_BINDING_FILE, file name, could not be opened.

Explanation:  The ENCINA_BINDING_FILE environment variable is set to file name, but either the
trdce_BindingImport or trdce_ServerRegister function is unable to open file name for reading. Verify that
ENCINA_BINDING_FILE is set correctly and that file name is readable.

No bindings were found in ENCINA_BINDING_FILE file name.

Explanation:  The ENCINA_BINDING_FILE environment variable is set to file name, but either the
trdce_BindingImport or trdce_ServerRegister function found no bindings for the server in file name. Verify that file
name is the correct file and that the bindings contained in the file use supported protocol sequences. Also, verify that
the RPC_SUPPORTED_PROTSEQS environment variable is set correctly.

Ignoring well-known endpoint string binding - not my network address.

Explanation:  The entryName given to the trdce_ServerRegister function is a string binding or matches a string
binding in the file named by ENCINA_BINDING_FILE environment variable. This string binding contains a network
address that is not the current host's primary address. Verify that the string binding is correct and that the server is
running on the correct host.

Key management failed status

Explanation:  A call to sec_key_mgmt_manage_key failed with the displayed status code.

Unable to get current login context status

Explanation:  An internal call to sec_login_get_current_context failed with the displayed status code.

Unable to retrieve network info for current login context status

Explanation:  An internal call to sec_login_inquire_net_info failed with the displayed status code.

Unable to change key status status

Explanation:  An attempt by key management to change a key failed with the displayed status.

Unable to create new context status

Explanation:  The current context could not be retrieved and an attempt to create a new context failed with the
displayed status.

  Appendix A. Messages 727



  
 

Failed to validate or certify identity status

Explanation:  An internal call to either sec_login_valid_from_keytable or sec_login_certify_identity failed with the
displayed status.

Failed to refresh identity status

Explanation:  An internal call to sec_login_refresh_identity with the displayed status.

The sec_Init function is no longer supported. Use sec_InitSimple instead.

Explanation:  sec_Init is no longer supported. After writing this message, Encina calls sec_InitSimple.

Too many features

Explanation:  Encina internal resources have been exhausted.

TRDCE Audit Messages

ACL change request: caller string object string, manager string, type type, acls string

Explanation:  A request to modify the ACL for the displayed object was received.

ACL change result: status

Explanation:  The result of the acl change request in the previous message is ‘status.’

TRDCE Status Codes

The following table lists all of the status codes for TRDCE. The table is in alphabetic order by status code
name. The description shows any message text returned for the status code.

Table 15. TRDCE Status Codes

Statue Code Description

SEC_INSUFFICIENT_BUF_SIZE “Insufficient space in buffer provided”

SEC_BUFFER_NOT_WORD_ALIGNED “Buffer provided is not word aligned”

SEC_ACL_SIZE_ERROR “Acl size is incorrect”

SEC_CALL_NOT_IMPLEMENTED “This feature is not yet implemented”

SEC_ILLEGAL_ACL “Acl is invalid”

SEC_INSUFFICIENT_MEMORY “Memory allocation failure”

SEC_SERVER_PRINC_LEN_TOO_LONG “Principal name is too long”

SEC_ERROR_REG_IF “Failed to register security interface”

SEC_NO_BINDINGS_TO_REG “No bindings registered with application”

SEC_ERROR_REG_WITH_EPM “Failed to register with endpoint mapper”

SEC_ERROR_REG_WITH_NS “Failed to register with name service”

SEC_ERROR_OBTAINING_CELL_ID “Failed to obtain cell id”

SEC_ILLEGAL_PRINCIPAL “Principal not recognized”

SEC_NO_PRINCIPAL “Principal not found”

SEC_ILLEGAL_PARAM “Invalid parameter”

728 Encina Toolkit Executive Guide and Reference  



  
 

TRDCE Abort Codes

TRDCE has no abort codes.

  Appendix A. Messages 729



  
 

 TX Diagnostics

This section documents the diagnostic support for the Encina TX Interface.

In most cases, TX does not return TX_ERROR or TX_FAIL codes. Encina automatically generates a warning
message for a transient error and terminates the application if a fatal run-time error is encountered. The
Transaction Manager-XA Service (TM-XA)58 issues a warning, but does not terminate execution when a
resource manager returns XAER_RMFAIL.

TX Fatal Error Messages

Encina support for TX has the following fatal error messages:

tx_RegisterXaUpcalls: status

Explanation:  The Transaction Service has not been initialized. You must initialize the Transaction Service before
calling the tx_RegisterXaUpcalls function.

Note:  A server creates this message.

TX Warning Messages

Encina support for TX has the following warning messages:

tran_Ready failed: status

Explanation:  The call to the tx_open function did not succeed because initialization of the application interface did
not complete.

tx_close called with number uncompleted transactions

Explanation:  A protocol error occurred in the call to the tx_close function because the TX Service was closed while
uncompleted transactions still existed. Complete the transactions with the tx_rollback or tx_commit function before
calling the tx_close function.

bde_SetAlarm failed: status

Explanation:  In the call to the tx_begin function, the initialization of the transaction timeout characteristic failed.
This should never occur.

tx_RegisterXaUpcalls: TX already initialized

Explanation:  The call to the tx_RegisterXaUpcalls function did not complete, because the TX Service has already
been initialized. Call the tx_RegisterXaUpcalls function before calling the tx_open function. If you are using TM-XA,
call the tmxa_Init function before calling the tx_open function.

Note:  A server creates this message.

Aborting tid tid — thread thread exited without calling tx_commit

Explanation:  The current thread ended without ending the transaction.

58 The Transaction Manager-XA Service (TM-XA) is not included in the z/OS Encina Toolkit Executive.

730 Encina Toolkit Executive Guide and Reference  



  
 

Aborting nested tid tid — TRPC for tid tid returned before calling tx_commit

Explanation:  A server received a transactional RPC, started a nested transaction through tx_begin and then
returned to the caller without ending the nested transaction by calling either tx_commit or tx_rollback.

TX Audit Messages

The TX interface does not issue any audit messages.

TX Abort Reasons

TX generates an abort reason when the tx_rollback function is called to abort a transaction. Abort
reasons provide information describing the reason a transaction aborted. This information is stored in a
data structure containing an integer code, a character string, or both, as well as other data used in
formatting abort reasons. (Chapter 27, “The Encina Abort Facility” on page 183 provides details of the
abort reason data structure.)

The TX Interface defines some default abort reasons that are implemented as abort codes with associated
abort strings. If no abort reason has been explicitly set for a transaction before it aborts, one of the
default abort reasons is generated. Table 16 lists the abort reasons that are defined. For default abort
reasons, the abort code can be retrieved using the tx_get_rollback_code function and the abort string
can be retrieved using the tx_get_rollback_string function.

The Encina TX Interface provides functions for setting and retrieving abort reasons as abort codes. The
tx_set_rollback_code function can set an abort code, and the tx_get_rollback_code function can
retrieve it. These functions rely on other functions and data types defined as part of the Encina Abort
Facility. See the documentation for the Abort Facility in Chapter 27, “The Encina Abort Facility” on page
183 for more information.

The Encina TX Interface also provides functions for setting and retrieving abort reasons as simple text
strings. The tx_set_rollback_string function can set an abort string to be used as the abort reason for a
transaction. The abort string should be set immediately before calling the tx_rollback function to ensure
that the desired abort reason is generated. The abort reason that the tx_rollback function stores depends
on the following circumstances:

� If no abort reason has been explicitly set before the tx_rollback function is called, the
TX_ROLLBACK_ABORT_CODE abort code is generated as the abort reason.

� If an abort reason has been set using either the tx_set_rollback_string function or the
tx_set_rollback_code function, that abort reason is used.

Table 16. TX Interface Abort Codes

Abort Code Description

TX_TIMEOUT_ABORT_CODE Transaction timeout expired.

The transaction aborted because the timeout that the
tx_set_transaction_timeout function set has expired.

TX_ROLLBACK_ABORT_CODE tx_rollback was called.

The transaction aborted because the application called the
tx_rollback function. If no other abort reason is set, this
abort reason is returned by default.

TX_THREAD_EXIT_ABORT_CODE Thread exited without calling tx_commit.

The transaction aborted because the associated thread ended
before the transaction was committed.

  Appendix A. Messages 731



  
 

� If the transaction has been aborted by another component, any abort reason set by that component is
used.

After the abort reason has been stored, either the tx_get_rollback_string or tx_get_rollback_code
function can retrieve it. The tx_get_rollback_code function returns the abort reason in an integer format,
and tx_get_rollback_string function returns the abort reason in a printable string format. Abort reasons
generated by Encina components (such as TX) generally are available in both formats. Abort reasons
generated by user programs are available only in the format in which they were registered, unless
additional functions (described in Chapter 27, “The Encina Abort Facility” on page 183) are used.

TX Status Codes

There are no status codes.

732 Encina Toolkit Executive Guide and Reference  



  
 

 BDE Diagnostics

Encina components are built using the Base Development Environment (BDE), Encina's internal portability
layer. BDE is an internal component whose interfaces Encina does not export. Although the interfaces to
BDE are not available to Encina users, error messages generated by Encina applications can include
messages from BDE. These messages are processed like other Encina messages.

BDE Fatal Error Messages

The BDE generates a fatal run-time error whenever an unrecoverable event occurs. The run-time error is
written by default to stderr. Applications can redirect the output to an alternative destination by using the
trace_Register, trace_Unregister, or trace_FileUpcall function. This section defines the fatal error
messages that may be output by the BDE and briefly describes why they occur. If a BDE fatal message
occurs, please make a note of the message, and report it to your local Encina service representative.

The types of fatal errors in the BDE are listed below. Since the same error type is used from multiple
places in the BDE, each message is preceded by the file and line number of the BDE source where the
error actually occurred. In addition, each message is followed by one word of data in brackets. This data
is additional information that may aid BDE developers in tracing the cause of the defect. BDE fatal error
messages have the following format:

FileName:LineNumber:”messageString” [Bx#]

The BDE supplies some usage errors when the BDE interface is used in an invalid manner. However, in
some cases, an invalid usage may not be detected. For example, bde_ThreadGetData is a
performance-critical routine, and typically assumes that the slot parameter is valid.

BDE provides the following fatal error messages:

Out of resource: resource

Explanation:  No more objects of the specified type are available. Examples include bde_alarm_t, bde_thread_t, and
bde_threadSlot_t. For bde_thread_t, for instance, this does not mean that another thread could not be created; it
means that the possible values for the bde_thread_t type have been exhausted. This error is rare.

System call failure: call, errno errno-# (errno-string)

Explanation:  A system call has unexpectedly failed. Check system documentation for specified system call and
report the error to your local Encina service representative.

Internal call failure: call, status status-# (status-string)

Explanation:  An internal routine unexpectedly failed. Report the error to your local Encina service representative.

Memory failure: Could not allocate memory for variable of size size bytes.

Explanation:  An internal attempt to allocate a block of memory of the specified size failed. Review program's use of
memory. Make sure that allocated memory is appropriately freed.

Call to call returned unexpectedly.

Explanation:  An internal call unexpectedly returned. For example, an internal call to longjmp or bde_ThreadExit
should not return. Report the error to your local Encina service representative.

  Appendix A. Messages 733



  
 

Invalid value for parameter parameter (hex-value>=) provided to call.

Explanation:  A parameter or variable contained an unexpected value; for example, an invalid thread identifier was
passed to bde_ThreadDetach. The name of the variable or parameter, along with the unexpected value, are printed
as part of the failure message. Report the error to your local Encina service representative.

Call to unsupported routine (routine).

Explanation:  A call has been made to a routine not supported by the BDE. For example, bde_uxio_Fork is not
supported in the Multiple-process BDE. Calling this routine would raise this error. Report the error to your local
Encina service representative.

Usage error: Attempted to detach thread (thread-id) that is currently being joined.

Explanation:  An attempt was made to detach the specified thread, but the thread is currently being joined. Report
the error to your local Encina service representative.

Usage error: Attempted to join with thread (thread-id) that is detached.

Explanation:  An attempt was made to join with the specified thread, but the thread is detached. Report the error to
your local Encina service representative.

Usage error: bde_ThreadSleep called within alarm handler.

Explanation:  It is illegal to call bde_ThreadSleep from within an alarm handler. Report the error to your local Encina
service representative.

BDE Warning Messages

The BDE generates a warning message whenever an exceptional event occurs. The warning is written by
default to stderr. Applications can redirect the output to an alternative destination by using the
trace_Register, trace_Unregister, or trace_FileUpcall function. This section defines the warning
messages that may be output by the BDE and briefly describes why they occur. If a BDE fatal message
occurs, please make a note of the message, and report it to your local Encina service representative.

Thread thread-id is exiting due to uncaught exception.

Explanation:  Either the exception occurred when it was not supposed to occur, or the exception was not handled by
the application program. In the first case, correct the application so this exception is not raised. In the second case,
provide a TRY/CATCH clause for this exception in the application.

Program is exiting due to uncaught exception in main thread.

Explanation:  The main thread received an exception. Because it is the main thread, it will exit with bde_Exit. See
suggested recourses listed in the preceding.

Exception: exception exception#

Explanation:  The uncaught exception has been identified by name and number.

Exception: unknown exception (state information)

Explanation:  The uncaught exception did not have an exception name associated with it, so state information is
printed instead.

734 Encina Toolkit Executive Guide and Reference  



  
 

BDE Audit Messages

Size estimate reached the OS limit. Assumed number MB.

Explanation:  In trying to determine the size of a file, Encina was unable to do so and is assuming the size is the
maximum allowable file size number.

  Appendix A. Messages 735



  
 

 Utilities Diagnostics

Encina components are built using the Encina utilities package. Although these interfaces are not
available to Encina users, error messages generated by Encina applications can use messages from the
utilities.

"*** Memory error error *** "
File: filename Line: line number"

Explanation:  An internal attempt to allocate a block of memory. Review program's use of memory and make sure
that allocated memory is appropriately freed.

736 Encina Toolkit Executive Guide and Reference  



  
 

 DCE Diagnostics

Check your DCE documentation.

  Appendix A. Messages 737



  
 

738 Encina Toolkit Executive Guide and Reference  



  
 

Appendix B. Administrative RPC Interfaces for the Encina
Toolkit

Note:  Although z/OS provides only ephemeral client support, for completeness this Appendix discusses
administrative functions that can be provided in a server as well as an administrative client.

This appendix provides general information about the RPC interfaces to the administrative functions
exported by the Encina Toolkit. These RPC interfaces are provided to aid in the development of online
facilities for administering servers built using the Encina Toolkit.

Servers constructed using the Encina Toolkit rely on the services provided by various modules of the
Toolkit. All servers that use these Toolkit modules share access both to those underlying modules and to
a set of facilities to administer these components. However, each server also has its own specific
administrative needs which are defined by the resource(s) it manages.

In our architecture for administering servers, each server provides a facility specific to the resources it
manages, and all servers share a facility for the Toolkit components. Each of these administrative
facilities has two components: an RPC interface and an interactive program for accessing this interface.

Each server projects two RPC interfaces for administration, one for performing server-specific
administration and the other for administering constituent Toolkit components. The second interface is the
same for all servers. In addition, an interactive tool is provided for administering the Toolkit
components—this tool binds to the appropriate server using the name service. Figure 71 illustrates this
architecture.

Server 1

Server 2 server2
admin

server1
admin

toolkit
administrative
interface

Figure 71. The Encina Toolkit Administration Model

This section of this document discusses the RPC interfaces provided to the administrative functions
exported by the modules of the Encina Toolkit. Integrating these administrative RPC interface definitions
with your applications provides remote access to the administrative functions of the underlying Toolkit
modules. For additional information about other aspects of Encina administration, see the following:

� For information about the administrative interfaces exported by specific servers, see the administrative
documentation for those servers.

 Copyright IBM Corp. 1989, 2001  739



  
 

� For information about the command-line tool provided for the administration of specific servers, see
the administrative documentation for those servers.

� For information about the interactive tools provided for server administration, see the Administrator's
Guide for your system.

 General Information

This section provides general information about the RPC interfaces provided for remote access to the
administrative functions of the Encina Toolkit. This includes information about the naming conventions
used for these functions, parameter profiles for these functions, and handling errors when calling these
functions. The chapter concludes by explaining how to incorporate these RPC interfaces into clients that
you may be writing.

All of the administrative macros and functions discussed in this portion of the this document are either
defined in administrative include files (C-language definition files with the .h extension) or in IDL (Interface
Definition Language) files. IDL is the language used to define interfaces from which client and server
stubs can be generated for applications that communicate using the DCE RPC (Remote Procedure Call)
communication mechanism. The DCE RPC communication mechanism is part of the basic distributed
system services that DCE provides.

Naming Conventions for Administrative RPC Functions

The administrative RPC interfaces exported by the Encina Toolkit are all of the form
admin_Toolkit-component_admin-function-name. The admin_ prefix indicates that this is an
administrative function provided for general Toolkit administration. The next portion of the name,
Toolkit-component, identifies the Toolkit module that exports the administrative function corresponding to
this function. The portion of the name referred to as Toolkit-component_admin-function-name is
usually the same as the name of an administrative function exported by the interface of a particular
component.

For example, the RPC interface function provided to contact the Transaction Service (TRAN) function
tran_TidTopAncestor is the admin_tran_TidTopAncestor function. The syntax of these two functions is
the following:

 tran_status_t tran_TidTopAncestor(
IN tran_tid_t tid,
OUT tran_tid_t GtopAncestorP)

 admin_wireStatus_t admin_tran_TidTopAncestor(
IN handle_t h,
IN admin_tran_tid_t tid,
OUT admin_tran_tid_t GtopAncestorP,
OUT admin_tran_status_t Gstatus)

As shown in this example, the RPC interface provided for this function simply exchanges the native
Transaction Service data types for the equivalent IDL data types, and provides two additional parameters.
The first parameter is the handle_t parameter, which identifies the server to which the administrative RPC
should be issued, and on which the appropriate Transactions Service function will actually be executed.
The second parameter which appears in the IDL administrative function, but not in the actual Toolkit
module function, is the admin_tran_status_t parameter, which returns (in this case) the actual Transaction
Service status code that was returned when the function was executed on the server identified by handle.
This is not really a "new" parameter, as it returns the status code returned by the underlying administrative
Toolkit function. This last parameter is discussed in the next section. The admin_wireStatus_t type is
another name for admin_status_t, which is described in the next section.

740 Encina Toolkit Executive Guide and Reference  



  
 

Errors Returned By Administrative RPC Functions

All of the administrative functions discussed in this document return a status code of type admin_status_t.
This returns a status code that is specific to the administrative functions described in this document. It is
also important to retrieve and translate the underlying, component-specific status codes in case of an
error. This is done through the last parameter to each of the administrative interfaces described in this
document, which is always an OUT parameter, and can therefore be used to relay component-specific error
codes back to the administrative application.

Table 17. Possible Return Values from Administrative RPC Functions

Return Status Code Interpretation

ADMIN_AUTH_FAILURE The caller is not authorized to execute the function.

ADMIN_SUCCESS The requested administrative function completed
successfully.

ADMIN_SERVER_NOT_IN_ADMIN_MODE The server has to be in administration mode for
certain commands such as restore lvols

ADMIN_CANNOT_OPEN_TRACE_FILE Cannot open specified file as trace output.

ADMIN_INVALID_COMPONENT Invalid component for query, trace, untrace, or
dump component.

ADMIN_ALREADY_INITIALIZED The admin initialization function has been called.

ADMIN_TRACE_DESTINATION_NOT_INITIALIZED Trace destination has not been initialized.

It is important to realize that only the combination of a successful status code from the administrative
function and a successful component-specific status code indicates that the administrative function
completed successfully. Both status codes must be examined because underlying services can generate
exceptions which the administrative interfaces have no way of catching.

Administrative functions return errors that fall into the following four classes:

1. An exception can be raised by the DCE run time during the execution of the administrative function.
For example, rpc_communication_failure is raised if the remote call failed due to a communication
error.

2. The function can be rejected by the server because the caller is not authorized to execute
administrative functions. In this case, the function returns a status code of ADMIN_AUTH_FAILURE and
the values of all the OUT parameters of the function are undefined.

3. The function is accepted by the server but the server finds the arguments invalid, such as an invalid
file name for the redirect trace component command.

4. The function returns ADMIN_SUCCESS, but there is an error returned via the component specific error
code in the function. For example, the function admin_tran_TidTopAncestor will return ADMIN_SUCCESS
and TRAN_TID_NOT_VALID as the value for its status parameter if it is called with an invalid transaction
identifier.

Again, an admin function can be taken to have executed successfully only if it generates no exceptions,
returns ADMIN_SUCCESS, and the component specific code indicates success.

  Appendix B. Administrative RPC Interfaces for the Encina Toolkit 741



  
 

Using the RPC Interfaces in Applications

This section describes how to use administrative RPC interfaces in server and client programs. All of the
administrative interfaces exported by the Encina Toolkit are nontransactional. There are no guarantees as
to whether a specified function completed successfully if a system failure occurs.

Using Administrative RPC Interfaces in Server Programs:  To export in a server program,
any of the interfaces this document describes, you must do the following:

1. Include the admin.h file, which is located in the admin directory in the Encina include directory.

2. Link to the library libadmin.a. In z/OS, libadmin.a is part of ECNDLL.

3. If the DCE Security Service is used, you should register a function provided by your server with the
admin_RegisterAuthorizationCallBack function. An example is

 admin_RegisterAuthorizationCallBack(MyCheckAuthorization)

where MyCheckAuthorization is a function provided by the server with the following prototype:

 MyCheckAuthorization(handle_t handle,
char G functionName)

The variable handle is the RPC handle and functionName is the RPC manager's function name. This
server-provided function should verify the client's authorization on the given function and return 1 if the
authorization test passes and 0 if the test fails.

Using Administrative RPC Interfaces in Administrative Client Programs:  To use any
of the interfaces this document describes in an administrative client, you must do the following:

1. Process the IDL file containing the interface definitions you want to use. The DCE IDL compiler
generates the appropriate client and server stubs. The IDL files can be found in the admin directory in
the Encina include directory.

2. For each RPC interface that you want to use, include the IDL-generated header files, compile, and link
the IDL-generated client stub files.

3. In your application, before attempting to call any of these administrative interfaces, acquire a
fully-bound RPC handle to the server.

RPC Interfaces for Toolkit Administration

This section contains the IDL (and associated) files containing the administrative RPC interface functions
provided with the Encina Toolkit. The administrative RPC interface for each individual Toolkit component
is documented in the chapter describing that component.

Support Files for Administrative RPC Interfaces

742 Encina Toolkit Executive Guide and Reference  



  
 

#ifndef ADMIN_H
#define ADMIN_H

#include <dce/idlbase.h>
#include <dce/rpc.h>
#include <encina/encina.h>
#include <admin/admin_status.h>

#include <encina/c_prologue.h>

typedef unsigned long (Gadmin_genericCallbackFunction_t) (
#if ENCINA_C_PROTOTYPES

/G IN G/ handle_t handle,
/G IN G/ char GfunctionName,
/G IN G/ void Gblob,
/G IN G/ unsigned long len

#endif /G ENCINA_C_PROTOTYPES G/
 );

/G
 G admin_restrictedMode -- variable used to record whether the server
 G has been started in a "restricted" mode allowing for only admin.
 G operations.
 G/
#define admin_SetRestrictedMode(x) (admin_restrictedMode = (x))

#if defined(WIN32) && !defined(_ENCINA_DLL_BUILD_)
#define admin_restrictedMode (Gadmin_restrictedMode)
#endif
extern unsigned long admin_restrictedMode;

/G
 G admin_RegisterAuthorizationCallback -- register an authorization
 G callback that is executed on every admin call received by a server.
 G/
extern admin_status_t admin_RegisterAuthorizationCallback(
#if ENCINA_C_PROTOTYPES

/GING/ int (GadminAuthCallback)(
/GING/ handle_t handle,
/GING/ char GfunctionName)

#endif /G ENCINA_C_PROTOTYPES G/
 );

Figure 72 (Part 1 of 4). admin.h

  Appendix B. Administrative RPC Interfaces for the Encina Toolkit 743



  
 

/G
 G admin_ExecuteAuthorizationCallback -- execute the authorization
 G callback (if one has been registered).
 G
 G Returns TRUE if the caller is authorized to execute the function
 G specified.
 G FALSE if not authorized.
 G/
extern int admin_ExecuteAuthorizationCallback(
#if ENCINA_C_PROTOTYPES

/GING/ handle_t handle,
/GING/ char GfunctionName

#endif /G ENCINA_C_PROTOTYPES G/
 );

/G
 G admin_RegisterGenericCallback -- register a generic callback.
 G/
extern admin_status_t admin_RegisterGenericCallback(
#if ENCINA_C_PROTOTYPES

/G IN G/ char GcallbackName,
/G IN G/ admin_genericCallbackFunction_t genericCallback

#endif /G ENCINA_C_PROTOTYPES G/
 );

/G
 G admin_ExecuteGenericCallback -- execute the generic callback (if one
 G has been registered).
 G
 G/
extern admin_status_t admin_ExecuteGenericCallback(
#if ENCINA_C_PROTOTYPES

/G IN G/ handle_t handle,
/G IN G/ char GfunctionName,
/G IN G/ void Gblob,
/G IN G/ unsigned long len,
/G OUT G/ unsigned long GcallbackStatusOut

#endif /G ENCINA_C_PROTOTYPES G/
 );

Figure 72 (Part 2 of 4). admin.h

744 Encina Toolkit Executive Guide and Reference  



  
 

/G
 G admin_InitTraceDestination -- init destinations of trace classes
 G/
extern admin_status_t admin_InitTraceDestination();

/G
 G admin_RedirectTrace -- redirect trace info
 G/
extern admin_status_t admin_RedirectTrace(
#if ENCINA_C_PROTOTYPES

/GING/ unsigned long traceClass,
/GING/ char GfileName

#endif /G ENCINA_C_PROTOTYPES G/
 );

extern int admin_AddTraceRedirectSpecification(
#if ENCINA_C_PROTOTYPES

/GING/ char GredirectString
#endif /G ENCINA_C_PROTOTYPES G/
 );

extern admin_status_t admin_QueryRedirect(
#if ENCINA_C_PROTOTYPES

/GING/ unsigned long traceClass,
/GOUTG/ char GGfileNameP

#endif /G ENCINA_C_PROTOTYPES G/
 );

extern void admin_Free(
#if ENCINA_C_PROTOTYPES

/GING/ void Gptr
#endif /G ENCINA_C_PROTOTYPES G/
 );
/G
 G admin_RegisterInterface --
 G Treat the given interface as administrative. Its calls
 G are processed by threads from a separate pool.
 G/
extern void admin_RegisterInterface(
#if ENCINA_C_PROTOTYPES

/GING/ rpc_if_handle_t ifspec,
/GING/ rpc_mgr_epv_t mgr_epv,
/GING/ char GifName,
/GINOUTG/ int GifInitDoneP

#endif /G ENCINA_C_PROTOTYPES G/
 );

Figure 72 (Part 3 of 4). admin.h

  Appendix B. Administrative RPC Interfaces for the Encina Toolkit 745



  
 

/G
 G Support for exit method support
 G/
extern void admin_RegisterExitMethod(
#if ENCINA_C_PROTOTYPES

/GING/ int (Gfp)(int st)
#endif /G ENCINA_C_PROTOTYPES G/
 );

/G
 G ADMIN_INIT -- macro provided for backward compatibility
 G/
#define ADMIN_INIT(serverName, serverUuid) \
 admin_trace_SetServerName(serverName)
extern void admin_trace_SetServerName(
#if ENCINA_C_PROTOTYPES

/GING/ char GserverName
#endif /G ENCINA_C_PROTOTYPES G/
 );

/G Tracing requirements G/
#if defined(WIN32) && !defined(_ENCINA_DLL_BUILD_)
#define admin_traceMask (Gadmin_traceMask)
#endif
extern unsigned long admin_traceMask;
#define ADMIN_SECURITY_EVENT ((unsigned long) 1L << 16)
#define ADMIN_TRACE_DEST_EVENT ((unsigned long) 1L << 17)

#define ADMIN_MGR_TRACE_EVENT ((unsigned long) 1L << 24)
#define ADMIN_MGR_GEN_EVENT ((unsigned long) 1L << 25)
#define ADMIN_MGR_DIAG_EVENT ((unsigned long) 1L << 26)

extern void admin_DumpState();

#include <encina/c_epilogue.h>
#endif /G ADMIN_H G/

Figure 72 (Part 4 of 4). admin.h

interface admin_types
{

typedef long unsigned admin_wireStatus_t;

typedef struct {
[ptr, string] char GstrP;

 } admin_string_t;

Figure 73 (Part 1 of 2). admin_types.idl

746 Encina Toolkit Executive Guide and Reference  



  
 

typedef struct {
unsigned long listLength;
[ptr, size_is(listLength)] admin_string_t Gstrings;

 } admin_strings_t;

typedef [ptr, string] char Gadmin_simpleString_t;

typedef struct {
unsigned long wordSize;
[ref, size_is(wordSize)] byte GbyteOrdering;

 } admin_traceRep_t;

typedef struct {
unsigned long size;
[ptr, size_is(size)] byte Gdata;

 } admin_byteArray_t;
}

Figure 73 (Part 2 of 2). admin_types.idl

Administrative RPC Interfaces for General Service

The following RPC interface is for general Toolkit server administration.

 � admin_gen_CancelAlarm

 � admin_gen_CheckAuthorization

 � admin_gen_DumpMemoryPlumbing

 � admin_gen_ExecGenericCallback

 � admin_gen_GetLocalIdentity

 � admin_gen_GetProcessIdentifier

 � admin_gen_GetWorkingDirectory

 � admin_gen_QuiesceServer

 � admin_gen_ShutdownServer

  Appendix B. Administrative RPC Interfaces for the Encina Toolkit 747



  
 

interface admin_gen
{
 import "admin/admin_types.idl";

typedef unsigned long admin_genStatus_t;
typedef [string, ptr] char Gadmin_genString_t;

 admin_wireStatus_t
 admin_gen_ShutdownServer(

[in] unsigned long exitCode,
[in] unsigned long seconds,
[out] unsigned long GalarmTagOut,
[out] admin_genStatus_t GstatusOut

 );

 admin_wireStatus_t
 admin_gen_CancelAlarm(

[in] unsigned long alarmTag,
[out] admin_genStatus_t GstatusOut

 );

 admin_wireStatus_t
 admin_gen_CheckAuthorization(

[in, string] char GfunctionName,
[out] unsigned long GauthorizedOut

 );

 admin_wireStatus_t
 admin_gen_GetProcessIdentifier(

[out] unsigned long GprocessIdOut
 );

typedef struct {
unsigned long identifierCount;
[ptr, size_is(identifierCount)] unsigned long Gidentifiers;
[ptr, size_is(identifierCount)] admin_genString_t GidentifierNames;
[ptr, size_is(identifierCount)] admin_genString_t GidentifierTypes;

 } admin_genIdentityList_t;

Figure 74 (Part 1 of 2). admin_gen.idl

748 Encina Toolkit Executive Guide and Reference  



  
 

 admin_wireStatus_t
 admin_gen_GetLocalIdentity(

[out, ref] admin_genIdentityList_t Gidentities
 );

 admin_wireStatus_t
 admin_gen_GetWorkingDirectory(

[out] admin_genString_t GworkingDirectory
 );

 admin_wireStatus_t
 admin_gen_DumpMemoryPlumbing(

[in] unsigned long flags,
[in, string] char GfileName

 );

 admin_wireStatus_t
 admin_gen_ExecGenericCallback(

[in, string] char GcallbackName,
[in, size_is(len)] byte blob[],
[in] unsigned long len,
[out] admin_genStatus_t GstatusOut,
[out] unsigned long GcallbackStatusOut

 );

 admin_wireStatus_t
 admin_gen_QuiesceServer(

[in] unsigned long exitCode,
[in] unsigned long seconds,
[out] unsigned long GalarmTagOut,
[out] admin_genStatus_t GstatusOut

 );
}

Figure 74 (Part 2 of 2). admin_gen.idl

  Appendix B. Administrative RPC Interfaces for the Encina Toolkit 749



  
 

750 Encina Toolkit Executive Guide and Reference  



  
 

Appendix C. Building Encina Applications

This appendix provides information needed in compiling and building Encina applications. It lists the
header files and libraries for all parts of Encina. It also lists platform-specific libraries.

Encina Include Files and Libraries for C and C++ Programs

Table 18 specifies the header files and libraries that must be used when compiling and linking Encina
applications written in C or C++. The order of the list of libraries for each component is significant. In
addition, user libraries should be specified before the libraries listed here.

Note that on UNIX platforms, the library names shown are the names that are used with the -l compiler
option (for example, -lEncina); the actual name of each library file is prefaced by lib and has a suffix of .a
(for example, libEncina.a). On Windows NT and Windows95 platforms, the actual name of the library file
that is linked with the application is prefixed by lib and has a suffix of .lib (for example, libEncRqs.lib).

In z/OS, the Encina library is implemented as a DLL, ECNDLL. To access functions in the DLL,
applications must link with the exports file /usr/lpp/encina/lib/libEncina.x.

 Platform-Specific Libraries

Additional libraries must be linked with the application code. The additional libraries depend on the
operating system and machine type. On most platforms, the DCE library (dce) must be explicitly specified.
For various platforms, the libraries needed are shown in Table 19. For those platforms on which
command-line compilers are typically used, the actual command-line arguments for the compilers are
shown in the table.

Table 18. Encina Toolkit Executive Include Files and Libraries for C Programs

C Products

Encina Component Header Files Libraries

Transaction Service tran/tran.h ECNDLL, libEncina.x

Thread-to-Tid Mapping Service threadTid/threadTid.h ECNDLL, libEncina.x

TRPC trpc/trpc.h ECNDLL, libEncina.x

Encina Abort Facility encina/afac.h ECNDLL, libEncina.x

DCE Utilities Library trdce/trdce.h ECNDLL, libEncina.x

TX Interface tx/tx.h ECNDLL, libEncina.x

TX Interface with Encina
Extensions

tx/tx_extensions.h ECNDLL, libEncina.x

Transactional-C tc/tc.h
tc/rpc/tc_trpc.h

ECNDLL, libEncina.x

Table 19 (Page 1 of 2). Platform-Specific Libraries

Platform Additional Libraries to Include

AIX -ldce

 Copyright IBM Corp. 1989, 2001  751



  
 

Note: Information on system libraries may change with time. See the release notes for the platform you
are using for the most current information on system libraries for that platform.

Table 19 (Page 2 of 2). Platform-Specific Libraries

Platform Additional Libraries to Include

OS/2 dceos2

z/OS libEncina.x

Windows NT (Microsoft Visual C++) msvcrt pthreads libdce

752 Encina Toolkit Executive Guide and Reference  



  
 

Appendix D. Source Code for the Sample Applications

This appendix lists the source code for the Telshop application, from which examples throughout this
manual were taken. This appendix excludes any files generated by the tidl or idl programs.

The client and server application sources included here are intended for use as examples only.
Subsequent changes in Tran-C, the modules of the Encina Toolkit, or in DCE or system services may
mean that these applications cannot be compiled without some modification.

Some source files may have been modified to improve formatting for this document.

The telshop.c File

/G
 G Telshop.c -- A simple application to exercise the merchandise
 G server. Allows user to construct and execute transactions that
 G perform operations on Merchandise.
 G/

#include <pthread.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>

#include <trdce/trdce.h>
#include <tc/tc.h>
#include <tc/rpc/tc_trpc.h>
#include <merch.h>
#include <utilities.h>

/G Local Function Declarations G/

static void Initialize();
static trpc_handle_t LookupServer();
static void ProcessOrders();
static void TakeOrder();
static void QueryItem();
static void OrderItem();
static void PrintCmdError();
static void InnerLoopHelp();
static void OuterLoopHelp();
static int GetInt();
static char GetCommand();
static void AbortFormatter();

Figure 75 (Part 1 of 8). telshop.c

 Copyright IBM Corp. 1989, 2001  753



  
 

/G Abort Codes and Format G/
typedef enum {
CANCELLED_BY_USER = 1

} abortCode_t.

static char ABORT_FORMAT[] = "BB14ad2B-e154-1d68-85bB-9e62B92caa77".

inModule("Telshop");
useAbortFormat(ABORT_FORMAT);

/G Global Variable G/

/G merchandiseHandle -- holds the object that provides access to the
 G merchandise server being used by the telshop client. G/

trpc_handle_t merchandiseHandle;

/G main -- perform necessary initializations then process user
 G requests. G/

int main(argc, argv)
int argc;
char Gargv[].
{
 Initialize(argc, argv);

 ProcessOrders();
}

/G Local Functions G/

/G Initialize -- prepare the telshop application for taking orders G/

static void Initialize(argc, argv)
 int argc;
 char Gargv[].
{

unsigned long status;

 char GserverName;
/G Parse command line G/
if (argc != 2)

 FATAL(("Usage: %s <serverName>\n", argv[B])).
 else
 serverName = argv[1].

Figure 75 (Part 2 of 8). telshop.c

754 Encina Toolkit Executive Guide and Reference  



  
 

/G Begin Tran-C initialization G/
 preInitTC();

/G Initialize TRPC G/
status = trpc_InitWithTrdce();

 CHECK_STATUS(status);
 tc_InitTRPC();

/G Finish Tran-C initialization G/
 postInitTC();

/G Initialize merchandise module G/
 merchandise_Initialize();

/G register function to convert local abort codes to strings G/
 REGISTER_ABORT_FORMATTER(ABORT_FORMAT, AbortFormatter);

merchandiseHandle = LookupServer(serverName);
}

/G LookupServer -- construct and return a transactional handle for a
 G server with the given name. If a handle is found it is returned; if
 G no handle is found, the program exits. G/

static trpc_handle_t LookupServer(serverName)
unsigned char GserverName;

{
 rpc_binding_handle_t rpcHandle;
 trpc_handle_t trpcHandle;
 unsigned32 status;

/G Get an RPC handle from the directory service G/
trdce_BindingImport((unsigned_char_t G) serverName, &rpcHandle,

 &status);
 CHECK_STATUS(status);

/G Found a valid handle -- use it to construct a TRPC handle G/
status = trpc_ConsBinding(rpcHandle, TRAN_APPL_ID_NULL,

 TRAN_ADDRESS_NULL,
 TRUE, &trpcHandle);
 CHECK_STATUS(status);
 return(trpcHandle);
}

Figure 75 (Part 3 of 8). telshop.c

  Appendix D. Source Code for the Sample Applications 755



  
 

/G ProcessOrders -- allow the user to decide whether to
 G process another order or to exit the program. G/

static void ProcessOrders ()
{
 char command;

while (TRUE) {
command = GetCommand("Telshop: ").

 switch(command) {
case 'B': /G Begin a new Order G/

 TakeOrder();
 break;

case '?': /G Print commands, etc. G/
 OuterLoopHelp();
 break;

case 'E': /G Exit program G/
 exitTC(B);

 default:
 PrintCmdError(command);
 }
 }
}

/G TakeOrder -- interactively construct and process an order
 G (a transaction that uses the merchandise server). G/

static void TakeOrder()
{
 char command;

 inFunction("TakeOrder");

 transaction {
 do {

command = GetCommand(" Command: ").

 switch(command) {
case 'Q': /G Ask about item availability G/

 QueryItem();
 break;

Figure 75 (Part 4 of 8). telshop.c

756 Encina Toolkit Executive Guide and Reference  



  
 

case 'O': /G Order some amt. of an item. G/
 OrderItem();
 break;

case 'S': /G Submit order G/
 break;

case 'C': /G Cancel this transaction G/
 abortWithCode(CANCELLED_BY_USER);

case '?': /G Print commands, etc. G/
 InnerLoopHelp();
 break;

default: /G Invalid command G/
 PrintCmdError(command);
 }

} while (command != 's' && command != 'S');
 }
 onCommit
 printf("Order processed.\n");
 onAbort

printf("Order aborted: %s (%s)\n", abortReason(),
 abortModuleName());
}

/G QueryItem -- query the Merchandise server for an item. G/

static void QueryItem()
{

ndr_long_int item = GetInt("Check item: ").
 ndr_long_int numAvailable;

merchandise_QueryItem(merchandiseHandle, item, &numAvailable);

if (numAvailable == B)
printf(" Item %d is out of stock.\n", item);

else if (numAvailable == 1)
printf(" There is 1 of item %d.\n", item);

 else
printf(" There are %d of item %d\n", numAvailable, item);

}

Figure 75 (Part 5 of 8). telshop.c

  Appendix D. Source Code for the Sample Applications 757



  
 

/G OrderItem -- order an item from the Merchandise server. G/

static void OrderItem()
{

ndr_long_int item = GetInt(" Order item: ").
ndr_long_int quantity = GetInt(" Quantity: ").

merchandise_OrderItem(merchandiseHandle, item, quantity);
}

/G PrintCmdError -- used when the user types an invalid command. G/

static void PrintCmdError(command)
 char command;
{

printf("%c is not a valid command.\n", command);
printf("Please type a question mark (?) for help\n");

}

/G InnerLoopHelp -- print the commands available at this point
 G in the program. Used when the user asks for help. G/

static void InnerLoopHelp()
{

printf(" Valid commands are: \n").
 printf(" q: Query an item's availability\n").
 printf(" o: Order a quantity of some item\n").
 printf(" s: Submit an order\n").
 printf(" c: Cancel. End this order without submitting it\n").
 printf(" ?: Prints a help message.\n").
}

/G OuterLoopHelp -- print the commands available at this point
 G in the program. Used when the user asks for help G/

static void OuterLoopHelp()
{

printf("Valid commands are: \n").
printf(" b: Begin an order\n").
printf(" e: Exit the program.\n").
printf(" ?: Prints a help message.\n").

}

Figure 75 (Part 6 of 8). telshop.c

758 Encina Toolkit Executive Guide and Reference  



  
 

/G GetInt -- Reads in the parameters for the telshop operations.
 G Parameters:
G prompt: prompt to show the user. G/

static int GetInt(prompt)
 char Gprompt;
{
 int num;

/G Writing to the standard output, reading from standard input G/
 printf(" %s", prompt);
 fflush(stdout);
 scanf("%d", &num);

 return (num);
}

/G GetCommand -- Reads the next operation.
 G Parameters:
G prompt: prompt to show the user. G/

static char GetCommand(prompt)
 char Gprompt;
{
 char command;

/G Writing to the standard output, reading from standard input G/
 printf(" %s", prompt);
 fflush(stdout);
 do {

command = getchar();
} while (isspace(command)).

 printf("\n");

 return(toupper(command));
}

/G AbortFormatter - converts the integer abort code contained in
 G abortReasonP to a string. Note that at most
 G ENCINA_MAX_STATUS_STRING_SIZE may be written into bufferP. Also,
 G this routine returns only English strings; if this module were
 G natural language (NLS) compliant, this routine would consult a
 G language catalog. G/

Figure 75 (Part 7 of 8). telshop.c

  Appendix D. Source Code for the Sample Applications 759



  
 

static void AbortFormatter(abortReasonP, bufferP)
 encina_abortReason_t GabortReasonP;
 char GbufferP;
{
 char GabortString;

 switch(abortReasonP->code) {
 case CANCELLED_BY_USER:

abortString = "User cancelled the order.";
 break;

 default:
abortString = "Unknown abort code.";

 }
 strcpy(bufferP, abortString);
}

Figure 75 (Part 8 of 8). telshop.c

760 Encina Toolkit Executive Guide and Reference  



  
 

The base_merchandise.c File

/G
 G merchandise.c -- A simple recoverable transactional-C server application:
 G the merchandise server. It implements a simple merchandise database
 G atop the recArray package.
 G/

#include <stdio.h>
#include <dce/rpc.h>
#include <admin/admin.h>
#include <trdce/trdce.h>
#include <trpc/trpc.h>
#include <tc/tc.h>
#include <tc/rpc/tc_trpc.h>
#include <utilities.h>
#include <merch.h> /G Exported interface G/
#include <recArray.h> /G Recoverable module G/

inModule("Merchandise");
useAbortFormat(MERCHANDISE_ABORT_FORMAT);

/G configParams_t - structure for organizing the configuration parameters
 G passed into the merchandise server. G/
typedef struct {
 char GserverName;
 char GprincipalName;
 char GkeyFile;
 char GvolRestartString;
 char GlogVolName;
 char GlogArchDevName;
 char GdataVolName;
} merchandiseData_configParams_t;

/G Declare local functions G/
static void ParseArguments();
static void Initialize();
static void StockUpIfFirstRun();
static void TimeOutTran();
static int AnyoneCanAdminister();

/G main -- perform necessary initializations then start server G/
int main(argc, argv)
 int argc;
 char GGargv;
{
 merchandiseData_configParams_t configParams;
 unsigned32 status;

Figure 76 (Part 1 of 6). base_merchandise.c

  Appendix D. Source Code for the Sample Applications 761



  
 

/G Ensure all output is immediately visible G/
 setbuf(stdout, NULL);

ParseArguments(argc, argv, &configParams);

/G Set the principal and key file for trdce G/
trdce_SetPrincipal((unsigned_char_t G)configParams.principalName, &status);

 CHECK_STATUS(status);
trdce_SetKeyFile((unsigned_char_t G)configParams.keyFile, &status);

 CHECK_STATUS(status);

/G Create the login context, register the auth. info with DCE,
G and manage the login context and the keyfile. G/

 trdce_SecManagement(&status);
 CHECK_STATUS(status);

/G Initialize Encina Components G/
 Initialize(configParams.serverName, configParams.volRestartString,
 configParams.logVolName, configParams.logArchDevName,
 configParams.dataVolName);

 StockUpIfFirstRun();

/G Register with RPC runtime G/
 rpc_server_register_if(merchandise_v1_B_s_ifspec, NULL,
 merchandise_v1_B_mgr_epv, &status);
 CHECK_STATUS(status);

/G Allow anyone admin privileges for this example's purposes G/
 admin_RegisterAuthorizationCallback(AnyoneCanAdminister);

/G Start server listening (if it isn't already listening) G/
printf("[Merchandise server is running.]\n");

 trdce_ServerListen(B, &status);
 CHECK_STATUS(status);

 exitTC(B);
}

/G Private functions (called from main) G/

/G AnyoneCanAdminister -- always return true no matter what acls
 G are in handle, so anyone can administer this example server G/

static int AnyoneCanAdminister(handle, rpcManagerFunctionName)
 handle_t handle;
 char GrpcManagerFunctionName;
{
 return TRUE;
}

Figure 76 (Part 2 of 6). base_merchandise.c

762 Encina Toolkit Executive Guide and Reference  



  
 

/G ParseArguments -- parse the command line or get values from
 G environment variables, organizing arguments into the configParams
 G structure. G/

static void ParseArguments(argc, argv, configParamsP)
 int argc;
 char GGargv;
 merchandiseData_configParams_t GconfigParamsP;
{
 char GauthnStr;
 unsigned32 authnLevel;

if (argc != 6 && argc != 8)
 FATAL(("Usage: %s <serverName> <principal> <keytab-file> \
<volRestartString> <logVolName> \
[<logArchDevName> <dataVolName>] \n", argv[B]));

/G These parameters come from the command line G/
configParamsP->serverName = argv[1];
configParamsP->principalName = argv[2];
configParamsP->keyFile = argv[3];
configParamsP->volRestartString = argv[4];
configParamsP->logVolName = argv[5];
configParamsP->logArchDevName = (argc == 8 ? argv[6] : NULL);
configParamsP->dataVolName = (argc == 8 ? argv[7] : NULL);

}

/G Initialize: Initialize the Encina components used: Tran-C,
TRPC, and the Encina Server Core, through recArray. G/

static void Initialize(serverName, volRestartString, logVolName,
 logArchDevName, dataVolName)

char GserverName, GvolRestartString, GlogVolName;
char GlogArchDevName, GdataVolName;

{
 unsigned32 status;

/G Begin initialization of TRPC, Tran-C and the recoverable array G/
 preInitTC();

/G Register with CDS and initialize TRPC G/
trdce_ServerRegister((unsigned char G)serverName, &status);

 CHECK_STATUS(status);
status = trpc_InitWithTrdce();

 CHECK_STATUS(status);
 tc_InitTRPC();

/G Initialize underlying data storage package G/
recArray_Init(volRestartString, logVolName, logArchDevName, dataVolName);

/G Finish Tran-C and recoverable array initialization G/
 postInitTC();
}

Figure 76 (Part 3 of 6). base_merchandise.c

  Appendix D. Source Code for the Sample Applications 763



  
 

/G RAND -- returns random number from min to max inclusive G/

#define RAND(max,min) ((rand() % ((max) - (min) + 1)) + (min))

/G StockUpIfFirstRun -- At first run, "stock up" by loading the array
 G with random values between MERCHANDISE_MIN_INITIAL_STOCK and
 G MERCHANDISE_MAX_INITIAL_STOCK. G/

static void StockUpIfFirstRun()
{
 int initialized;
 int i = B;

/G Zero position in array records the array initialization. G/
initialized = recArray_Read(B);

if (!initialized) {
/G Initialize data G/
for (i=1; i < REC_ARRAY_SIZE; i++) {

int initialValue = RAND(MERCHANDISE_MAX_INITIAL_STOCK,
 MERCHANDISE_MIN_INITIAL_STOCK);

 recArray_Write(i, initialValue);
 }

/G Record the fact that we are initialized. G/
 recArray_Write(B, TRUE);
 }
}

/GG
 GG Exported functions (Manager Functions)
 GG/

/G Merchandise_QueryItem -- returns the quantity of an item in stock,
 G given the stock number. Aborts the calling transaction if
 G stockNum is out of bounds. G/

void merchandise_QueryItem(trpcHandle, stockNum, quantityP)
 trpc_handle_t trpcHandle;
 idl_long_int stockNum;
 idl_long_int GquantityP;
{
 inFunction("merchandise_QueryItem");

/G If stockNum is out of bounds abort the transaction G/
if (stockNum <= B || stockNum >= REC_ARRAY_SIZE)

 abortWithCode(MERCHANDISE_BAD_STOCK_NUM);

/G Get the quantity G/
GquantityP = recArray_Read(stockNum);

Figure 76 (Part 4 of 6). base_merchandise.c

764 Encina Toolkit Executive Guide and Reference  



  
 

/G Set timer to abort transaction if client transaction does not
G finish within MERCHANDISE_TRANSACTION_TIME_OUT seconds. G/
watchTran(TimeOutTran, NULL, MERCHANDISE_TRANSACTION_TIME_OUT,

 FALSE, TRUE);
}

/G UpdateQuantity -- Update the quantity of an item in the
 G merchandise database. Aborts the calling transaction if stockNum
 G is out of bounds, or if the resulting quantity is negative. G/

void UpdateQuantity(stockNum, quantity)
 idl_long_int stockNum;
 idl_long_int quantity;
{

 inFunction("UpdateQuantity");

 int newQuantity;

/G If stockNum is out of bounds, or quantity is negative, abort! G/

if (stockNum <= B || stockNum >= REC_ARRAY_SIZE)
 abortWithCode(MERCHANDISE_BAD_STOCK_NUM);

newQuantity = recArray_Read(stockNum) + quantity;

/G If newQuantity is negative abort the transaction G/
if (newQuantity < B)

 abortWithCode(MERCHANDISE_INSUFF_STOCK);

 recArray_Write(stockNum, newQuantity);

/G Set timer to abort transaction if client transaction does not
G finish within MERCHANDISE_TRANSACTION_TIME_OUT seconds. G/
watchTran(TimeOutTran, NULL, MERCHANDISE_TRANSACTION_TIME_OUT,

 FALSE, TRUE);
}

/G merchandise_OrderItem -- Orders requested quantity of item. G/

void merchandise_OrderItem(trpcHandle, stockNum, quantity)
 trpc_handle_t trpcHandle;
 idl_long_int stockNum;
 idl_long_int quantity;
{
 inFunction("merchandise_OrderItem");

/G Insist on positive orders G/
if (quantity <= B)

 abortWithCode(MERCHANDISE_ILLEGAL_QTY);

 UpdateQuantity(stockNum, -quantity);
}

Figure 76 (Part 5 of 6). base_merchandise.c

  Appendix D. Source Code for the Sample Applications 765



  
 

/G Private function called from manager functions G/

/G TimeOutTran -- aborts the calling transaction if it has been idle for
 G MERCHANDISE_TIME_OUT sections G/

static void TimeOutTran (tid, dummy)
 tran_tid_t tid;
 void Gdummy;
{
 abortNamedTranWithCode(tid, MERCHANDISE_TIME_OUT);
}

Figure 76 (Part 6 of 6). base_merchandise.c

766 Encina Toolkit Executive Guide and Reference  



  
 

The merch_client.c File

/G
 G merch_client.c -- This file must be part of any merchandise client.
 G It defines the formatter for abort reasons generated by the
 G merchandise server.
 G/

#include <merch.h> /G Exported interface G/
#include <utilities.h>
#include <string.h>

static void AbortFormatter();

/G
 G merchandise_Initialize -- initialize the merchandise client.
 G
 G/
void merchandise_Initialize()
{
 REGISTER_ABORT_FORMATTER(MERCHANDISE_ABORT_FORMAT, AbortFormatter);
}

/G AbortFormatter - converts the integer abort code contained in
 G abortReasonP to a string. Note that at most
 G ENCINA_MAX_STATUS_STRING_SIZE may be written into bufferP. Also,
 G this routine returns only English strings; if this module were
 G natural language (NLS) compliant, this routine would consult a
 G language catalog. G/

static void AbortFormatter(abortReasonP, bufferP)
 encina_abortReason_t GabortReasonP;
 char GbufferP;
{
 char GabortString;

 switch(abortReasonP->code) {
 case MERCHANDISE_BAD_STOCK_NUM:

abortString = "Stock number out of range.";
 break;

 case MERCHANDISE_INSUFF_STOCK:
abortString = "Stock not available in that quantity.";

 break;

 case MERCHANDISE_ILLEGAL_QTY:
abortString = "Illegal value for a stock quantity.";

 break;

Figure 77 (Part 1 of 2). merch_client.c

  Appendix D. Source Code for the Sample Applications 767



  
 

 case MERCHANDISE_TIME_OUT:
abortString = "Transaction inactive too long at server.";

 break;

 case MERCHANDISE_RESOURCE_MGR_OP_FAILED:
abortString = "Operation on underlying resource manager failed.";

 break;

 default:
abortString = "Unknown abort code.";

 }
 strcpy(bufferP, abortString);
}

Figure 77 (Part 2 of 2). merch_client.c

768 Encina Toolkit Executive Guide and Reference  



  
 

The base_recArray.c File

/G
 G client_recArray.c -- Pretends to be a recovery service, and implements an array abstraction.
 G/

#include <pthread.h>
#include <string.h>

#include <utilities.h>
#include <tran/tran.h>

inModule("client_recArray");

/G
 G Upcalls for 'tran' to use
 G/
static void upcallRecWrite(
 tran_serviceId_t recServiceId,
 tran_tid_t tid,
 tran_logRecord_t record,
 tran_recOptimization_t GoptimizationsRef
) {
 tran_LogRecordDestroy(record) ;
 }
static void upcallRecPrepare(
 tran_serviceId_t recServiceId,
 tran_tid_t tid,
 tran_logRecord_t prepareRecord,
 tran_recOptimization_t GoptimizationsRef
) {
 tran_LogRecordDestroy(prepareRecord) ;
}
static void upcallRecCommit(
 tran_serviceId_t recServiceId,
 tran_tid_t tid,
 tran_recOptimization_t GoptimizationsRef
) {
}
static void upcallRecAbort(
 tran_serviceId_t recServiceId,
 tran_tid_t tid,
 tran_recOptimization_t GoptimizationsRef
) {
}
static void upcallRecFinished(
 tran_serviceId_t recServiceId,
 tran_tid_t tid,
 tran_recOptimization_t GoptimizationsRef
) {
}

Figure 78 (Part 1 of 3). base_recArray.c

  Appendix D. Source Code for the Sample Applications 769



  
 

static void upcallRecActive(
 tran_serviceId_t recServiceId,
 tran_tid_t tid,
 int activeNow
) {
}

/G Exported Function G/

/G recArray_Init -- Initialize the recArray package. Must be called
 G between preInitTC and postInitTC. G/

void recArray_Init(volRestartString, logVolName, logArchDevName, dataVolName)
char GvolRestartString, GlogVolName, GlogArchDevName, GdataVolName;

{

tran_status_t init_Status ;
tran_serviceId_t recServiceId ;

/G Bring up the tran/rec interface G/
init_Status = tran_RecInit(

 upcallRecWrite,
 upcallRecPrepare,
 upcallRecCommit,
 upcallRecAbort,
 upcallRecFinished,
 upcallRecActive,
 &recServiceId) ;

}

#define REC_ARRAY_SIZE 256
static unsigned long recArray[REC_ARRAY_SIZE] ;
/G Exported Functions G/

/G recArray_Read -- return the value in the array at arrayIndex. Note
 G there is no locking. recArray is meant to be general and able to be
 G compiled into any server. It does not know the locking style of its
 G server; the server should do its own locking. G/

unsigned long recArray_Read(arrayIndex)
unsigned long arrayIndex;

{
if ( arrayIndex < REC_ARRAY_SIZE )

 {
return recArray[arrayIndex] ;

} else {
return B ;

 }
}

Figure 78 (Part 2 of 3). base_recArray.c

770 Encina Toolkit Executive Guide and Reference  



  
 

/G recArray_Write -- set the value in the array at arrayIndex to
G value. Note that there is no locking. recArray is meant to be
 G general and able to be compiled into any server. It does not know
 G the locking style of its server; the server should do its own locking G/

void recArray_Write(arrayIndex, value)
unsigned long arrayIndex;
unsigned long value;

{
if ( arrayIndex < REC_ARRAY_SIZE )

 {
recArray[arrayIndex] = value ;

 }

}

Figure 78 (Part 3 of 3). base_recArray.c

  Appendix D. Source Code for the Sample Applications 771



  
 

The server_utils.c File

/G
 G server_utils.c -- Utilities for starting a recoverable server.
 G/

#include <pthread.h>
#include <log/log.h>
#include <rec/rec.h>
#include <vol/vol.h>
#include <restart/restart.h>
#include <tc/tc.h>

#include <utilities.h>
#include <server_utils.h>

inModule("server_utils");

/G CHUNK_SIZE: used when our LOG volume is created. specifies the
 G size of this physical volume, in pages. We are picking a chunk size
 G of two because we don't expect to run very long.
G Note: CHUNK_SIZE must be a power of two. G/

#define CHUNK_SIZE 2

/G INIT_RESTART_BUF_SIZE: guess at the size of the restart area.
 G We don't know the actual size of the restart area until we read.
 G If we guess too small, we just realloc a bigger size and read again. G/

#define INIT_RESTART_BUF_SIZE 16384

static vol_errorAction_t DiskError();

restart_mode_t server_Restart(volRestartString)
 char GvolRestartString;
{

 restart_status_t restartStatus;
 restart_mode_t volRestartMode;
 vol_status_t volStatus;

restartStatus = restart_Initialize(volRestartString,&volRestartMode);
 CHECK_STATUS(restartStatus);

if (volRestartMode == RES_COLD_START) {
 volStatus = vol_Init(DiskError, (void G)B, B,
 restart_WriteRestartData);
 CHECK_STATUS(volStatus);

} else /G GvolRestartModeP == RES_WARM_START G/ {
 unsigned int dataLen;
 unsigned int initBufSize = INIT_RESTART_BUF_SIZE;
 unsigned char GmetaDataP;

Figure 79 (Part 1 of 3). server_utils.c

772 Encina Toolkit Executive Guide and Reference  



  
 

 /G get volume restart meta data G/
 metaDataP = (unsigned char G) malloc(initBufSize);
 MALLOC_CHECK(metaDataP);

 restart_ReadRestartData((void G) metaDataP, initBufSize, &dataLen);
 if (dataLen > initBufSize) {

/G reread with sufficiently large buffer G/
metaDataP = (unsigned char G) realloc(metaDataP, initBufSize);

 MALLOC_CHECK(metaDataP);
restart_ReadRestartData((void G) metaDataP, initBufSize, &dataLen);
ASSERT(initBufSize >= dataLen);

 }

 /G init volume with restart meta data G/
 volStatus = vol_Init(DiskError, (void G) metaDataP, dataLen,
 restart_WriteRestartData);
 CHECK_STATUS(volStatus);
 free(metaDataP);
 }
 return volRestartMode;
}

/G server_CreateVolume -- initialize the recoverable volume. This
 G procedure is dependent upon machine-type G/

vol_logicalVolId_t server_CreateVolume(volName, chunkSize)
 char GvolName;

unsigned long chunkSize;
{

unsigned long status;
 vol_physLayout_t volLayout;
 vol_regionDescr_t regionDescr;
 vol_physicalVolId_t physicalVolId;

unsigned long diskSize;
 vol_logicalVolId_t logicalVolId;

/G Try to initialize the disk. Will succeed on architectures
G that do not have their own volume managers (for example,

 G SunOS, Ultrix). G/
status = vol_InitializeDisk(volName, B, volName, &diskSize);

if (status == VOL_NOT_IMPLEMENTED) {
 /G We are running on an RS6BBB (or other architecture with its
G own logical volume manager). Use appropriate "interoperability
G function" G/

 status = vol_MapLogicalVol(volName, volName, chunkSize,
 &logicalVolId);
 CHECK_STATUS(status);

} else { /G Use standard VOL interface G/
 CHECK_STATUS(status);

Figure 79 (Part 2 of 3). server_utils.c

  Appendix D. Source Code for the Sample Applications 773



  
 

 volLayout.numRegions = 1;
 volLayout.regionDescrList = &regionDescr;
 regionDescr.diskName = volName;
 regionDescr.region.offset = B;
 regionDescr.region.numPages = diskSize - 1;

 status = vol_CreatePhysicalVol(volName, chunkSize, &volLayout,
 &physicalVolId);
 CHECK_STATUS(status);
 status = vol_CreateLogicalVol(physicalVolId, volName, &logicalVolId);
 CHECK_STATUS(status);
 }

 return(logicalVolId);
}

/G server_CreateLogFile -- Create a log file on the specified volume.
 G The volume is first created and initialized G/

void server_CreateLogFile(logFileName, logVolName, logArchDevName)
char GlogFileName, GlogVolName, GlogArchDevName;

{
 vol_logicalVolId_t logVolId;

unsigned long status;

logVolId = server_CreateVolume(logVolName, CHUNK_SIZE);
status = log_InitVol(logVolName, logArchDevName);

 CHECK_STATUS(status);
status = log_CreateLogFile(logFileName);

 CHECK_STATUS(status);
}
/G VOL UPCALLS G/

/G DiskError -- Report the condition and exit. Called when there is a
 G disk error. G/

static vol_errorAction_t DiskError(logicalVol, physicalVol, volPage,
diskName, diskPage, errInfo, retries)

 vol_logicalVolId_t logicalVol;
 vol_physicalVolId_t physicalVol;
unsigned long volPage;

 char GdiskName;
unsigned long diskPage;
unsigned long errInfo;
unsigned int retries;

{
FATAL(("VOL disk %s error%s: disk%s, page %#x, after %d retries \n",
((errInfo & VOL_IOERR_READ) ? "read": "write"),
((errInfo & VOL_IOERR_OFFLINE) ? " (Disk offline)" : ""),
diskName, diskPage, retries));

}

Figure 79 (Part 3 of 3). server_utils.c

774 Encina Toolkit Executive Guide and Reference  



  
 

The utilities.h File

/G
 G utilities.h -- holds declarations, macros, and constants used by
 G the telshop/merchandise client-server program.
 G/

#ifndef _UTILITIES_H_
#define _UTILITIES_H_

#include <stdio.h>
#include <dce/rpc.h>
#include <dce/dce_error.h>
#include <encina/encina.h>
#include <encina/afac.h>
#include <tc/tc.h>

/G Boolean constants G/
#define FALSE B
#define TRUE 1

/G Macro delimiters G/

#define BEGIN_MACRO do {

#define END_MACRO } while (B)

/G FATAL -- Failure. Print error message and exit the program G/

#define FATAL(args) \
BEGIN_MACRO \
 printf args; \
 exit(1); \
END_MACRO

/G CHECK_STATUS: Make sure status is B. print error msg &
 G exit if it isn't. G/

#define CHECK_STATUS(status) \
BEGIN_MACRO \
 char _errorMsg[ENCINA_MAX_STATUS_STRING_SIZE]. \
 if (status) { \
 encina_StatusToString(status, ENCINA_MAX_STATUS_STRING_SIZE, \
 _errorMsg); \

FATAL(("%s(%d): %s\n", __FILE__, __LINE__, _errorMsg)). \
 } \
END_MACRO

Figure 80 (Part 1 of 3). utilities.h

  Appendix D. Source Code for the Sample Applications 775



  
 

/G CHECK_STATUS_ABORT: Make sure status is B. print error msg &
 G abort with the given abort code if it isn't. G/

#define CHECK_STATUS_ABORT(status, abortCode) \
BEGIN_MACRO \
 char _errorMsg[ENCINA_MAX_STATUS_STRING_SIZE]. \
 if (status) { \
 encina_StatusToString(status, ENCINA_MAX_STATUS_STRING_SIZE, \
 _errorMsg); \

printf("%s(%d): %s\n", __FILE__, __LINE__, _errorMsg). \
 abortWithCode((abortCode)); \
 } \
END_MACRO

/G NEW -- Returns a pointer to a newly allocated object of given type. G/

#define NEW(type) ((type G) malloc(sizeof(type)))

/G MALLOC_CHECK -- Make sure there is memory to be allocated;
 G fail if there is not. G/

#define MALLOC_CHECK(memP) \
BEGIN_MACRO \
 if (!(memP)) \

FATAL(("%s(%d): Out of memory.\n", __FILE__, __LINE__)). \
END_MACRO

/G ASSERT -- internal checks that assure the program is running
 G correctly. Use to check program correctness, not user input. G/

#define ASSERT(condition) \
BEGIN_MACRO \
 if (!(condition)) \

FATAL(("%s(%d): Assertion failed.\n", __FILE__, __LINE__)). \
END_MACRO

/G
 G REGISTER_ABORT_FORMATTER -- register a function to convert abort
 G codes to strings. G/

#define REGISTER_ABORT_FORMATTER(formatUuidString, formatFunction)\
BEGIN_MACRO \

unsigned long _status; \
 uuid_t _abortFormatUuid; \

uuid_from_string((unsigned_char_t G) (formatUuidString), \
&_abortFormatUuid, (unsigned32 G) &_status); \

Figure 80 (Part 2 of 3). utilities.h

776 Encina Toolkit Executive Guide and Reference  



  
 

 CHECK_STATUS(_status); \
_status = encina_RegisterAbortFormatter(&_abortFormatUuid, \

 (formatFunction)); \
 CHECK_STATUS(_status); \
END_MACRO

#endif /G _UTILITIES_H_ G/

Figure 80 (Part 3 of 3). utilities.h

  Appendix D. Source Code for the Sample Applications 777



  
 

The merch.h File

/G
 G The merch.h file holds the constants exported by the merchandise.c
 G file and the functions exported by merch_client.c.
 G/

#ifndef _MERCH_H_
#define _MERCH_H_

/G Include the header file generated by TIDL G/
#include <merchandise.h>

/G Constants. The minimum and maximum of the values stored in the
 recoverable array. G/

#define MERCHANDISE_MIN_INITIAL_STOCK 1B
#define MERCHANDISE_MAX_INITIAL_STOCK 2B

/G Number of seconds before inactive transactions aborted by server. G/

#define MERCHANDISE_TRANSACTION_TIME_OUT 6B

/G Number of seconds a transaction waits for lock before a deadlock
 G check G/

#define MERCHANDISE_DEADLOCK_INTERVAL 1B

/G Abort codes and abort format used by Merchandise to abort trans. G/
typedef enum {
MERCHANDISE_BAD_STOCK_NUM = 1,

 MERCHANDISE_INSUFF_STOCK,
 MERCHANDISE_ILLEGAL_QTY,
 MERCHANDISE_TIME_OUT,
 MERCHANDISE_RESOURCE_MGR_OP_FAILED
} merchandise_abortCode_t.

static char MERCHANDISE_ABORT_FORMAT[]
 = "BB5e48b8-3a8B-1d66-8c43-9e62Bd11aa77";

/G Export merchandise initialization function G/

void merchandise_Initialize();

#endif /G _MERCH_H_ G/

Figure 81. merch.h

778 Encina Toolkit Executive Guide and Reference  



  
 

The recArray.h File

/G
 G recArray.h -- Provides access to the recoverable array of integers
 G managed by the telshop server.
 G/

#include <utilities.h>
#include <tran/tran.h>

#define REC_ARRAY_SIZE 256

#define REC_ARRAY_NAME_LEN 256

/G Exported Functions G/

/G recArray_Init -- Initialize LOG and REC; read restart Data;
 G initialize LOCK and VOL; recover data. Must be called in
 G between preInitTC and postInitTC. G/
void recArray_Init();

/G recArray_Read -- returns value in the array at array index. G/
unsigned long recArray_Read();

/G recArray_Write -- writes the specified value into the array
 G at array index G/
void recArray_Write();

Figure 82. recArray.h

  Appendix D. Source Code for the Sample Applications 779



  
 

The server_utils.h File

/G
 G server_utils.h -- Utilities for starting a recoverable server.
 G/

#include <utilities.h>
#include <restart/restart.h>
#include <vol/vol.h>
/G Exported Functions G/

/G server_Restart -- read restart Data and initialize VOL.
 G Must be called in between preInitTC and postInitTC. G/
restart_mode_t server_Restart();

/G server_CreateVolume -- initialize the recoverable volume. G/
vol_logicalVolId_t server_CreateVolume();

/G server_CreateLogFile -- Create a log file on the specified volume.
 G The volume is first created and initialized G/
void server_CreateLogFile();

Figure 83. server_utils.h

From the merchandise.tidl and merchandise.tacf files, the tidl program generates the following files:

 _merchandise.idl

 _merchandise.acf

 merchandise.h

 merchandise_client.c

 merchandise_cswtch.c

 merchandise_manager.c

From the _merchandise.idl and _merchandise.acf files, the idl program generates the following files:

 _merchandise_cstub.c

 _merchandise_sstub.c

 _merchandise.h

780 Encina Toolkit Executive Guide and Reference  



  
 

The merchandise.tidl File

/G
 G TIDL Interface file for the merchandise program.
 G/

[
uuid(BBB83d4c-e722-18fd-9ed2-cB37cf69BBBB),
version(1.B)
]

interface merchandise
{
[transactional] void merchandise_QueryItem([in] trpc_handle_t h,

[in] long stockNum,
[out] long GamountP).

[transactional] void merchandise_OrderItem([in] trpc_handle_t h,
[in] long stockNum,
[in] long amount).

}

Figure 84. merchandise.tidl

  Appendix D. Source Code for the Sample Applications 781



  
 

The merchandise.tacf File

/G
 G TACF file for the telshop program.
 G/

interface merchandise
{
}

Figure 85. merchandise.tacf

782 Encina Toolkit Executive Guide and Reference  



  
 

 Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1989, 2001  783



  
 

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

 Trademarks

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

AIX BookManager CICS
IBM IBMLink IMS
IMS/ESA Language Environment Library Reader
OS/2 RACF Resource Link
S/390 SecureWay z/OS
zSeries

784 Encina Toolkit Executive Guide and Reference  



  
 

Other company, product, and service names may be trademarks or service marks of others.

Programming Interface Information

This publication is intended to help the customer to create Encina applications using the z/OS Encina
Toolkit Executive. This publication primarily documents General-Use Programming Interface and
Associated Guidance Information provided by the z/OS Encina Toolkit Executive.

General-Use programming interfaces allow the customer to write programs that obtain the services of the
z/OS Encina Toolkit Executive.

  Appendix E. Notices 785



  
 

786 Encina Toolkit Executive Guide and Reference  



  
 

 Glossary

abort.  To fail to commit. Any changes made by a
transaction that is aborted, for whatever reason, must
be undone. Once a transaction is undone (rolled back),
no evidence that the transaction was ever attempted
remains outside of records in the transaction processing
system's log. See also: atomicity, roll back, commit.

access control list.  See ACL.

account.  Data in the registry database that allows a
principal to log in. An account is indistinguishable from
a principal identifier and is the registry object that
represents a principal.

ACID properties.  The properties of atomicity,
consistency, isolation, and durability that ensure that
modifications made to data by transactional applications
occur in a failure-atomic manner, are consistent with
application requirements, do not conflict, and are
permanent in case of system failures.

ACL.  Data that controls access to a protected object.
An access control list (often abbreviated as ACL)
specifies the permission(s) needed to access the object
and the permissions that may be granted, with respect
to the protected object, to principals with the appropriate
authentication. See also: permission.

active transaction.  The state in which a transaction is
accessing or modifying data. See also: transaction.

application identifier.  A unique identifier used to
identify an application in the TRPCs sent in a distributed
environment.

application server.  The server portion of an Encina
application; it runs on a managed node and may
communicate with resource managers and clients.

atomicity.  A basic property of transaction processing
systems. This term means that transactions must either
complete (be committed) or appear as though they
never happened (be aborted). Any intermediate data
modifications made by a transaction must be able to be
undone (rolled back). It must never be the case that
some of the modifications requested by a transaction
take place while others do not.

authentication.  The verification of a principal's
network identity.

authorization.  The determination of a principal's
permission(s) with respect to a protected object. Also,
the approval of a permission sought by a principal with
respect to a protected object.

binding.  A relationship between a client process and a
server process involved in a remote procedure call.
Binding information includes a communication protocol
sequence, a host name or address, and a server
process address on the host (endpoint).

binding file.  A readable file containing one or more
entries, each entry consisting of a server name and an
associated string binding. Administrators use the file to
make binding information available to clients and
servers in the absence of a name service.

binding information.  Information about one or more
potential bindings, including an RPC (remote procedure
call) protocol sequence, a network address, an
endpoint, at least one transfer syntax, and an RPC
protocol version number. See also: binding.

blocking.  A situation where data required by a
transaction is already locked by another transaction
such that it cannot be accessed by the first. The
transaction holding the lock is said to be blocking the
second transaction's access to the data. Similarly, the
second transaction can be said to be blocked by the
first.

callback.  A callback is a function registered by Encina
applications in the Toolkit requesting that an action take
place when an event occurs. Unlike upcalls, which are
similar actions used to synchronize Toolkit functions,
callbacks are optional actions used internally by
applications. A routine that is automatically invoked at
a later time.

CDS.  The CDS (Cell Directory Service) is the service
that manages information about the resources in a DCE
cell.

CDS directory.  A logical entity for storing entries
under one name (the directory name) in a CDS (Cell
Directory Service) namespace. In addition to object
entries, a directory can contain soft links and child
pointers. You can copy, delete, and control access to a
directory. Each physical instance of a directory is called
a replica. Application servers, underlying Encina
servers, and log files are among the objects contained
in the CDS namespace. These entries are managed by
the system administrator.

cell.  The basic unit of operation; a cell is a group of
users, machines, and resources that share common
services. A cell can consist of one system or several
thousand systems. Machines in the cell can be in the
same geographic area (for example, on the same LAN),
but geography does not necessarily determine a cell's
boundaries. The boundaries of a cell are typically

 Copyright IBM Corp. 1989, 2001  787



  
 

influenced by its purpose, as well as by security,
administrative, and performance considerations.

Cell Directory Service.  See CDS.

cell-relative name.  A name that is meaningful and
usable only from within the DCE cell where the entry
exists. The cell-relative name is a shortened form of a
global name. Cell-relative names begin with the prefix
/.: and do not contain a cell name.

certify.  To specify a thread as executing on behalf of
a transaction in order to prevent the transaction from
being recovered while the thread is still executing. See
also: decertify.

checkpoint.  A snapshot of the current state of the
recoverable data being used by an application.
Checkpoints are used to capture the state of
recoverable data between backups, minimizing the time
involved in restarting systems using that data by
providing a more recent image of that data.

clearinghouse.  A database for each DCE Cell
Directory Service (CDS) server. Each CDS server has
a clearinghouse where it stores names and other data.
It is where the CDS server adds, modifies, deletes and
retrieves data on behalf of a client program.

client.  A machine or process that makes use of a
server's specialized service during the course of its own
work. Client programs request remote access to
resources, managing user input, data display, and
general output, and submitting requests for data or
resources to a server program.

commit.  To make all transactions permanent. When a
transaction commits, all actions associated with that
specific transaction have been written to the log. Even
in the event of system problems, those actions are
repeated if necessary when the system's recovery
mechanism replays the log. See also: abort.

communications protocol.  A clearly defined set of
operational rules and procedures for communication.

component.  The different software modules that make
up Encina products. This term is used interchangeably
with modules. See also: product.

coordinator migration.  The transfer of the
responsibility for resolving a transaction from one
participant in that transaction to another. These
responsibilities include contacting, negotiating between,
and managing all of the participants in a transaction.

customized binding handle.  A user-defined data
structure from which a primitive binding handle can be
derived by user-defined routines in application code.

DCE cell.  The basic unit of DCE operation. At a
minimum, a DCE cell configuration includes one Cell
Directory Server, one Security Server, and one Time
Server. With respect to the DCE Security Service, a
cell represents the set of principals that share their
secret keys with the same Authentication Service. See
also: cell.

deadlock.  The situation that occurs due to cyclical
lock requests that prevent servers from releasing locks
needed by other servers. Some servers can detect
local deadlocks, however, global deadlocks are
undetectable and require administrator intervention.

decertify.  To specify a thread as no longer executing
on behalf of a transaction in order to allow the
transaction to be recovered. See also: certify.

deliver (callback).  To cause a callback or upcall to be
invoked.

dequeue.  To remove the first available element from
the head of a queue, subject to locking constraints.

Directory Service.  The DCE service that makes it
possible to contact and use resources spread around
the network without knowing in advance their physical
location. Clients can retrieve the address of and other
information associated with logical names stored in the
DCE Directory Service.

distributed.  The location of programs and
computerized sources of information that make up a
computing environment on different computer systems
while still working together as a single logical entity.

distributed transaction.  A transaction that can update
data in many user processes on many machines.

dropping locks.  To release the locks that a
transaction holds on data.

endpoint.  The address of a server process on a
server host. An endpoint number is a number
representing a specific server process running on a
system. When using the TCP/IP and UDP/IP protocols,
endpoint numbers are port numbers.

enqueue.  To add an element to the tail of a queue.

ephemeral application.  An application that does not
contain any recoverable data.

explicit binding.  The binding method in which the
issuer of an RPC specifies the application server that is
to receive the call.

export.  To make a server interface available to clients.

failure atomicity.  See atomicity.

788 Encina Toolkit Executive Guide and Reference  



  
 

group.  Data that associates a named set of principals
who can be granted common access rights.

handle.  An opaque data structure containing all the
information necessary to establish and maintain a
connection to a server or a data object used to access
a private data object. For example, a binding handle
allows one to communicate with a remote server without
directly naming the remote machine and port. Handles
enable modularity and portability.

heuristics.  Guidelines that a system administrator
uses to intervene where the two-phase commit or abort
would otherwise fail.

IDL.  The DCE RPC mechanism available. IDL
(Interface Definition Language) provides a high-level
language in which to define the functions that will
communicate using RPCs, simplifying the development
of code using RPCs.

interface.  A description of the RPC calls available
from an application server.

Interface Definition Language.  See IDL.

keytab file.  A file stored on the local disk of a machine
that stores keys for noninteractive principals. In DCE, a
key is a value used to encrypt and decrypt data. The
key is also securely stored in the principal's account in
the Registry database.

library.  A compiled collection of calls and data objects;
libraries are linked with application code at compilation
time.

listening.  A program's waiting for network
communication on a given socket. Such programs are
said to be “listening on that socket.” See also: socket,
port.

local cell.  The DCE cell to which a local machine
belongs.

lock.  The mechanism used to restrict access by other
transactions to data on which an existing transaction
depends.

marshalling.  To bundle the procedure parameters for
a remote procedure call into a package which can be
sent to a remote procedure or system. Unbundling the
return packets to extract the remote system's response
is known as unmarshalling.

module.  See component.

mutex.  A mutual exclusion mechanism intended for
short-term use with internal data structures (as opposed
to recoverable data) within an application. Mutexes are
thread-dependent because if one thread holds a mutex,
then no other thread may access the protected data.

mutual exclusion mechanism.  A means for
preventing two separately executing pieces of code
from interfering with each other's use of a particular
data object. For example, if one thread is executing a
function that modifies a shared data structure, then the
application may need to prevent other threads from
attempting to read the data simultaneously, before the
modifications are complete.

name.  A construct that singles out a particular
(directory) object from all other objects. A name must
be unambiguous (that is, denote one object). See also:
cell-relative name.

namespace.  A complete set of Cell Directory Service
(CDS) names (these can include directories, object
entries, and soft links) that one or more CDS servers
look up, manage, and share. CDS names are stored in
directory replicas in clearinghouses at each server. The
logical picture of a namespace is a hierarchical tree of
all those directories, with the root directory at the top,
and one or more directories beneath the root directory.
The physical implementation of the namespace consists
of directories replicated in one or more clearinghouses
in the network. See also: clearinghouse. A complete
set of Cell Directory Service (CDS) names that one or
more CDS servers manage and share. The logical view
of a namespace is a hierarchical tree of all those
directories, with the root directory at the top and one or
more directories beneath.

nested transaction.  A transaction begun within the
scope of another transaction. These are also referred
to as subtransactions.

node.  A system (machine) connected in a network to
form a DCE cell.

participant.  An application is a participant in a
transaction when it either initiates the transaction or
receives a request on behalf of that transaction.

permanence.  A basic property of transaction
processing systems. Once a transaction has
committed, the modifications made to data by that
transaction must be permanent. Subsequent
transactions requesting the data modified by a previous
transaction must always see the new data. These
changes must be preservable even in the event of a
system failure.

permission.  The modes of access to a protected
object. In DCE Security, the number and meaning of
permissions with respect to the object are defined by
the ACL manager of the object. See also: ACL.

port.  The actual point of network communication for a
given process on a given machine. This term is often
confused with the term socket, which is a data structure

  Glossary 789



  
 

that contains the port number, among other things. See
also: socket.

prepare.  To agree to commit a transaction. When a
participant in a transaction prepares, that participant
agrees to make the transaction's changes to
recoverable data permanent. See also: commit.

principal.  An entity that can communicate securely
with another entity. In the DCE, principals are
represented as entries in the Registry database and
include users, servers, computers, and authentication
surrogates.

principal identifier.  The name used to identify a
principal uniquely. In the DCE, principal identifiers are
implemented as UUIDs.

product.  The high-level software packages that make
up Encina. Typically, there are several components in
an Encina product. For example, the Encina Executive
is an Encina product with its own component–TRAN.
See also: component.

protection level.  The degree to which network
communications are protected (secured). DCE levels of
protection range from none to authentication at the
beginning of the RPC session to encrypting all user
data transmitted. Typically, higher protection levels
correspond to higher performance penalties.

protocol sequence.  A character string that specifies
options for network communications protocols. The
string consists of three items (separated by
underscores), or an accepted abbreviation. The items
represent RPC communication, network host
addressing, and network transport.

queue.  A linear data structure consisting of
application-defined elements of heterogeneous types.

rebinding.  To reestablish a communications channel
for making remote procedure calls after that channel
has been closed.

record.  A predefined structure into which data is
formatted. Records have a specific size and format,
and contain a certain set of related information.

recoverable applications.  Applications that use a
recovery service, ensuring that they can correctly
access and modify persistent data storage.

recoverable data.  Data the value of which persists
across system shutdowns and failures. Changes made
to recoverable data are permanent regardless of system
problems. Logging changes to recoverable data is the
most common method used to insure permanence. The
changes to that data recorded in the log can always be
replayed to bring that data to a valid state.

remote procedure call.  See RPC.

ring buffer.  A fixed-size buffer that holds only that
amount of the most recent tracing information.

roll back.  To undo any modifications performed on
behalf of a transaction that does not complete (is
aborted). Any changes made by a transaction which is
aborted, for whatever reason, must be undone. Once a
transaction is rolled back, no evidence that the
transaction was ever attempted remains outside of
records in the transaction processing system's log. See
also: atomicity, abort.

RPC.  RPCs (remote procedure calls) are analogous to
the standard procedure calls used in modern
programming, providing modularity and reducing code
size. The main difference between standard procedure
calls and remote procedure calls is that in a remote
procedure call, the called procedure is being executed
by a process different from the caller. To the calling
procedure, a remote procedure call looks the same as a
call to a local procedure. When a program makes a
remote procedure call to a remote application, the
procedure's parameters are automatically bundled into a
request message, which is then sent to the remote
program or system.

RPC handles.  The means by which clients bind to
servers.

serializability.  A basic property of transaction
processing systems where the exchange and
modification of information by transactions must be able
to be synchronized and made to appear as though
multiple, simultaneous transactions were actually a
series of sequential requests. Data being changed by a
transaction, or upon which a transaction depends, must
be shielded from other transactions until the first
transaction completes.

server.  A machine or process that provides a
specialized service to other machines or processes.
Typically, the server programs synchronize and manage
access to centralized data or resources, responding to
requests from client programs by returning either a
system status code or the data or resources the clients
requested.

socket.  The network location where a server program
expects contact. For programmers, a socket is a data
structure containing the network address of the machine
on which the socket is located, the local port number of
the socket, and the communications protocol (address
family) used to communicate with programs listening on
that socket. See also: port.

string binding.  A string consisting of a protocol
sequence, a network address or host name, and an
endpoint.

790 Encina Toolkit Executive Guide and Reference  



  
 

stubs.  The RPC functions produced by tidl when
given an interface. Two sets of stubs are produced,
client stubs and server stubs. The application code
calls the stub, and the RPC mechanism translates this
into a call to the appropriate function on the remote
machine. The code produced by tidl that enables
RPCs. The client call becomes a call to a client stub,
which communicates with a server stub, which
communicates with the application server. Two sets of
stubs are produced, one for the client and one for the
server. You must compile these files as part of your
application.

Telshop application.  A transactional order entry
application that is delivered with Encina products as a
demonstration application. The Telshop application
consists of a merchandise application server and a
client, and it manages inventory data in an external
database.

thread.  A path of execution (thread of control) within a
process. Threads differ from standard processes in that
they share access to a common address space rather
than the multiple address spaces required by separate
processes.

threaded application.  An application that performs its
function by simultaneously using multiple execution
paths (threads of control) within a single address space.

TIDL.  An extension to IDL. TIDL (Transactional
Interface Definition Language) is used to define
transactional RPC interfaces. See also: IDL.

timeout.  A time limit on an action. If the action does
not occur in the specified time period, it is aborted.

Toolkit.  The Encina Toolkit extends the services of the
DCE with core technologies that enable transaction
integrity.

top-level transaction.  A transaction that does not
execute within the scope of another transaction. In
other words, a top-level transaction is the root of a
transaction family, even if it is the only transaction in the
family tree.

trace mask.  A filter for controlling the type of event
tracing that is enabled for a component.

transaction.  A set of operations that must be
executed together and which depend on each other for
correctness. Some common examples of operations
making up a transaction are requests for existing
information, requests to modify existing information,
requests to add new information, or any combination of
all three. The term transaction is also the name of the

primary control structure used in the Tran-C
programming language.

transaction coordinator.  A transaction participant that
manages prepare and commit responses from all
participants.

transaction family.  Nested transactions that have a
common ancestor belong to the same transaction
family. All members of a transaction family commit
together and drop their locks simultaneously.

transaction identifier.  A unique identifier assigned to
each transaction, used to identify all actions associated
with that transaction.

Transactional Interface Definition Language.  See
TIDL.

transactional remote procedure call.  See TRPC.

TRPC.  A transactional remote procedure call (TRPC)
is very similar to a standard RPC, but it carries
additional information that identifies the transaction on
whose behalf it is executing. A TRPC uses DCE RPC
as its underlying communication mechanism but
extends it by providing transactional semantics. If the
TRPC returns a status code indicating success, the
remote call is guaranteed to have been executed once
and only once. If the remote call fails, Encina undoes
any effects of the TRPC.

unmarshalling.  See marshalling.

upcall.  A function (registered with other functions in
the Toolkit by an application) that is requesting an
action take place when an event occurs. Upcalls are
mandatory for communication between the various
modules of the Encina Toolkit. Upcalls differ from
callbacks in that upcalls are required to enable the
synchronization of events required by the transaction
system, while callbacks are provided as a convenience
to the developer. Once registered, upcalls apply to
every transaction, while callbacks are only associated
for the particular transactions they were registered for.

For example, an application needing to know the
outcome of a transaction in order to dispatch the proper
information to the recovery module would register this
request using an upcall. An application wanting to
display a status message for each transaction on a
terminal would register this request using a callback.

variable length field.  A field of varying length that
contains data prefaced by an internal, opaque field
providing the length of the field.

well-known endpoint.  A pre-assigned stable address
that a server process uses every time it runs.

  Glossary 791



  
 

792 Encina Toolkit Executive Guide and Reference  



  
 

 Bibliography

This bibliography is a list of publications for z/OS DCE and other products. The complete title, order number, and a
brief description is given for each publication.

z/OS DCE Publications

This section lists and provides a brief description of each publication in the z/OS DCE library.

 Overview
� z/OS DCE Introduction, GC24-5911

This book introduces z/OS DCE. Whether you are
a system manager, technical planner, z/OS system
programmer, or application programmer, it will help
you understand DCE and evaluate the uses and
benefits of including z/OS DCE as part of your
information processing environment.

 Planning
� z/OS DCE Planning, GC24-5913

This book helps you plan for the organization and
installation of z/OS DCE. It discusses the benefits
of distributed computing in general and describes
how to develop plans for a distributed system in a
z/OS environment.

 Administration
� z/OS DCE Configuring and Getting Started,

SC24-5910

This book helps system and network administrators
configure z/OS DCE.

� z/OS DCE Administration Guide, SC24-5904

This book helps system and network administrators
understand z/OS DCE and tells how to administer it
from the batch, TSO, and shell environments.

� z/OS DCE Command Reference, SC24-5909

This book provides reference information for the
commands that system and network administrators
use to work with z/OS DCE.

� z/OS DCE User's Guide, SC24-5914

This book describes how to use z/OS DCE to work
with your user account, use the directory service,

work with namespaces, and change access to
objects that you own.

 Application Development
� z/OS DCE Application Development Guide:

Introduction and Style, SC24-5907

This book assists you in designing, writing,
compiling, linking, and running distributed
applications in z/OS DCE.

� z/OS DCE Application Development Guide: Core
Components, SC24-5905

This book assists programmers in developing
applications using application facilities, threads,
remote procedure calls, distributed time service, and
security service.

� z/OS DCE Application Development Guide:
Directory Services, SC24-5906

This book describes the z/OS DCE directory service
and assists programmers in developing applications
for the cell directory service and the global directory
service.

� z/OS DCE Application Development Reference,
SC24-5908

This book explains the DCE Application Program
Interfaces (APIs) that you can use to write
distributed applications on z/OS DCE.

 Reference
� z/OS DCE Messages and Codes, SC24-5912

This book provides detailed explanations and
recovery actions for the messages, status codes,
and exception codes issued by z/OS DCE.

z/OS SecureWay Security Server Publications

This section lists and provides a brief description of books in the z/OS SecureWay Security Server library that may be
needed for z/OS SecureWay Security Server DCE and for RACF interoperability.

 Copyright IBM Corp. 1989, 2001  793



  
 

� z/OS SecureWay Security Server DCE Overview,
GC24-5921

This book describes the z/OS SecureWay Security
Server DCE and provides z/OS SecureWay Security
Server DCE information about the z/OS DCE
library.

� z/OS SecureWay Security Server LDAP Client
Programming, SC24-5924

This book describes the Lightweight Directory
Access Protocol (LDAP) client APIs that you can
use to write distributed applications on z/OS DCE
and gives you information on how to develop LDAP
applications.

� z/OS SecureWay Security Server RACF Security
Administrator's Guide, SA22-7683.

This book explains RACF concepts and describes
how to plan for and implement RACF.

� z/OS SecureWay Security Server LDAP Server
Administration and Use, SC24-5923

This book describes how to install, configure, and
run the LDAP server. It is intended for
administrators who will maintain the server and
database.

� z/OS SecureWay Security Server Firewall
Technologies, SC24-5922

This book provides the configuration, commands,
messages, examples and problem determination for
the z/OS Firewall Technologies. It is intended for
network or system security administrators who
install, administer and use the z/OS Firewall
Technologies.

Tool Control Language Publication

� Tcl and the Tk Toolkit, John K. Osterhout, (c)1994,
Addison—Wesley Publishing Company.

This non-IBM book on the Tool Control Language is
useful for application developers, DCECP script
writers, and end users.

IBM C/C++ Language Publication

� z/OS C/C++ Programming Guide, SC09-4765 This book describes how to develop applications in
the C/C++ language in z/OS.

z/OS DCE Application Support Publications

This section lists and provides a brief description of each publication in the z/OS DCE Application Support library.

� z/OS DCE Application Support Configuration and
Administration Guide, SC24-5903

This book helps system and network administrators
understand and administer Application Support.

� z/OS DCE Application Support Programming Guide,
SC24-5902

This book provides information on using Application
Support to develop applications that can access
CICS and IMS transactions.

794 Encina Toolkit Executive Guide and Reference  



  
 

 Encina Publications

� z/OS Encina Toolkit Executive Guide and
Reference, SC24-5919

This book discusses writing Encina applications for
z/OS.

� z/OS Encina Transactional RPC Support for IMS,
SC24-5920

This book is to help software designers and
programmers extend their IMS transaction
applications to participate in a distributed,
transactional client/server application.

  Bibliography 795



  
 

796 Encina Toolkit Executive Guide and Reference  



  
 

 Index

A
abort 7, 787

abortCheck function 70
codes 241, 716

getting in Tran-C 241
setting for transactions 248

detecting 70
formats 242

UUIDs for, getting 242
formatting function 299
function name that aborted transaction,

returning 243
getting information about 70
information, retrieving in Tran-C 259
intercepting transfer of control on 249
reasons, adding 278
returning module that aborted transaction 244
status 240

checking in Tran-C 240
suspended transactions 62
system abort codes 74
transfer of control 41

abort codes 65, 67, 183, 217
defining 218
formatting 219
registering a formatting function 220
specifying which to use 220

abort data 67, 183
abort descriptors 121
Abort Facility constants

ENCINA_STANDARD_FORMAT_UUID_STRING 184
ENCINA_STRING_FORMAT_UUID_STRING 184

Abort Facility variables
ENCINA_STANDARD_FORMAT_UUID 184
Facility ENCINA_STRING_FORMAT_UUID 184

abort format 65
abort function 69, 207, 239
abort properties 121, 126
abort reasons 64, 67, 183, 712

comparing 64, 183
formatting 183
getting in TRAN 335, 337
getting in TRPC 637
setting and retrieving 184

abort strings 66
returning 247

abort timers
setting for transaction families 643

abortCheck function 70, 240
abortCode function 68, 70, 241

aborted transaction, identifying function that 243
aborted transaction, identifying module that 244
abortFormat function 71, 242
abortFunctionName function 72, 243
aborting

RPCs at clients 611
specified transaction and setting code 246
specified transaction and setting string 245
transaction families 336
transactions 332

aborting transactions 64, 239
using abort codes 208, 217
using strings 207
using Tran-C 207
using TX 104

abortModuleName function 72, 244
abortNamedTran function 69, 245
abortNamedTranWithCode function 67, 246
abortReason function 69, 70, 247
aborts

completing 406
delaying 406

abortWithCode function 67, 207, 248
About This Document

document conventions xxi
reference section conventions xxiii

accepting
early outcomes 479

access control list 4
accounts 787
ACF 195
ACF file

TACF File 84
ACID properties 787
acknowledging

completion of asynchronous upcalls in TRAN 464
ACL 4
ACLs 787
active transaction 787
address families

comparing 349
copying 345
creating 344, 346
deleting 348
getting 347
getting lengths 350

address family identifier 126
addresses

comparing in TRAN 343
copying in TRAN 339
creating in TRAN 338, 340
deleting in TRAN 342

 Copyright IBM Corp. 1989, 2001  797



  
 

addresses (continued)
getting in TRAN 341
getting in TRPC 621, 623
getting information in TRAN 385
getting lengths in TRAN 351

admin_tran_Abort 151
admin_tran_ApplIdLocal 151
admin_tran_ApplIsRecoverable 151
admin_tran_ForceOutcome 151
admin_tran_GetCoordinator 151
admin_tran_GetGlobalState 151
admin_tran_GetLocalState 151
admin_tran_GetRelCommitState 151
admin_tran_ListTransactions 151
admin_tran_PropertyRetrieve 151
admin_tran_ProvideOutcome 151
admin_tran_TidKnownDescendents 151
admin_tran_TidParent 151
admin_tran_TidTopAncestor 152
alarms

reporting 352
allocating

transactional memory 78
allocating transactional memory in Tran-C 288
APPL_INIT_CALLBACK 76
APPL_TERM_CALLBACK 76
applCallback_t data type 308
application

commitment protocol 117
ephemeral 116
portability 3
recoverable 116

application address 171
Application Components: Sample Interactions

(fig.) 116
application example

Telshop 44
application identifier 121, 126, 155, 171, 787
application servers 787
application-controlled prepare 136
applications

callbacks 75
comparing IDs in TRAN 358
copying IDs in TRAN 354
creating IDs in TRAN 353, 355
deleting IDs in TRAN 357
ephemeral 41
exiting 81
getting IDs in TRAN 356, 360
getting IDs in TRPC 622
getting lengths of IDs in TRAN 359
initializing 50
initializing interfaces in TRAN 424, 463
interrupts 81
locating servers 53
recoverable 41

applications (continued)
requesting prompt finishes in TRAN 485
stopping in TRAN 511

assigning
transaction IDs to current threads 312

associating 113
global properties with transactions or

applications 444
transactions with threads 113

asynchronous communication 168
Asynchronous Communication Example (fig.) 141
asynchronous threads, creating 253
atomicity 787
attribute configuration file

transactional 84
attributes in TIDL files

TxRPC 687
audit messages 712, 723, 726
authentication 787
authentication on DCE 4
authorization 787
authorization on DCE 4
automatic binding 193

B
BDE fatal error messages 733
BDE warning messages 734
beginning

new transactions 362
transactions remotely 397
TRPCs 393, 395

bibliography 793
binding 5, 787

automatic 193
explicit 193
information 787

binding file 787
binding files 187
binding handle 5, 53
binding handles 187, 193

copying in TRPC 595
creating in TRDCE 576
getting in TRDCE 546

binding information 5
binding strings

getting for local applications 565
bindings

setting protection levels 548
blind RPCs 142

identifying applications that receive 380
blocking 787
blocking functions

registering in TRAN 378, 465
books, list of DCE and related 793

798 Encina Toolkit Executive Guide and Reference  



  
 

building clients and servers
(fig.) 32

C
callbacks 110, 122, 169, 787

APPL_INIT_CALLBACK 75
APPL_TERM_CALLBACK 75
registerApplCallback 75
registering after-receiving-reply in TRPC 601
registering after-receiving-request in TRPC 603
registering before-sending-reply in TRPC 605
registering before-sending-request in TRPC 607
registering client-side exception in TRPC 609
registering dispatch in TRDCE 564
registering in ThreadTid 320, 321
registering in TRAN 110, 363, 365, 366, 368, 369,

371, 373, 374, 376
registering server-side exception in TRPC 613
registerTranCallback 76
TRAN_ABORT_CALLBACK 76
TRAN_COMMIT_CALLBACK 76
TRAN_PREPARE_CALLBACK 76

CATCH macro 74
catchAbort construct 69
catchAbort function 249
catching exceptions 74
CDS 4, 787

exporting binding information to 198
CDS directory 787
cell 4, 787
Cell Directory Service (CDS) 4
cell-relative names 788
certify 788
certifying

threads in ThreadTid 314
changing

principal keys 570, 574
checking abort status in Tran-C 240
checkpoint 788
clauses 40

onAbort 47, 54
onCommit 47, 54
suspend 61

clearinghouse 788
client 4
client stub 6
clients 788

stopping in TRPC 645
coEnd 59
cofor construct 57
cofor function 250
commError function 72, 252
commit 7, 788

finish 117

commit phase 117
commit protocol 8
commitment

outcome phase 117
prepare phase 117
two-phase 117

Commitment Protocol: Finished (fig.) 146
Commitment Protocol: Outcome (fig.) 145
Commitment Protocol: Prepare (fig.) 144
commitment states

getting distributed 421
getting relative 423

communication
asynchronous 168

communication protocols 177
getting from vectors 647

communications
optimizing in TRAN 400

communications data
receiving in TRAN 389, 391
sending to TRAN 387, 395

communications interfaces
initializing in TRAN 382

communications protocol 788
comparing

address families 349
addresses in TRAN 343
application IDs in TRAN 358
force-group IDs 415
messages in TRAN 437
property keys 450
property values 459
security keys 497
transaction IDs 513

compilation
environment variables 96
troubleshooting 100

compiling 751
header files 100

completing
aborts 406

components 788
CONC_STMT_INSUFF_THREADS_CODE 61
concThread construct 79
concThread function 253
concurrency

asynchronous 79
completion clauses 59
synchronous 57

concurrent construct 57
syntax of 59

concurrent function 254
consistency 7
constants

CONC_STMT_INSUFF_THREADS_CODE 61
ENCINA_MAX_STATUS_STRING_SIZE 65

  Index 799



  
 

constants (continued)
TC_UNKNOWN_FUNCTION 49
TRAN_MUTEX_INITIALIZER 79
TRAN_TID_NULL 56, 59, 72

constructs 40
catchAbort 69
cofor 57
concThread 79
concurrent 57, 59
resumeTran 62
subThread 58
subTran 58
topLevel 56
transaction 47, 54
wrapEachTrpc 63

context, restoring saved Tran-C 284
context, saving in Tran-C 285
controlling

after-finished phase of transactions 442
after-resolution phase of transactions 443
transaction outcomes 404

converting
protocol sequences to names 558
strings to protection levels in TRDCE 560
transaction IDs to strings 521

coordinator 8, 119
coordinator migration 788
coordinator selection 135
copying

address families 345
addresses in TRAN 339
application IDs in TRAN 354
binding handles in TRPC 595
force-group IDs 411
log records 427
messages in TRAN 433
property keys 446
property values 455
security keys 494

copying a transaction 296
creating

address families 344, 346
addresses in TRAN 338, 340
application IDs in TRAN 353, 355
binding handles in TRDCE 576
force-group IDs 410, 412
log records 426, 428
login contexts 572, 574
messages in TRAN 432, 434
property keys 445, 447
property values 454, 456
secure information in TRAN 492
security keys 493, 495
thread pools 549
transactional handles 616, 617
transactions in TRAN 111

creating (continued)
well-known endpoints 599

creating asynchronous threads 253
currentFunctionName function 56, 255
currentModuleName function 56, 256
customized binding handle 788

D
data types

defined by DCE 197
encina_abortReason_t 67
error_status_t 194
tran_tid_t 56

DCE
cell 788
data types 197
defined 9

DCE books xxiii
DCE Cell Directory Service

getting environment values 624
setting environment values 638

DCE RPC 83, 165
components 5
entry point vector 85
model 6

DCE RPC model 6
DCE RPC run-time library 5
DCE RPC terminology

client stub 6
manager entry point vector 28

DCE Security Service
getting environment values 624
setting environment values 638

DCE status codes, retrieving 252
de-allocating transactional memory in Tran-C 289
deadlock 788
deadlockDetect function 40
debugging

dumping state 93
tracing 93

decertify 788
decertifying

threads in ThreadTid 315
declaring

asynchronous upcalls in TRAN 469
heuristic decision policies 402
last TRPC 401
use of log-force groups 484

defining scope in server-side transaction 304
delaying

aborts 406
deleting

address families 348
addresses in TRAN 342
application IDs in TRAN 357

800 Encina Toolkit Executive Guide and Reference  



  
 

deleting (continued)
arrays of transaction IDs 512
force-group IDs 414
log records 430
messages in TRAN 436
property keys 449
property value arrays 453
property values 458
security keys 496
strings in TRAN 510

deliver (callback) 788
dequeue 788
descendant status

determining for transactions 515
destroying

address families 348
addresses in TRAN 342
application IDs in TRAN 357
arrays of transaction IDs 512
force-group IDs 414
log records 430
messages in TRAN 436
property keys 449
property value arrays 453
property values 458
security keys 496
strings in TRAN 510

determining
application coordinators for transactions 419
descendant status of transactions 515
principals set for applications 556
recoverability of local applications 361
related transactions 516
server-side transactions 631
thread certifications in ThreadTid 318
top-level transactions 517
transaction parents 519

determining if transactional RPC is permitted 298
developer considerations regarding transactional

applications 42
diagnostic 711, 715, 720, 725
directory service 53, 788

TRPC 86
disabling

certification of login contexts 571
disassociating

endpoints from transactional handles 635
threads and transaction IDs 317

distributed 788
Distributed File System (DFS) 4
distributed outcome 120
distributed systems 3
Distributed Time Service (DTS) 4
distributed transaction 788
Distributed Transaction Service 11

document
conventions xxi

dropping locks 788
DTS 4
dumping

states of TRAN 407
states of TRPC 618

dumping state 93
dumping state of current transactions 282
durability 8
dynamic scoping 42

E
enabling

certification of login contexts 571
Encina Tracing 231

Encina
defined 9
recovery service 204
Tran-C 205

Encina header files 751
Encina libraries 751
Encina Toolkit Executive 10, 41

Distributed Transaction Service 11
Thread-to-Tid Mapping Service (threadTid) 11
TIDL 11
Transaction RPC Service 11
Transactional-C 10
TX 12

Encina Trace Facility 223
encina_abortReason_t data type 67, 590
ENCINA_AUTHN 189
ENCINA_BINDING_FILE 187
ENCINA_CDS_ROOT environment variable 87, 88
encina_FormatAbortReason function 580
encina_FreeAbortReason function 581
encina_GetAbortCode function 582
encina_GetAbortReason function 583
encina_GetAbortString function 584
ENCINA_MAX_STATUS_STRING_SIZE 65
ENCINA_PRINCIPAL environment variable 87
encina_RegisterAbortFormatter function 66, 585
encina_SetAbortCode function 586
encina_SetAbortReason function 587
encina_SetAbortString function 588
encina_status_t data type 591
encina_StatusToString function 199, 680
encina_StatusToSymbol function 681
ENCINA_STRING_FORMAT_UUID 66
encina_StringToStatus function 682
encina_SymbolToStatus function 683
ENCINA_TRPC_AUTHN environment variable 87
ENCINA_TRPC_DS_PATH environment variable 87
ENCINA_TRPC_PRINCIPAL environment

variable 87

  Index 801



  
 

EncinaTraceBuffer.PID file 234
ending

thread and transaction ID associations 317
transactions 408

endpoint 5, 788
endpoint map 5

registering an interface in 198
endpoints 53

disassociating from transactional handles 635
ENDTRY macro 74
enqueue 788
ensuring

message delivery on failed RPC replies in
TRAN 399

reception of RPCs 575
entry point vector 85

manager entry point vector 28
entry-exit tracing

definition of 229
exported functions 230
internal functions 230
TRACE_ENTRY 230
TRACE_INTERNAL_ENTRY 230
TRACE_INTERNAL_PARAM 230
TRACE_PARAM 230

environment variables 96
ENCINA_AUTHN 189
ENCINA_BINDING_FILE 187
ENCINA_CDS_ROOT 87
ENCINA_PRINCIPAL 87
ENCINA_TRPC_AUTHN 87
ENCINA_TRPC_NS_SYNTAX 88
ENCINA_TRPC_PRINCIPAL 87
environment ENCINA_TRPC_DS_PATH 87
for tracing 231
LANG 96, 200
NLSPATH 96, 200, 231
RPC_DEFAULT_ENTRY 193

environments
specifying standard application 509
specifying system 505

ephemeral application 116, 788
outcome delivery guarantees 120

ephemeral applications 41
ephemeral clients 9
error isolation 213
error messages

for TRPC 168, 720
error_status_t data type 194
errors

handling 199
using ACF in handling 195

event tracing 230
definition of 229
TRACE_EVENT 230

event types for application callbacks, defining 308
event types for transaction callbacks, defining 309
exception 189
exception scope 74
exceptions

CATCH macro 74
catching 74
ENDTRY macro 74
RAISE macro 74
raising 74
TRY macro 74

exiting Tran-C applications 257
exitTC function 81, 204, 257
exitTConInterrupt function 81, 258
expiration callback for current transaction,

setting 302
expiration callback for specified transaction,

setting 300
explicit binding 788
export 788
exported functions

entry-exit tracing in 230
tracing parameters in 230

F
failure atomicity 7
fatal error messages 711, 725, 733

for TRPC 720
files

EncinaTraceBuffer.PID 234
produced by TIDL preprocessor 85

Flow of a Transactional RPC (fig.) 170
force-group identifier 126
force-groups

comparing IDs 415
copying IDs 411
creating IDs 410, 412
deleting IDs 414
getting IDs 413
getting lengths of IDs 416

forcing
log-force groups 476
resolved transactions 418
transaction outcomes 417

format identifier 67, 183
format scope

abort 65
format UUID 65, 67, 183
formatting function

abort 65
formatting functions 183
freeing

memory in TRDCE 552, 553, 554
memory in TRPC 619
transactional handles 620

802 Encina Toolkit Executive Guide and Reference  



  
 

fully-qualified names
getting 561

function name, getting current 255
functions

abort 69
abortCheck 70
abortCode 68, 70
abortFormat 71
abortFunctionName 72
abortModuleName 72
abortNamedTran 69
abortNamedTranWithCode 67
abortReason 69, 70
abortWithCode 67
commError 72
currentFunctionName 56
currentModuleName 56
encina_RegisterAbortFormatter 66
exitTC 81
exitTConInterrupt 81
getAbortData 71
getCompletedTid 56, 59, 62, 72
getContainingTid 72
getTid 56
inFunction 49
initTC 50
initTCWithTRPC 52
inTransaction 56
inWrapEachTrpc 63
postInitTC 51
preInitTC 51
quiesceTC 81
registerApplCallback 75
registerTranCallback 76
registerTRPCCallbacks 51
setAbortData 67
tc_DumpState 93
tc_InitTRPC 51
tc_RestoreTranContext 89
tc_SaveTranContextehp2. 89
tranMemAlloc 78
tranMemFree 78
tranMutexInit 79
tranMutexInitOnce 79
tranMutexLock 79
tranMutexTerminate 79
tranMutexTryLock 79
tranMutexUnlock 79
trdce_BindingImport 53
trpc_ConsBinding 53
trpc_InitWithTrdce 51
trpc_SetEnvironment 86
trpcPermitted 63
useAbortFormat 65
watchNamedTran 81
watchTran 80

G
General Toolkit data types

encina_abortReason_t 590
encina_status_t 591

General Toolkit functions
encina_FormatAbortReason function 580
encina_FreeAbortReason function 581
encina_GetAbortCode function 582
encina_GetAbortReason function 583
encina_GetAbortString function 584
encina_RegisterAbortFormatter function 585
encina_SetAbortCode function 586
encina_SetAbortReason function 587
encina_SetAbortString function 588
encina_StatusToString function 680
encina_StatusToSymbol function 681
encina_StringToStatus function 682
encina_SymbolToStatus function 683

getAbortData function 71, 259
getCompletedTid function 56, 59, 62, 72, 260
getContainingTid function 72, 261
getTid function 56, 262
getting

abort reasons in TRAN 335, 337
abort reasons in TRPC 637
address families 347
address information in TRAN 385
addresses in TRAN 341
addresses in TRPC 621, 623
application IDs in TRPC 622
application IDs in TRAN 356, 360
binding handles in TRDCE 546
binding strings for local applications 565
communication protocols from vectors 647
DCE Cell Directory Service environment

values 624
DCE Security Service environment values 624
distributed commitment states 421
distributed outcome information 488
force-group IDs 413
fully-qualified names 561
global property values 452
information for TRDCE interfaces 563
interfaces in TRDCE 557
key files 566
lengths of address families 350
lengths of addresses in TRAN 351
lengths of application IDs in TRAN 359
lengths of force-group IDs 416
lengths of log records 431
lengths of messages in TRAN 438
lengths of property keys 451
lengths of property values 460
lengths of security keys 498
local states of transactions 422

  Index 803



  
 

getting (continued)
log records 429
messages in TRAN 435
piggybacked data from TRPCs 634
principals 567
property keys 448
property values 457
relative commitment states 423
RPC handles from TRPC handles 626
status codes in TRDCE 555
strings from transactional handles 598
timeout values from transactional handles 633
transaction identifiers in TRAN 113
transaction IDs 319, 520, 615, 627
transactional handles from strings 596
transactional information in TRAN 110
UUIDs from transactional handles 632
vectors for RPC protocol sequences 568
vectors for well-known endpoints 569
well-known endpoints from vectors 649

global identifier 126
global properties

associating with transactions or applications 444
getting values 452

global trace levels 107
groups 789

H
handle 789
handles

DCE RPC 53
TRPC 53

hashing
transaction IDs 514

header file 29
header files 751

for Tran-C applications 100
for Tran-C applications using TRPCs 100

heuristic damage reporting guarantees
requesting 489

heuristic decision policies
declaring 402

heuristic outcome 151
heuristic outcome support 12
heuristic outcomes

recording 477
heuristics 789

I
identifying

applications that receive blind RPCs 380
identifying functions in Tran-C 263
identifying modules in Tran-C 266

IDL 23, 83, 168, 789
IDL compiler

input and output 194
IDL Preprocessor

entry point vector 85
include files

TRPC 173
indentTrace 692
inFunction function 49, 263
initialization of Tran-C, completing two-stage 269
initialization of Tran-C, starting two-stage 270
Initialization Sequence (fig.) 131
initializing

application interfaces in TRAN 424, 463
recovery service interfaces in TRAN 471
TRAN 112
TRAN communications interface 382
Tran-C 204
TRPC 628
TRPC for use with TRDCE 629

initializing an application to use transactional
RPCs 283

initializing Tran-C runtime system 264
initializing Tran-C runtime system and transactional

RPC 265
initTC function 50, 204, 264
initTCWithTRPC function 52, 265
inModule function 266
inModule macro 49
inModule statement 204
instantLock function 40
intention read lock mode 40
intention write lock mode 40
interface definition file 5, 168
interface definition language 5, 23
interfaces 789

defining 192
getting information for TRDCE 563
initializing recovery service in TRAN 471
listing in TRDCE 557
registering 198
registering in TRDCE 550, 559
registering with RPC runtime 559
UUID for 194

internal functions
entry-exit tracing in 230
tracing parameters in 230

interoperability
threads and standard libraries 90
with Encina Toolkit 90
with TX 92

interpretTrace 694
interpretTrace command 234
interrupts 81
inTransaction function 56, 267

804 Encina Toolkit Executive Guide and Reference  



  
 

investment protection 4
inWrapEachTrpc function 63, 268
isolation 8

K
key files 189

getting 566
setting 577

keys (TRDCE)
changing for principals 570, 574

keytab file 789

L
LANG environment variable 96, 200
lazyTran construct 40
libraries 751

TRPC 173
limitations 43
listening 789
listening for RPCs

using TRDCE 198
listing

interfaces in TRDCE 557
known descendants of transactions 518
transactions 425

local cell 789
local outcome 120
lock 789
lock data types

lock_mode_t 40
lock_space_t 40

lock function 40
lock functions

deadlockDetect 40
instantLock 40
lock 40
tryLock 40
unlock 40

lock modes
intention read 40
intention write 40
read 40
upgrade 40
write 40

lock_mode_t data type 40
lock_space_t data type 40
log records

copying 427
creating 426, 428
deleting 430
getting 429
getting lengths 431
replaying during restarts 483

log-force groups
declaring use 484
forcing 476

login contexts 189
creating 572, 574
disabling certification 571
enabling certification 571
refreshing 573, 574

M
macros

expansion problems 101
inModule 49

maintenance functions
watchNamedTran 81
watchTran 80

Makefiles
files and libraries in 95

markTranLazy function 40
marshalling 5, 789
memory

freeing in TRDCE 552, 553, 554
freeing in TRPC 619
transactional 78

message 116
messages (TRAN)

comparing 437
copying 433
creating 432, 434
deleting 436
ensuring delivery on failed RPC replies 399
getting 435
getting lengths 438

model of computation for Tran-C 41
module 49
module name, getting current 256
monitoring functions 80
multiple transactions, starting 254
mutex 789
mutexes

transactional 78
defining 310
initializing 290
initializing and preventing reinitialization 291
locking 292, 294
stopping 293
unlocking 295

unlocking transactional 295
mutual exclusion mechanism 789
MVS books xxiv

N
name 789

  Index 805



  
 

name collisions 100
namespace 789
native client stub 6
NCS functions

(see TRPC wrapper functions) 181
nested transaction 789
nested transactions 42, 56, 213

top-level 57
NLSPATH environment variable 96, 200, 231
nodes 789
nontransactional RPCs 170

O
OLTP 3
onAbort clause 47

executing functions before 69
in catchAbort construct 70
in cofor construct 60
in concurrent construct 57
in resumeTran construct 62
in subTran construct 58
in topLevel construct 56
in transaction statement 54

onCommit clause 47
in cofor construct 60
in concurrent construct 57
in resumeTran construct 62
in subTran construct 58
in topLevel construct 56

online transaction processing 3
open systems 3
optimizing

communications in TRAN 400
upcall registration in TRAN 467

out-of-band data 86
outcome delivery guarantees 120
outcome phase 117
outcomes

accepting early 479
getting information for distributed 488
requiring complete 486

outstanding transactions, waiting for
completion 271

P
packing procedure parameters 5
parameter tracing

definition of 229
exported functions 230
internal functions 230

parent transaction 56
participant 8, 789
permanence 8, 789

permissions 789
permitted transactional RPCs 298
piggybacked data

getting from TRPCs 634
piggybacking

data on RPCs 636
please-coordinate upcalls

requesting 499
port 789
postInitTC function 50, 51, 269
pre-prepare 136
pre-preparing

transactions 441
predefined properties 126
preInitTC function 50, 51, 270
prepare 790
prepare phase 117
prepare-time work 134
preparing

transactions 439
principal identifier 790
principals 189, 790

determining if set for applications 556
getting 567

product 790
program interrupts, initializing Tran-C applications

to handle 258
programming environments 168
properties 133, 134

abort properties 121, 126
accessing 128
application 133, 134
comparing 128
constructing 127
copying 127
creating 127
destroying 129
predefined properties 126
transaction 133, 134

properties list 133, 134
property keys

comparing 450
copying 446
creating 445, 447
deleting 449
getting 448
getting lengths 451

property value array
destroying 129

property values
comparing 459
copying 455
creating 454, 456
deleting 458
deleting arrays 453
getting 457

806 Encina Toolkit Executive Guide and Reference  



  
 

property values (continued)
getting lengths 460

protection levels 790
converting from strings in TRDCE 560
setting for bindings 548

protection levels on DCE 4
protocol sequence 790
protocol sequences

converting to names 558
getting vectors for RPC 568

pthread functions 10
purpose of this book xxi

Q
queues 790
quiesceTC function 81, 204, 271

R
RAISE macro 74
raising exceptions 74
read lock mode 40
rebinding 790
receiving

communications data in TRAN 389, 391
recording

heuristic outcomes 477
records 790
recoverability

determining for local applications 361
recoverable application 116
recoverable applications 41, 790
recoverable data 790
recoverable processes 204
recovery service interfaces

initializing in TRAN 471
reference section conventions xxiii
refreshing

login contexts 573, 574
refusing

compliance with upcalls in TRAN 480
registerApplCallback function 75, 272
registering

blocking functions in TRAN 378, 465
callbacks in TRPC 601, 603, 605, 607, 609
callbacks in ThreadTid 320, 321
callbacks in TRAN 363, 365, 366, 368, 369, 371,

373, 374, 376
dispatch callbacks in TRDCE 564
interfaces in TRDCE 550, 559
interfaces with RPC runtime 559
server-side exception callbacks in TRPC 613

registering callbacks for an application in
Tran-C 272

registering callbacks in Tran-C 273
registering callbacks TRPC requires 275
registerTranCallback function 76, 273
registerTRPCCallbacks function 50, 51, 275
remote application 116
remote procedure call 115, 116
remote procedure call (RPC) 166

nontransactional 170
transactional 167

remote procedure calls 83
replaying

log records during restarts 483
reporting

alarms 352
requesting

heuristic damage reporting guarantees 489
please-coordinate upcalls 499
prompt application finishes in TRAN 485

requiring
complete application outcomes 486

reserving
transaction IDs 491

resolving
prepared transactions 461

restoring saved Tran-C context 284
resumeTran construct 62
resumeTran function 276
resuming

suspended transactions 323
resuming suspended transactions 62
return codes 122
ring buffer 790
roll back 790
RPC 10

initialization 51
RPC extensions

provided by Encina 188
RPC handles 790
RPC_DEFAULT_ENTRY environment variable 193
rpc_server_register_if function 198
RPCs 83, 790

aborting at clients 611
ensuring reception 575
getting handles in TRPC 626
piggybacking data 636
stopping 646

runtime system, initializing Tran-C 264
runtime system, Tran-C, and transactional RPC,

initializing 265

S
sample application

ACF for 195
adding transactions to 203
building 201, 208

  Index 807



  
 

sample application (continued)
displaying error messages 199
IDL file for 194
overview 191
using nested transactions 215
using Tran-C with 206
using TX 208

saving Tran-C context 285
scope

defining in server-side transaction 304
determining in Tran-C 267, 268

scoping
catchAbort construct 69
concThread construct 79
concurrent construct 57, 59
dynamic 42
exceptions 74
getTid 56
interoperability with Toolkit 91
inTransaction 56
inWrapEachTrpc 63
mutexes 78, 79
nested transactions 56
onAbort clause 54, 58
onCommit clause 54, 58
registerTranCallback function 76
resumeTran construct 62
subThread construct 58
subTran construct 58
tc_SaveTranContext function 89
topLevel construct 57
tranMemAlloc function 78
tranMemFree function 78
trpcPermitted 63
watchTran callbacks 81

security
securing information in TRAN 492

security keys
comparing 497
copying 494
creating 493, 495
deleting 496
getting lengths 498

Security Service 4
sending

communications data to TRAN 387, 395
serializability 8, 790
server 4
server initialization

using TRDCE 198
server registration 187
server-side transactions 62, 179
servers 790

connecting to 53
stopping in TRPC 645

service identifier 121
setAbortData function 67, 278
setting

abort timers for transaction families 643
DCE Cell Directory Service environment

values 638
DCE Security Service environment values 638
key files 577
protection levels for bindings 548
timeouts in transactional handles 642
UUIDs in transactional handles 641

shadow client stubs 168
shadow manager functions 168
socket 790
specifying

required upcalls in TRAN 481
standard application environments 509
system environments 505
time limits for outcome information 503, 504
transaction coordinators 501

starting
new transactions 362
transactions remotely 397
TRPCs 393, 395

starting multiple transactions 254
state dump 107
state of current transaction, dumping 282
statement

transaction 54
statements 40
states

dumping for TRAN 407
dumping for TRPC 618

status codes 713, 723, 728
converting to strings 199
data type for 197
getting in TRDCE 555
TRAN 543
TRPC 655

status codes, DCE, retrieving 252
stopping

applications in TRAN 511
clients in TRPC 645
RPCs 646
servers in TRPC 645

string binding 53, 790
string bindings 187
strings (TRAN)

converting from transaction IDs 521
deleting 510

strings (TRDCE)
converting to protection levels 560

stub 6
client 6

stub generator 83

808 Encina Toolkit Executive Guide and Reference  



  
 

stubs 194, 791
definition of 83

subordinate 119
subThread construct 58
subThread function 279
subthread, creating in Tran-C 279
subTran construct 58
subTran function 280
subtransactions 56
subtransactions, starting 250
suspend clause 61
suspended transactions, resuming 276
suspending

transactions 324
suspending transactions

legal use of 61
resuming 62

synchronous thread executed as transaction,
creating 280

synchronous threads, creating in Tran-C 279
system libraries 751

T
TACF file

definition of 84
example of 85

tc_DumpState function 93, 282
output 282

tc_InitTRPC function 51, 283
tc_RestoreTranContext function 89, 284
tc_SaveTranContext function 89, 285
TC_UNKNOWN_FUNCTION constant 49
Telshop application 791
Telshop application example 44
terminating

applications in TRAN 511
clients in TRPC 645
RPCs 646
servers in TRPC 645
TRAN 112

thread 7
thread pools

creating 549
thread scope in Tran-C, determining 267
Thread Service calls

threadTid_DumpState function 316
thread-safe functions 44
Thread-to-Tid Mapping Service 11
threaded applications 791
threads 39, 791

cancellation in ThreadTid 162
cancellation in TRPC 165
certifying in ThreadTid 314
creating asynchronous 79
creating synchronous 58

threads (continued)
decertifying in ThreadTid 315
determining certifications in ThreadTid 318
exceeding limit 61
thread-safe functions under UNIX 44

threads, creating asynchronous 253
threadTid 11

using with TRAN 113
threadTid_Begin function 312
threadTid_Certify function 314
threadTid_Decertify function 315
threadTid_End function 317
threadTid_event_t data type 326
threadTid_IsCertified function 318
threadTid_Lookup function 319
threadTid_RegisterCallback function 320
threadTid_RegisterTrpcCallbacks function 321
threadTid_Resume function 323
threadTid_Suspend function 324
TIDL 23, 791

additional output files 28
building clients and servers 30
command 684
DCE-only RPC interfaces 28
default output files 27
file naming restrictions 34
header files 29
limitations 26
options 684
output files 27
version numbers 85

tidl command 684
TIDL preprocessor

entry point vector 85
files produced by 85
files required by 84

time limit for current transaction, setting 302
time limit for specified transaction, setting 300
time limits

specifying for outcome information 503, 504
timeout 791
timeouts

getting values from transactional handles 633
setting in transactional handles 642

tkadmin commands 12
Toolkit 791
Toolkit servers

tracing 223
top-level transaction 56, 791
top-level transaction, creating 286
top-level transactions 57
topLevel construct 56
topLevel function 286
trace

global trace levels 107

  Index 809



  
 

trace aliases (table) 227
trace component names (table) 226
trace mask

definition of 230
For Encina product 230

trace mask values
mask TRACE_ENTRY 230
mask TRACE_EVENT 230
mask TRACE_GLOBAL 230
mask TRACE_INTERNAL_ENTRY 230
mask TRACE_INTERNAL_PARAM 230
mask TRACE_NONE 230
mask TRACE_PARAM 230

trace masks 791
trace options

Standard Trace Options (table) 226
trace output 107

controlling 225
directing 227
format of 224
types of 223

trace_buffer_t 708
trace_DumpRingBuffer 233, 696
TRACE_ENTRY 230
TRACE_EVENT 230
trace_FileUpcall 697
trace_FormatBuffer 698
TRACE_GLOBAL 230
TRACE_INTERNAL_ENTRY 230
TRACE_INTERNAL_PARAM 230
TRACE_NONE 230
TRACE_PARAM 230
trace_Register 699
trace_Register function 233, 699
trace_uid_t 710
trace_Unregister 234, 700
traceListener 701
tracing 93

controlling trace output 225
directing trace output 227
enabling/disabling 227
EncinaTraceBuffer.PID file 234
entry-exit tracing 229
event tracing 229
in Encina 230
interpretTrace command 234
NLSPATH variable 231
overview of 229
parameter tracing 229
ring buffer dump 234
trace masks 230
trace_DumpRingBuffer 233, 696
trace_Register function 233, 699
trace_Unregister 234, 700

Tracing data types
trace_buffer_t 708

Tracing data types (continued)
trace_uid_t 710

Tracing functions
trace_DumpRingBuffer 696
trace_FileUpcall 697
trace_FormatBuffer 698
trace_Register 699

tracing with tc_DumpState function 282
TRAN 11, 109, 112

initializing 112
initializing communications interface 382
overview 109
registering callbacks 110
status codes 543
terminating 112

TRAN Administrative RPC Interfaces
Administrative RPC admin_tran_Abort 151
Administrative RPC admin_tran_ApplIdLocal 151
Administrative RPC

admin_tran_ApplIsRecoverable 151
Administrative RPC admin_tran_ForceOutcome 151
Administrative RPC

admin_tran_GetCoordinator 151
Administrative RPC

admin_tran_GetGlobalState 151
Administrative RPC admin_tran_GetLocalState 151
Administrative RPC

admin_tran_GetRelCommitState 151
Administrative RPC

admin_tran_ListTransactions 151
Administrative RPC

admin_tran_PropertyRetrieve 151
Administrative RPC

admin_tran_ProvideOutcome 151
Administrative RPC

admin_tran_TidKnownDescendents 151
Administrative RPC admin_tran_TidParent 151
Administrative RPC

admin_tran_TidTopAncestor 152
Tran-C 10

advantages 40
definition of 39
Executive 41
introduction to 39
model of computation 41
terminology 40

Tran-C applications, exiting 257
tran_Abort function 332
TRAN_ABORT_CALLBACK 76
tran_abort_t 135
tran_abort_t data type 524
tran_AbortDataToReason function 335
tran_AbortFamily function 336
tran_AbortReason function 337
tran_address_t data type 525

810 Encina Toolkit Executive Guide and Reference  



  
 

tran_AddressCons function 338
tran_AddressCopy function 339
tran_AddressCreate function 340
tran_AddressData function 341
tran_AddressDestroy function 342
tran_AddressEqual function 343
tran_addressFamily_t data type 526
tran_AddressFamilyCons function 344
tran_AddressFamilyCopy function 345
tran_AddressFamilyCreate function 346
tran_AddressFamilyData function 347
tran_AddressFamilyDestroy function 348
tran_AddressFamilyEqual function 349
tran_AddressFamilyLength function 350
tran_AddressLength function 351
tran_Alarm function 352
tran_applId_t data type 527
tran_ApplIdCons function 353
tran_ApplIdCopy function 354
tran_ApplIdCreate function 355
tran_ApplIdData function 356
tran_ApplIdDestroy function 357
tran_ApplIdEqual function 358
tran_ApplIdLength function 359
tran_ApplIdLocal function 360
tran_ApplIsRecoverable function 361
tran_Begin function 362
tran_CallAfterCWRT function 363
tran_CallAfterFinished function 365
tran_CallAfterResolution function 366
tran_CallAfterRestart function 368
tran_CallBeforeAbort function 369
tran_CallBeforePrepare function 371
tran_CallDuringRestart function 373
tran_CallOnHeuristicDamage function 374
tran_CallTransactionallyBeforePrepare

function 376
tran_CommBlockFunctions function 378
tran_CommIdentifyBlindRequest function 380
tran_CommInit function 382
TRAN_COMMIT_CALLBACK 76
tran_CommProvideAddressInfo function 385
tran_CommReceived function 387
tran_CommReceivedReply function 389
tran_CommReceivedRequest function 391
tran_CommSendingBlindRequest function 393
tran_CommSendingReply function 395
tran_CommSendingRequest function 397
tran_CommServiceAlwaysSendsReply function 399
tran_CommServicePromisesToMatchReplies

function 400
tran_DeclareLastCall function 401
tran_DeclareReportableHeuristicDecisions

function 402
tran_DeferCommit function 404

tran_DelayAbort function 406
tran_DumpState function 407
tran_End function 408
tran_forceGroupId_t data type 528
tran_ForceGroupIdCons function 410
tran_ForceGroupIdCopy function 411
tran_ForceGroupIdCreate function 412
tran_ForceGroupIdData function 413
tran_ForceGroupIdDestroy function 414
tran_ForceGroupIdEqual function 415
tran_ForceGroupIdLength function 416
tran_ForceHeuristicOutcome function 417
tran_ForciblyFinish function 418
tran_GetCoordinator function 419
tran_GetGlobalState function 421
tran_GetLocalState function 422
tran_GetRelativeCommitState function 423
tran_globalState_t data type 529
tran_Init function 50, 76, 424
tran_ListTransactions function 425
tran_localState_t data type 530
tran_logRecord_t data type 532
tran_LogRecordCons function 426
tran_LogRecordCopy function 427
tran_LogRecordCreate function 428
tran_LogRecordData function 429
tran_LogRecordDestroy function 430
tran_LogRecordLength function 431
TRAN_MESSAGE_NULL 126
tran_message_t data type 533
tran_MessageCons function 432
tran_MessageCopy function 433
tran_MessageCreate function 434
tran_MessageData function 435
tran_MessageDestroy function 436
tran_MessageIdentical function 437
tran_MessageLength function 438
TRAN_MUTEX_INITIALIZER constant 79
tran_mutex_t data type 534
tran_outcomeQuality_t data type 535
tran_Prepare function 439
TRAN_PREPARE_CALLBACK 76
tran_PrePrepare function 441
tran_ProlongFinish function 442
tran_ProlongResolution function 443
tran_PropertyAdd function 444
tran_propertyKey_t data type 536
tran_PropertyKeyCons function 445
tran_PropertyKeyCopy function 446
tran_PropertyKeyCreate function 447
tran_PropertyKeyData function 448
tran_PropertyKeyDestroy function 449
tran_PropertyKeyEqual function 450
tran_PropertyKeyLength function 451
tran_PropertyRetrieve function 452

  Index 811



  
 

tran_propertyValue_t data type 538
tran_PropertyValueArrayDestroy function 453
tran_PropertyValueCons function 454
tran_PropertyValueCopy function 455
tran_PropertyValueCreate function 456
tran_PropertyValueData function 457
tran_PropertyValueDestroy function 458
tran_PropertyValueEqual function 459
tran_PropertyValueLength function 460
tran_ProvideOutcome function 461
tran_Ready function 50, 76, 463
tran_RecAcknowledge function 464
tran_RecBlockFunctions function 465
tran_RecDynamicallyRegisters function 467
tran_RecExplicitlyAcknowledges function 469
tran_RecInit function 471
tran_RecMustForceGroup function 476
tran_recOptimization_t data type 539
tran_RecordHeuristicOutcome function 477
tran_RecReadOnly function 479
tran_RecRefuse function 480
tran_RecRegister function 481
tran_RecReplay function 483
tran_RecUsingForceGroup function 484
tran_relativeCommitState_t data type 541
tran_RequestPromptFinish function 485
tran_RequireCompleteOutcome function 486
tran_RequireDistributedOutcome function 488
tran_RequireHeuristicDamageReporting

function 489
tran_Reserve function 491
tran_Secure function 492
tran_securityKey_t data type 542
tran_SecurityKeyCons function 493
tran_SecurityKeyCopy function 494
tran_SecurityKeyCreate function 495
tran_SecurityKeyDestroy function 496
tran_SecurityKeyEqual function 497
tran_SecurityKeyLength function 498
tran_SelectivelyCoordinate function 499
tran_SetCoordinator function 501
tran_SetEphemeralOutcomeDeliveryLimit

function 503
tran_SetEphemeralOutcomeRequirementLimit

function 504
tran_SpecialEnvironment function 505
tran_StandardEnvironment function 509
tran_status_t data type 543
tran_StringDestroy function 510
tran_Terminate function 511
TRAN_TID_NULL 56, 72
TRAN_TID_NULL constant 59
tran_tid_t data type 56, 307, 544
tran_TidArrayDestroy function 512
tran_TidEqual function 513

tran_TidHash function 514
tran_TidIsDescendent function 515
tran_TidIsRelated function 516
tran_TidIsTopLevel function 517
tran_TidKnownDescendents function 518
tran_TidParent function 519
tran_TidTopAncestor function 520
tran_TidToString function 521
tranCallback_t data type 309
tranMemAlloc function 78, 288
tranMemFree function 78, 289
tranMutex_t data type 310
tranMutexInit function 79, 290
tranMutexInitOnce function 79, 291
tranMutexLock function 79, 292
tranMutexTerminate function 79, 293
tranMutexTryLock function 79, 294
tranMutexUnlock function 79, 295

transactional mutexes 295
transaction

abort 7
commit 7

transaction construct 47, 206
format of 54
onAbort clause 54
onCommit clause 54
transaction clause 54

transaction coordinator 791
transaction families

aborting 336
setting abort timers 643

transaction family 110, 791
transaction function 296
transaction ID 41

getting for last transaction 260
getting for transaction containing current

transaction 261
transaction identifier 121, 791
transaction identifiers

getting in TRAN 113
transaction properties

consistency 7
durability 8
failure atomicity 7
isolation 8
properties permanence 8
serializability 8

Transaction RPC Service 11
TIDL 11

Transaction Service
callbacks 122
return codes 122
status codes 713
upcalls 122

Transaction Service calls
tran_AddressCons function 127

812 Encina Toolkit Executive Guide and Reference  



  
 

Transaction Service calls (continued)
tran_AddressCreate function 127
tran_AddressData function 128
tran_AddressDestroy function 129
tran_AddressEqual function 128
tran_AddressFamilyCons function 127
tran_AddressFamilyCreate function 127
tran_AddressFamilyData function 128
tran_AddressFamilyDestroy function 129
tran_AddressFamilyEqual function 128
tran_AddressFamilyLength function 128
tran_AddressLength function 128
tran_ApplIdCons function 127
tran_ApplIdCopy function 127
tran_ApplIdCreate function 127
tran_ApplIdData function 128
tran_ApplIdDestroy function 129
tran_ApplIdEqual function 128
tran_ApplIdLength function 128
tran_ForceGroupIdCons function 127
tran_ForceGroupIdCreate function 127
tran_ForceGroupIdData function 128
tran_ForceGroupIdDestroy function 129
tran_ForceGroupIdEqual function 128
tran_ForceGroupIdLength function 128
tran_LogRecordCons function 127
tran_LogRecordCreate function 127
tran_LogRecordData function 128
tran_LogRecordDestroy function 129
tran_LogRecordLength function 128
tran_MessageCons function 127
tran_MessageCreate function 127
tran_MessageData function 128
tran_MessageDestroy function 129
tran_MessageIdentical function 128
tran_MessageLength function 128
tran_PropertyKeyCons function 127
tran_PropertyKeyCopy function 127
tran_PropertyKeyCreate function 127
tran_PropertyKeyData function 128
tran_PropertyKeyDestroy function 129
tran_PropertyKeyEqual function 128
tran_PropertyKeyLength function 128
tran_PropertyValueArrayDestroy function 129
tran_PropertyValueCons function 127
tran_PropertyValueCreate function 127
tran_PropertyValueData function 128
tran_PropertyValueDestroy function 129
tran_PropertyValueEqual function 128
tran_PropertyValueLength function 128
tran_SecurityKeyCons function 127
tran_SecurityKeyCreate function 127
tran_SecurityKeyDestroy function 129
tran_SecurityKeyIdentical function 128
tran_SecurityKeyLength function 128
tran_StringDestroy function 129

Transaction Service calls (continued)
tran_TidArrayDestroy function 129

Transaction Service data types
tran_address_t Service data 126
tran_addressFamily_t Service data 126
tran_applId_t 126
tran_forceGroupId_t Service data 126
tran_logRecord_t Service data 126
tran_message_t Service data 126
tran_propertyKey_t Service data 126
tran_propertyValue_t Service data 126
tran_securityKey_t 126
tran_status_t 122, 713

Transaction Service Functions
tran_Init 50, 76
tran_Ready 50, 76

Transaction Service in TRPC calls
tran_AddressCopy function 127
tran_AddressFamilyCopy function 127
tran_ForceGroupIdCopy function 127
tran_LogRecordCopy function 127
tran_MessageCopy function 127
tran_PropertyValueCopy function 127
tran_SecurityKeyCopy function 127

transaction, aborting specified, and setting
string 245

transactional applications
developer considerations 42

transactional handle 172
transactional handles

converting to strings 598
creating 616, 617
disassociating endpoints 635
freeing 620
getting from strings 596
getting timeout values 633
getting UUIDs 632
setting timeouts 642
setting UUIDs 641

transactional ID 262
transactional information

getting in TRAN 110
transactional memory.

allocating in Tran-C 288
deallocating in Tran-C 289

transactional mutex, initializing 290
transactional programming environments 168
transactional remote procedure call 115
transactional RPC, initializing 265
transactional RPCs

initializing an application to use 283
Transactional-C 10, 168

abort codes 716
abort function 239
abortCheck function 240
abortCode function 241

  Index 813



  
 

Transactional-C (continued)
abortFormat function 242
abortFunctionName function 243
abortModuleName function 244
abortNamedTran function 245
abortNamedTranWithCode function 246
abortReason function 247
abortWithCode function 248
applCallback_t data type 308
catchAbort function 249
cofor function 250
commError function 252
concThread function 253
concurrent function 254
currentFunctionName function 255
currentModuleName function 256
exitTC function 257
exitTConInterrupt function 258
getAbortData function 259
getCompletedTid function 260
getContainingTid function 261
getTid function 262
header files 237
inFunction function 263
initTC function 264
initTCWithTRPC function 265
inModule function 266
inTransaction function 267
inWrapEachTrpc function 268
postInitTC function 269
preInitTC function 270
quiesceTC function 271
registerApplCallback function 272
registerTranCallback function 273
registerTRPCCallbacks function 275
resumeTran function 276
setAbortData function 278
subThread function 279
subTran function 280
tc_DumpState function 282
tc_InitTRPC function 283
tc_RestoreTranContext function 284
tc_SaveTranContext function 285
topLevel function 286
tran_tid_t data type 307
tranCallback_t data type 309
tranMemAlloc function 288
tranMemFree function 289
tranMutex_t data type 310
tranMutexInit function 290
tranMutexInitOnce function 291
tranMutexLock function 292
tranMutexTerminate function 293
tranMutexTryLock function 294
tranMutexUnlock function 295
transaction function 296

Transactional-C (continued)
trpcPermitted function 298
useAbortFormat function 299
watchNamedTran function 300
watchTran function 302
wrapEachTrpc function 304

transactions 111, 791
abort codes for, setting 248
aborted, identifying function that 243
aborted, identifying module that 244
aborting 64, 207, 239, 332
aborting specified and setting code 246
aborting specified and setting string 245
assigning IDs to current threads 312
associating with threads 113
beginning new 362
beginning remotely 397
committing 56
comparing IDs 513
completing aborts 406
concurrent, synchronous 57
controlling after-finished phase 442
controlling after-resolution phase 443
controlling outcomes 404
converting IDs to strings 521
copying 296
creating in TRAN 111
delaying aborts 406
deleting arrays of IDs 512
delimiting 206
determining application coordinators 419
determining descendant status 515
determining parents 519
determining related 516
determining server-side 631
determining top-level 517
disassociating IDs and threads 317
distributed outcome 120
ending 408
expiration callback for, setting 300, 302
forcing outcomes 417
forcing resolved 418
getting IDs 319, 520, 615, 627
getting local states 422
getting the current TID 56
hashing IDs 514
lexical scope 111
listing 425
listing known descendants 518
local outcome 120
monitoring 80
multiple, starting 254
nested 56, 213
nested top-level 57
outstanding, waiting for completion 271
parent 56

814 Encina Toolkit Executive Guide and Reference  



  
 

transactions (continued)
pre-preparing 441
preparing 439
read-only 120
reserving IDs 491
resolving prepared 461
resuming 62
resuming suspended 323
saving contexts 89
specifying coordinators 501
subtransactions 56
suspended, resuming 276
suspending 61, 324
time limit for, setting 300, 302
top-level 56
top-level, creating 286
watching 80

transactions, transfer of control 43
transfer of control, intercepting on abort 249
translateError 703
translateTraceId 705
TRDCE

status codes 728
TRDCE utilities library 187
trdce_BindingImport function 53, 546
trdce_BindingSetProtectionLevel function 548
trdce_CreateThreadPool function 549
trdce_DefineInterface function 550
trdce_Free function 552
trdce_FreeBindingVector function 553
trdce_FreeProtseqVector function 554
trdce_GetDCEStatus function 555
trdce_InterfaceRegister function 198
trdce_IsPrincipalSet function 556
trdce_ListInterfaces function 557
trdce_NormalizeProtseq function 558
trdce_OfferInterface function 559
trdce_ProtectLevelFromString function 560
trdce_QualifyName function 561
trdce_QueryInterface function 563
trdce_RegisterSimpleDispatch function 564
trdce_ReturnCallbackBinding function 565
trdce_ReturnKeyFile function 566
trdce_ReturnPrincipal function 567
trdce_ReturnSupportedProtseqs function 568
trdce_ReturnWkEndpoints function 569
trdce_SecKeyManagement function 570
trdce_SecLoginContextCertify function 571
trdce_SecLoginContextCreate function 572
trdce_SecLoginContextRefresh function 573
trdce_SecManagement function 574
trdce_ServerListen function 198, 575
trdce_ServerRegister function 198, 576
trdce_SetKeyFile function 577
trdce_SetPrincipal function 578

TRPC 11
abort RPC functions 179
after receiving reply callbacks 178
after receiving request callbacks 178
application interface 177
before sending reply callbacks 178
before sending request callbacks 177
client side exception callbacks 178
communication protocols 177
components 167
DCE RPC run-time library functions 181
files required for TIDL 84
header files for Tran-C 100
initialization 51
initialization functions 177
initializing 628
initializing for use with TRDCE 629
out-of-band data 86
overview 165
server side exception callbacks 178
server-side transaction functions 179
setting environment for 86
status codes 655, 723
termination functions 179
TRAN communication support 166
TRPC and the Toolkit (fig.) 165
well-known endpoints 177
wrapper functions 181

TRPC data types 175
imported, DCE RPC data types 175
trpc_status_t 723

TRPC handle 53
trpc_BindingCopy function 595
trpc_BindingFromStringBinding function 596
trpc_BindingToStringBinding function 598
trpc_BindWkEndpoints function 599
trpc_CallAfterReceivingReply function 601
trpc_CallAfterReceivingRequest function 603
trpc_CallBeforeSendingReply function 605
trpc_CallBeforeSendingRequest function 607
trpc_CallOnClientException function 609
trpc_CallOnRpcTermination function 611
trpc_CallOnServerException function 613
trpc_CallToGetTid function 615
trpc_ConsBinding function 53, 616
trpc_CreateBinding function 617
trpc_DumpState function 618
trpc_Free function 619
trpc_FreeBinding function 620
trpc_GetAddressFromBinding function 621
trpc_GetApplIdFromBinding function 622
trpc_GetCompatibleLocalAddress function 623
trpc_GetEnvironment function 624
trpc_GetRpcHandleFromBinding function 626
trpc_GetWrapTid function 627

  Index 815



  
 

trpc_handle_t data type 652
trpc_ifSpec_t data type 653
trpc_Init function 628
trpc_InitWithTrdce function 51, 629
trpc_InqObjectFromBinding function 632
trpc_InqTimeoutFromBinding function 633
trpc_IsLocallyWrapped function 631
trpc_outOfBandMode_t data type 654
trpc_ReceiveCallbackData function 634
trpc_ResetBinding function 635
trpc_SendCallbackData function 636
trpc_ServerSideAbortReason function 637
trpc_SetEnvironment function 86, 638
trpc_SetObjectBinding function 641
trpc_SetTimeoutBinding function 642
trpc_SetTranTimeout function 643
trpc_status_t data type 655
trpc_Terminate function 645
trpc_TerminateRpc function 646
trpc_tranInfo_t data type 656
trpc_UseProtseqVector function 647
trpc_UseWkEndpoints function 649
trpcPermitted function 63, 298
TRPCs 791

beginning 393
declaring last 401

TRY macro 74
tryLock function 40
two-phase commit 117

finish 117
protocol 8

vulnerability 12
Two-Phase Commit Message Traffic (fig.) 118
TX 12, 106

abort reasons 106, 731
delimiting transactions using 104, 209
getting information about transactions 210
guidelines for use 105
handling aborts 209

TX Interface
chaining modes 676
initializing an application 668
nested transactions 659
nesting transactions 104
overview 103
retrieving abort codes 664
retrieving abort strings 665
setting abort codes 674
setting abort strings 675
setting transaction characteristics 103
two-phase commit 673
using threads 103
using with TM-XA 103, 106
using with Tran-C 104
using with TxRPC 103
XID 666

TX Interface functions
tx_allow_nesting function 659
tx_begin function 660
tx_close function 661
tx_commit function 662
tx_DumpState function 678
tx_get_rollback_code function 664
tx_get_rollback_string function 665
tx_info function 666
tx_open function 668
tx_RegisterXaUpcalls function 669
tx_rollback function 671
tx_set_commit_return function 673
tx_set_rollback_code function 674
tx_set_rollback_string function 675
tx_set_transaction_control function 676
tx_set_transaction_timeout function 677

TX interface trace variable 107
tx_traceMask: 107

TX Interfacing 92
tx_allow_nesting function 659
tx_begin function 660
tx_close function 210, 661
tx_commit function 104, 209, 662
tx_DumpState function 678
tx_get_rollback_code function 664
tx_get_rollback_string function 665
tx_info function 104, 666
tx_open function 668
tx_RegisterXaUpcalls function 669
tx_rollback function 104, 209, 671
tx_set_commit_return function 673
tx_set_rollback_code function 674
tx_set_rollback_string function 675
tx_set_transaction_control function 676
tx_set_transaction_timeout function 677
tx_traceMask 107
TxRPC attributes

tidl 687

U
unique universal identifier 84
unlock function 40
upcall 791
upcalls 122

acknowledging completion of asynchronous in
TRAN 464

declaring asynchronous in TRAN 469
for tracing 233, 699
optimizing registration in TRAN 467
refusing in TRAN 480
requesting please-coordinate 499
specifying required in TRAN 481

upgrade lock mode 40

816 Encina Toolkit Executive Guide and Reference  



  
 

useAbortFormat function 65, 299
formatting function

scope 299
user interface

for sample client 200
users of this book xxi
UUID 84
uuidgen command 194
uuidgen utility program 84
UUIDs 194

getting from transactional handles 632
setting in transactional handles 641

UUIDs for abort formats, getting 242

V
variable length field 791
vectors

getting for RPC protocol sequences 568
getting for well-known endpoints 569

version numbers 194

W
waiting for outstanding transactions to

complete 271
warning messages 711, 725, 734

for TRPC 722
watchdog functions 80

units in 80
watchNamedTran function 81, 300
watchTran function 80, 302
well-known endpoint 791
well-known endpoints 51, 53, 177

creating 599
getting from vectors 649
getting vectors 569

wrapEachTrpc construct 63
wrapEachTrpc function 304
write lock mode 40

X
X/Open TX Interface 92

Z
z/OS Encina Toolkit Executive xxi

architecture 9
description xxi

z/OS pthread functions 10

  Index 817





 Readers' Comments

z/OS
Encina Toolkit Executive
Guide and Reference

Publication No. SC24-5919-00

You may use this form to report errors, to suggest improvements, or to express your opinion on
the appearance, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Note 

Report system problems to your IBM representative or the IBM branch office serving you.
U.S. customers can order publications by calling the IBM Software Manufacturing Solutions at
1-800-879-2755.

In addition to using this postage-paid form, you may send your comments by:

Would you like a reply?  YES   NO If yes, please tell us the type of response you prefer.

   Electronic address:   

   FAX number:   

   Mail: (Please fill in your name and address below.)

Name Address

Company or Organization

Phone No.

Date:  

  

  

  

  

  

  

  

  

  

FAX 1-607-752-2327  Internet pubrcf@vnet.ibm.com
IBMLink GDLVME(PUBRCF)    



Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC24-5919-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department G60
International Business Machines Corporation
Information Development
1701 North Street
ENDICOTT NY 13760-5553

Fold and Tape Please do not staple Fold and Tape

SC24-5919-00



 

 



IBM

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-5919-BB



S
pine inform

ation:

IB
M

z/O
S

E
ncina T

oolkit E
xecutive G

uide and R
eference

 


	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	What You Need to Know
	Document Conventions
	Reference Section Conventions
	Where to Find More Information
	z/OS DCE
	z/OS MVS
	Softcopy Publications
	Internet Sources
	Using LookAt to Look up Message Explanations
	Accessing Licensed Books on the Web


	Part 1.  Overview, Configuration, and Installation
	Chapter 1.  Online Transaction Processing: Enterprise Computing
	Distributed Systems
	Open Systems
	Investment Protection

	DCE
	Binding
	DCE RPC Model

	Transactional RPCs
	Recoverable and Ephemeral Processes
	Two-phase Commit Protocol

	Encina Strategy
	The z/OS Encina Toolkit Executive
	What the z/OS Encina Toolkit Executive Includes
	Transactional-C (Tran-C)
	Distributed Transaction Service (TRAN)
	Transactional RPC Service (TRPC)
	Thread-to-Tid Mapping Service (threadTid)
	X/Open TX Interfaces (TX)
	Transarc/Encina DCE (TRDCE) Utilities library
	Base Development Environment (BDE)
	Coordinator Migration and Ephemeral Clients
	Heuristic Outcome Support
	tkadmin Commands
	Threads in Transactional Applications
	Callbacks, Upcalls, and Return Codes
	Outline of an Encina Transactional Application


	Chapter 2.  Configuration and Administration
	Command Line Administrative Tools

	Chapter 3.  Installation
	Encina Toolkit Parts Shipped in HFS
	Encina Toolkit Parts Shipped in PDS
	Encina Installation Verification Procedure (IVP)
	Setting Up the IVP

	Running the IVP

	Chapter 4.  TIDL
	Introduction to TIDL
	Using TIDL
	TIDL File Format
	Differences between TIDL and IDL
	RPC Handles
	Transactional Attributes
	Error Status and DCE RPC Exceptions
	Named Exceptions
	DCE-Only RPC Interfaces
	Customized Handles


	Limitations of TIDL
	Files TIDL Produces
	Default Files
	Additional Files for DCE Clients

	Details of TIDL Generated Header Files
	Building Clients and Servers
	Encina Clients and Servers
	DCE Clients and Encina Servers

	TIDL Input and Output Files


	Part 2.  User's Guide Information
	Chapter 5.  Transactional-C Concepts
	Introduction to Transactional-C
	Transactional-C Terminology
	Advantages of Using Tran-C
	The Tran-C Model of Computation
	Considerations for Developers
	Dynamic Scoping of Transactions
	Transfer of Control in Transactions
	Resource Limitations
	Thread-Safe Functions under UNIX

	Introduction to the Sample Application

	Chapter 6.  Writing Client Applications in Tran-C
	Hello, World: An Introductory Stand-Alone Application
	Introduction to the Sample Client
	Registering Module and Function Names
	Initializing a Tran-C Application
	Initializing Tran-C Using initTC
	Two-Stage Initialization of Tran-C
	Initializing an RPC Mechanism
	Single-Step Initialization of Tran-C and TRPC
	Sample Client Initialization

	Locating Server Programs
	Beginning and Ending Transactions
	Getting Information About a Transaction
	Nested and Top-Level Transactions
	Creating Concurrent Transactions or Synchronous Threads
	The subTran and subThread Constructs
	Using the Concurrent Construct
	Using the Cofor Construct
	Exceeding Thread Limits

	Suspending Transactions
	The Suspend Clause
	The resumeTran Construct

	Creating Server-Side Transactions
	The wrapEachTrpc Construct
	Getting Information About Server-Side Transactions


	Aborting Transactions
	Defining Abort Reasons
	Defining Abort Reasons Using Abort Codes
	Defining Abort Reasons Using Strings
	Using Abort Data
	Using Abort Reasons with Other Encina Components

	Aborting Transactions from within an Application
	Using Abort Codes
	Using Abort Reason Strings

	Executing Statements Before Transferring Control on Abort
	Monitoring Transaction Status
	Getting Information About Aborted Transactions
	Retrieving General Abort Information
	Determining Transaction Identifiers
	Determining Where a Transaction Aborted
	Determining the Cause of an RPC Failure

	Tran-C Abort Reasons
	Using Exceptions in Tran-C Applications

	Registering and Using Callbacks
	Application Callbacks
	Transaction Callbacks

	Transactional Resource Allocation
	Transactional Memory Allocation
	Transactional Mutex
	Using Standard Mutexes Within Tran-C Applications


	Creating Asynchronous Threads
	Maintenance and Monitoring Functions
	Exiting a Tran-C Application

	Chapter 7.  RPC Communications in Toolkit Executive Applications
	General Information About TRPC
	The DCE RPC Interface Description Language (IDL)
	The Transactional Interface Description Language (TIDL)

	Using TRPC
	Preprocessing with TIDL for DCE RPC
	Files Produced by the TIDL Preprocessor for DCE RPC

	Setting the TRPC Environment

	Chapter 8.  Advanced Tran-C Programming
	Saving and Restoring Tran-C Context
	Overview of External Function Compatibility
	Calling Toolkit Functions from Tran-C
	Tran-C and TX Interaction
	Debugging Tran-C Applications
	Dumping Application State
	Tracing Applications


	Chapter 9.  Compiling Encina Toolkit Applications
	Referring to the Installation Directory
	Referring to the DCE Installation Directory
	Setting Environment Variables
	Executing Applications
	Compiling Applications

	Specifying Toolkit and DCE Include Files
	Include Files for DCE Services

	Specifying Toolkit and DCE Libraries
	Libraries for DCE Services
	Specifying Library Names

	Compiling Clients with Server Interfaces
	Considerations for Threaded Applications
	Header Files for Tran-C Applications
	Resolving Tran-C Compilation Problems
	Resolving Name Collisions During Compilation
	Resolving Macro Expansion Problems


	Chapter 10.  X/Open TX Interface for Encina
	Introduction
	Implementation Issues
	Threads
	Nested Transactions
	TX Transactions
	The TX Interface and Transactional-C
	When to Use TX

	X/Open Standard Interface
	TX Interface Header Files and Libraries
	TX Interface Functions

	Encina Extensions to the X/Open Interface
	Header Files
	Abort Reasons

	Diagnostics
	Trace and State Dump Information
	Global Trace Levels
	State Dump



	Chapter 11.  Transactional Programming Using TRAN
	An Overview of TRAN
	Reasons to Use TRAN
	Registering Callbacks
	Getting Transactional Information
	Controlling the Lexical Scope of Transactions
	A TRAN Example
	Related Toolkit Functionality
	Associating Transactions with Threads
	Using Other Features of the Toolkit


	Chapter 12.  Transaction Service Overview
	Transaction Model
	Application Logic Component
	Communication Service Component
	Recovery Service Component
	Transaction Service Component

	Transaction Service Functions
	Transaction Execution
	Distributed Commitment
	Local Commitment Sequence

	Important Abstractions
	Transaction Identifier
	Application Identifier
	Service Identifier
	Abort Descriptors

	Transaction Service Interface
	Return Codes
	Upcalls
	Callbacks

	Transaction Service Header Files and Libraries
	Header Files
	Libraries


	Chapter 13.  TRAN Data Types Overview
	Data Types and Functions for Transaction Identification
	Special-Purpose Data Types
	Naming Policy for Variable-Sized Objects
	Special Values

	Creation Functions
	Construction Functions
	Copy Functions
	Data Access Functions
	Comparison Functions
	Object Destruction Functions
	Array and String Destruction Functions

	Chapter 14.  TRAN Initialization and Termination
	Chapter 15.  TRAN Application Interface
	Beginning and Ending Transactions
	Application Status
	Transaction State Data Types and Functions
	Application Callbacks
	Restart Callbacks
	Abort Callbacks
	Prepare Callbacks
	Relative Commitment Callbacks
	Transaction Resolution Callbacks
	Transaction Completion Callbacks
	Transaction and Application Properties
	Coordinator Selection
	Abort Data Interpretation
	Secure Communication
	Pre-Prepare

	Application-Controlled Prepare
	Outcome Delivery Requirements
	Outcome Delivery Control
	Declare Last Call
	Transaction Identifier Reservation


	Chapter 16.  TRAN Communication Service Interface
	Chapter 17.  TRAN Recovery Service Interface
	Restart
	Optimizations
	Optimization Parameter

	Asynchronous Upcall Completion
	Sharing Log Services
	Dynamic Recovery Service Registration

	Chapter 18.  TRAN Administrative Interface
	Heuristic Outcomes
	Administrative RPC Interfaces for the TRAN Module

	Chapter 19.  TRAN Application Environment Specification
	Environment Registration
	Initialization and Termination Upcalls
	Application Identifier Generation Upcall
	Synchronization Upcalls
	Scheduling Upcalls
	Memory Allocation Upcalls
	Time Upcalls

	Chapter 20.  TRAN Properties
	Chapter 21.  Thread-to-Tid Mapping Overview
	Header Files
	Libraries

	Chapter 22.  Thread-to-Tid Application Interface
	Initialization
	Setting and Querying a Thread's Current Transaction
	Explicitly Decertifying and Certifying Threads
	Registering Callbacks

	Chapter 23.  TRPC Overview
	TRPC and the Toolkit
	Transactional RPCs
	Communication Support for TRAN
	TRPC Components
	TRPC Model For Transactional Communication
	Transactional RPCs
	Transactional Asynchronous Communication
	Limitations on Transaction State Data

	Advantages for Transaction Programming Environments
	Callbacks
	TRPC Model for Nontransactional RPCs

	Flow of a Transactional RPC
	Important Abstractions
	Application Identifier
	Application Addresses
	Transactional Handles
	TRPC Header files
	TRPC Libraries


	Chapter 24.  TRPC Data Types and Auxiliary Functions Overview
	Imported DCE RPC Data Types

	Chapter 25.  TRPC Application Interface
	Initialization Functions
	Before Sending Request Callbacks
	After Receiving Request Callbacks
	Before Sending Reply Callbacks
	After Receiving Reply Callbacks
	Client Side Exception Callbacks
	Server Side Exception Callbacks
	Callback Data
	Abort RPC Functions
	Application Address Manipulation Functions
	Server-side Transaction Functions
	Termination Functions

	Chapter 26.  Wrapper Functions
	Chapter 27.  The Encina Abort Facility
	Abort Reasons
	Abort Strings and Codes
	Exported Variables and Constants
	Encina Internationalization

	Chapter 28.  TRDCE Utilities
	Client Binding and Server Registration Functions
	Server Listening and Dispatch Handling Functions
	Interface Control Functions
	Security Functions
	Deallocation Functions
	General Utility Functions
	TRDCE Header Files and Libraries

	Chapter 29.  Writing a Simple Client-Server Application
	Overview of the Sample Application
	Defining the Interface
	The Example Interface
	Creating the Interface Definition File
	Creating the Attribute Configuration File

	Writing the Server
	Implementing the Server Interface
	A Note on Data Types

	Initializing the Server
	Checking the Return Status of Encina Functions


	Writing the Client
	Notes on Building and Running the Application

	Chapter 30.  Making the Sample Application Transactional
	Making the Application Transactional
	Making the Server Recoverable
	Modifying Server Initialization and Termination
	Specifying Which Operations Are Part of a Transaction
	Aborting Transactions
	Aborting With Strings
	Aborting With an Abort Code

	Notes on Building and Running the Application
	Using TX in the Order Application Server
	Initializing the TX Interface
	Starting and Ending a Transaction Using TX
	Closing the TX Interface

	Notes on Building the Application

	Chapter 31.  Using Nested Transactions
	Introduction to Nested Transactions
	Nested and Top-Level Transactions

	Using Nested Transactions in the Example Application
	Changing the Design of the Application Server
	Creating the Nested Transaction


	Chapter 32.  Using Abort Codes
	Overview of Aborting with Abort Codes
	Defining Abort Codes
	Defining Abort Codes
	Writing the Abort Formatting Function

	Aborting a Transaction with an Abort Code
	Using Abort Data

	Chapter 33.  Using the Encina Trace Facility
	Types and Levels of Trace Output
	Valid Trace Destinations
	Format of Trace Output
	Examples of Encina Messages

	Controlling the Amount of Trace Output
	Standard Trace Options
	Valid Component Names

	Enabling and Disabling Tracing
	Directing Trace Output
	Formatting Trace Events

	Chapter 34.  Tracing and Debugging Encina Toolkit Applications
	General Information about Tracing
	Overview of Tracing in the Encina Toolkit
	Requirements for Using Encina Tracing
	Include Files for Compiling Applications with Tracing
	Environment Variables for Generating Trace Output

	Enabling Tracing in Encina Applications
	Activating Component-Level Tracing in Encina
	Enabling Component Tracing Within an Application
	Enabling Component Tracing Using a Debugger
	Enabling Product Tracing in an Application

	Functions for Obtaining Trace Output in Applications
	Redirecting Tracing Output in an Application
	Disabling Specific Trace Class Output

	Obtaining Tracing Information after Application Failures



	Part 3.  Reference Information
	Chapter 35.  Tran-C Functions and Constructs
	Header Files
	Basic Functionality
	abort
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	abortCheck
	Synopsis
	Description
	Related Information

	abortCode
	Synopsis
	Description
	Related Information

	abortFormat
	Synopsis
	Description
	Related Information

	abortFunctionName
	Synopsis
	Description
	Related Information

	abortModuleName
	Synopsis
	Description
	Related Information

	abortNamedTran
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	abortNamedTranWithCode
	Synopsis
	Parameters
	Description
	Related Information

	abortReason
	Synopsis
	Description
	Related Information

	abortWithCode
	Synopsis
	Parameters
	Description
	Related Information

	catchAbort
	Synopsis
	Description
	Related Information

	cofor
	Synopsis
	Parameters
	Description
	Related Information

	commError
	Synopsis
	Description
	Related Information

	concThread
	Synopsis
	Parameters
	Description
	Related Information

	concurrent
	Synopsis
	Description
	Nested Transactions
	Related Information

	currentFunctionName
	Synopsis
	Description
	Related Information

	currentModuleName
	Synopsis
	Description
	Related Information

	exitTC
	Synopsis
	Parameters
	Description
	Related Information

	exitTConInterrupt
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	getAbortData
	Synopsis
	Parameters
	Description
	Related Information

	getCompletedTid
	Synopsis
	Description
	Related Information

	getContainingTid
	Synopsis
	Description
	Related Information

	getTid
	Synopsis
	Description
	Related Information

	inFunction
	Synopsis
	Parameters
	Description
	Related Information

	initTC
	Synopsis
	Description
	Related Information

	initTCWithTRPC
	Synopsis
	Description
	Related Information

	inModule
	Synopsis
	Parameters
	Description
	Related Information

	inTransaction
	Synopsis
	Description
	Return Values
	Related Information

	inWrapEachTrpc
	Synopsis
	Description
	Return Values
	Related Information

	postInitTC
	Synopsis
	Description
	Notes
	Related Information

	preInitTC
	Synopsis
	Description
	Notes
	Related Information

	quiesceTC
	Synopsis
	Description
	Related Information

	registerApplCallback
	Synopsis
	Parameters
	Description
	Related Information

	registerTranCallback
	Synopsis
	Parameters
	Description
	Nested Transactions
	Related Information

	registerTRPCCallbacks
	Synopsis
	Description
	Related Information

	resumeTran
	Synopsis
	Parameters
	Description
	Nested Transactions
	Notes
	Related Information

	setAbortData
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	subThread
	Synopsis
	Parameters
	Description
	Related Information

	subTran
	Synopsis
	Parameters
	Description
	Nested Transactions
	Related Information

	tc_DumpState
	Synopsis
	Description
	Output

	tc_InitTRPC
	Synopsis
	Description
	Related Information

	tc_RestoreTranContext
	Synopsis
	Parameters
	Description
	Related Information

	tc_SaveTranContext
	Synopsis
	Parameters
	Description
	Related Information

	topLevel
	Synopsis
	Parameters
	Description
	Nested Transactions
	Related Information

	tranMemAlloc
	Synopsis
	Parameters
	Description
	Nested Transactions
	Notes
	Return Values
	Related Information

	tranMemFree
	Synopsis
	Parameters
	Description
	Nested Transactions
	Notes
	Related Information

	tranMutexInit
	Synopsis
	Parameters
	Description
	Related Information

	tranMutexInitOnce
	Synopsis
	Parameters
	Description
	Related Information

	tranMutexLock
	Synopsis
	Parameters
	Description
	Nested Transactions
	Related Information

	tranMutexTerminate
	Synopsis
	Parameters
	Description
	Related Information

	tranMutexTryLock
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tranMutexUnlock
	Synopsis
	Parameters
	Description
	Related Information

	transaction
	Synopsis
	Parameters
	Description
	Nested Transactions
	Notes
	Related Information

	trpcPermitted
	Synopsis
	Description
	Return Values
	Related Information

	useAbortFormat
	Synopsis
	Parameters
	Description
	Related Information

	watchNamedTran
	Synopsis
	Parameters
	Description
	Expiration Callback
	Nested Transactions
	Notes
	Return Values
	Related Information

	watchTran
	Synopsis
	Parameters
	Description
	Expiration Callback
	Nested Transactions
	Notes
	Return Values
	Related Information

	wrapEachTrpc
	Synopsis
	Description
	Nested Transactions
	Notes
	Related Information


	Chapter 36.  Tran-C Data Types
	applCallback_t
	Synopsis
	Enumerated Constants
	Description
	Related Information

	tranCallback_t
	Synopsis
	Enumerated Constants
	Description
	Related Information

	tranMutex_t
	Synopsis
	Description
	Related Information


	Chapter 37.  ThreadTid Functions
	Header Files
	Functions
	threadTid_Begin
	Synopsis
	Parameter
	Description
	Related Information
	Description

	threadTid_Certify
	Synopsis
	Description
	Related Information

	threadTid_Decertify
	Synopsis
	Description
	Related Information

	threadTid_DumpState
	Synopsis
	Description
	Output

	threadTid_End
	Synopsis
	Description
	Related Information

	threadTid_IsCertified
	Synopsis
	Description
	Related Information

	threadTid_Lookup
	Synopsis
	Description
	Related Information

	threadTid_RegisterCallback
	Synopsis
	Parameters
	Description
	threadTid Callback

	Related Information

	threadTid_RegisterTrpcCallbacks
	Synopsis
	Parameters
	Description
	Related Information

	threadTid_Resume
	Synopsis
	Description
	Related Information

	threadTid_Suspend
	Synopsis
	Description
	Related Information


	Chapter 38.  ThreadTid Data Types
	threadTid_event_t
	Synopsis
	Description
	Related Information


	Chapter 39.  TRAN Functions
	Header Files
	Initialization Functions
	Transaction Identification Functions
	Application Interface Functions
	Communications Service Interface Functions
	Recovery Service Interface Functions
	Administrative Interface Functions
	Application Environment Functions
	Diagnostic Functions
	Special-Purpose Functions
	tran_Abort
	Synopsis
	Parameters
	Description
	Nested Transactions

	Note
	Return Values
	Related Information

	tran_AbortDataToReason
	Synopsis
	Parameters
	Description
	Related Information

	tran_AbortFamily
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_AbortReason
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_AddressCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressData
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyData
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressFamilyLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_AddressLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_Alarm
	Synopsis
	Description
	Return Values
	Related Information

	tran_ApplIdCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdData
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_ApplIdLocal
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_ApplIsRecoverable
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_Begin
	Synopsis
	Parameters
	Description
	Nested Transactions

	Return Values
	Related Information

	tran_CallAfterCWRT
	Synopsis
	Parameters
	Description
	Relative-commitment Callback

	Return Values
	Related Information

	tran_CallAfterFinished
	Synopsis
	Parameters
	Description
	After-finished Callback

	Return Values
	Related Information

	tran_CallAfterResolution
	Synopsis
	Parameters
	Description
	After-resolution Callback
	Nested Transactions

	Return Values
	Related Information

	tran_CallAfterRestart
	Synopsis
	Parameters
	Description
	Notes
	After-restart Callback

	Return Values
	Related Information

	tran_CallBeforeAbort
	Synopsis
	Parameters
	Description
	Before-abort Callback
	Nested Transactions

	Return Values
	Related Information

	tran_CallBeforePrepare
	Synopsis
	Parameters
	Description
	Before-prepare Callback
	Nested Transactions

	Return Values
	Related Information

	tran_CallDuringRestart
	Synopsis
	Parameters
	Description
	Notes
	During-restart Callback

	Return Values
	Related Information

	tran_CallOnHeuristicDamage
	Synopsis
	Parameters
	Description
	Heuristic-damage Callback
	Nested Transactions

	Return Values
	Related Information

	tran_CallTransactionallyBeforePrepare
	Synopsis
	Parameters
	Description
	Before-prepare Callback
	Nested Transactions

	Return Values
	Related Information

	tran_CommBlockFunctions
	Synopsis
	Parameters
	Description
	Block Upcall
	Wake-up Upcall

	Return Values
	Related Information

	tran_CommIdentifyBlindRequest
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommInit
	Synopsis
	Parameters
	Description
	Send Upcall

	Return Values
	Related Information

	tran_CommProvideAddressInfo
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommReceived
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommReceivedReply
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommReceivedRequest
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommSendingBlindRequest
	Synopsis
	Parameters
	Description
	Note
	Return Values
	Related Information

	tran_CommSendingReply
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommSendingRequest
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommServiceAlwaysSendsReply
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_CommServicePromisesToMatchReplies
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_DeclareLastCall
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_DeclareReportableHeuristicDecisions
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_DeferCommit
	Synopsis
	Parameters
	Description
	Notes
	After-prepare Callback

	Return Values
	Related Information

	tran_DelayAbort
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_DumpState
	Synopsis
	Description

	tran_End
	Synopsis
	Parameters
	Description
	Nested Transactions

	Return Values
	Related Information

	tran_ForceGroupIdCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceGroupIdCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceGroupIdCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceGroupIdData
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceGroupIdDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceGroupIdEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceGroupIdLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_ForceHeuristicOutcome
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_ForciblyFinish
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_GetCoordinator
	Synopsis
	Parameters
	Description
	Nested Transactions

	Return Values
	Related Information

	tran_GetGlobalState
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_GetLocalState
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_GetRelativeCommitState
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_Init
	Synopsis
	Parameters
	Description
	Note
	Return Values
	Related Information

	tran_ListTransactions
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_LogRecordCons
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	tran_LogRecordCopy
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	tran_LogRecordCreate
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	tran_LogRecordData
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	tran_LogRecordDestroy
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	tran_LogRecordLength
	Synopsis
	Parameters
	Description
	Notes
	Related Information

	tran_MessageCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_MessageCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_MessageCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_MessageData
	Synopsis
	Parameters
	Description
	Related Information

	tran_MessageDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_MessageIdentical
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_MessageLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_Prepare
	Synopsis
	Parameters
	Description
	Notes
	Nested Transactions

	Return Values
	Related Information

	tran_PrePrepare
	Synopsis
	Parameters
	Description
	Notes
	Nested Transactions

	Return Values
	Related Information

	tran_ProlongFinish
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_ProlongResolution
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_PropertyAdd
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_PropertyKeyCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyKeyCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyKeyCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyKeyData
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyKeyDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyKeyEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyKeyLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyRetrieve
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_PropertyValueArrayDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueData
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_PropertyValueLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_ProvideOutcome
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_Ready
	Synopsis
	Description
	Return Values
	Related Information

	tran_RecAcknowledge
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecBlockFunctions
	Synopsis
	Parameters
	Description
	Notes
	Block Upcall
	Wake-up Upcall

	Return Values
	Related Information

	tran_RecDynamicallyRegisters
	Synopsis
	Parameters
	Description
	Notes
	Nested Transactions

	Return Values
	Related Information

	tran_RecExplicitlyAcknowledges
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecInit
	Synopsis
	Parameters
	Description
	Notes
	Recovery-write Upcall
	Recovery-prepare Upcall
	Recovery-commit Upcall
	Recovery-abort Upcall
	Recovery-finished Upcall
	Recovery-active Upcall
	Nested Transactions

	Return Values
	Related Information

	tran_RecMustForceGroup
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecordHeuristicOutcome
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecReadOnly
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecRefuse
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecRegister
	Synopsis
	Parameters
	Description
	Notes
	Nested Transactions

	Return Values
	Related Information

	tran_RecReplay
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RecUsingForceGroup
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RequestPromptFinish
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RequireCompleteOutcome
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tran_RequireDistributedOutcome
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_RequireHeuristicDamageReporting
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_Reserve
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_Secure
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_SecurityKeyCons
	Synopsis
	Parameters
	Description
	Related Information

	tran_SecurityKeyCopy
	Synopsis
	Parameters
	Description
	Related Information

	tran_SecurityKeyCreate
	Synopsis
	Parameters
	Description
	Related Information

	tran_SecurityKeyDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_SecurityKeyEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_SecurityKeyLength
	Synopsis
	Parameters
	Description
	Related Information

	tran_SelectivelyCoordinate
	Synopsis
	Parameters
	Description
	Please-coordinate Upcall

	Notes
	Return Values
	Related Information

	tran_SetCoordinator
	Synopsis
	Parameters
	Description
	Nested Transactions

	Return Values
	Related Information

	tran_SetEphemeralOutcomeDeliveryLimit
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_SetEphemeralOutcomeRequirementLimit
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_SpecialEnvironment
	Synopsis
	Parameters
	Description
	Initialize Upcall
	Terminate Upcall
	Initialize-mutex Upcall
	Lock-mutex Upcall
	Unlock-mutex Upcall
	TryLock-mutex Upcall
	Terminate-mutex Upcall
	Allocate-memory Upcall
	Free-memory Upcall
	Current-time Upcall
	Set-alarm Upcall
	Create-application-identifier Upcall
	Default-block Upcall
	Default-wakeup Upcall

	Return Values
	Related Information

	tran_StandardEnvironment
	Synopsis
	Description
	Return Values
	Related Information

	tran_StringDestroy
	Synopsis
	Parameters
	Description

	tran_Terminate
	Synopsis
	Description
	Related Information

	tran_TidArrayDestroy
	Synopsis
	Parameters
	Description
	Related Information

	tran_TidEqual
	Synopsis
	Parameters
	Description
	Related Information

	tran_TidHash
	Synopsis
	Parameters
	Description
	Related Information

	tran_TidIsDescendent
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_TidIsRelated
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_TidIsTopLevel
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_TidKnownDescendents
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_TidParent
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_TidTopAncestor
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tran_TidToString
	Synopsis
	Parameters
	Description
	Related Information


	Chapter 40.  TRAN Data Types
	tran_abort_t
	Description
	Related Information

	tran_address_t
	Description
	Related Information

	tran_addressFamily_t
	Description
	Related Information

	tran_applId_t
	Description
	Related Information

	tran_forceGroupId_t
	Description
	Related Information

	tran_globalState_t
	Synopsis
	Enumerated Constants
	Description
	Related Information

	tran_localState_t
	Synopsis
	Enumerated Constants
	Description
	Related Information

	tran_logRecord_t
	Description
	Related Information

	tran_message_t
	Description
	Related Information

	tran_mutex_t
	Synopsis
	Description

	tran_outcomeQuality_t
	Synopsis
	Enumerated Constants
	Description
	Related Information

	tran_propertyKey_t
	Description
	Related Information

	tran_propertyValue_t
	Description
	Related Information

	tran_recOptimization_t
	Synopsis
	Fields
	Description
	Notes
	Related Information

	tran_relativeCommitState_t
	Synopsis
	Enumerated Constants
	Description
	Related Information

	tran_securityKey_t
	Description
	Related Information

	tran_status_t
	Description
	Related Information

	tran_tid_t
	Description
	Related Information


	Chapter 41.  TRDCE Functions
	Header Files
	Functions
	trdce_BindingImport
	Synopsis
	Parameters
	Description
	Related Information

	trdce_BindingSetProtectionLevel
	Synopsis
	Parameters
	Description
	Related Information

	trdce_CreateThreadPool
	Synopsis
	Parameters
	Description
	Related Information

	trdce_DefineInterface
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trdce_Free
	Synopsis
	Parameters
	Description
	Related Information

	trdce_FreeBindingVector
	Synopsis
	Parameters
	Description
	Related Information

	trdce_FreeProtseqVector
	Synopsis
	Parameters
	Description
	Related Information

	trdce_GetDCEStatus
	Synopsis
	Parameters
	Description
	Return Values

	trdce_IsPrincipalSet
	Synopsis
	Description
	Related Information

	trdce_ListInterfaces
	Synopsis
	Parameters
	Description
	Related Information

	trdce_NormalizeProtseq
	Synopsis
	Parameters
	Description

	trdce_OfferInterface
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ProtectLevelFromString
	Synopsis
	Parameters
	Description
	Return Values

	trdce_QualifyName
	Synopsis
	Parameters
	Description
	Related Information

	trdce_QueryInterface
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trdce_RegisterSimpleDispatch
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ReturnCallbackBinding
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ReturnKeyFile
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ReturnPrincipal
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ReturnSupportedProtseqs
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ReturnWkEndpoints
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SecKeyManagement
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SecLoginContextCertify
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SecLoginContextCreate
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SecLoginContextRefresh
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SecManagement
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ServerListen
	Synopsis
	Parameters
	Description
	Related Information

	trdce_ServerRegister
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SetKeyFile
	Synopsis
	Parameters
	Description
	Related Information

	trdce_SetPrincipal
	Synopsis
	Parameters
	Description
	Related Information


	Chapter 42.  Abort Facility Functions
	Header Files
	Functions
	encina_FormatAbortReason
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_FreeAbortReason
	Synopsis
	Parameters
	Description
	Related Information

	encina_GetAbortCode
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_GetAbortReason
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_GetAbortString
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_RegisterAbortFormatter
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_SetAbortCode
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_SetAbortReason
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_SetAbortString
	Synopsis
	Parameters
	Description
	Return Values
	Related Information


	Chapter 43.  Abort Facility Data Types
	Constants
	encina_abortReason_t
	Synopsis
	Fields
	Description

	encina_status_t
	Synopsis
	Description


	Chapter 44.  TRPC Functions
	Header Files
	Functions
	trpc_BindingCopy
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_BindingFromStringBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_BindingToStringBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_BindWkEndpoints
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_CallAfterReceivingReply
	Synopsis
	Parameters
	Description
	After-receiving-reply Callback

	Return Values
	Related Information

	trpc_CallAfterReceivingRequest
	Synopsis
	Parameters
	Description
	After-receiving-request Callback

	Return Values
	Related Information

	trpc_CallBeforeSendingReply
	Synopsis
	Parameters
	Description
	Before-sending-reply Callback

	Return Values
	Related Information

	trpc_CallBeforeSendingRequest
	Synopsis
	Parameters
	Description
	Before-sending-request Callback

	Return Values
	Related Information

	trpc_CallOnClientException
	Synopsis
	Parameters
	Description
	On-client-exception Callback

	Return Values
	Related Information

	trpc_CallOnRpcTermination
	Synopsis
	Parameters
	Description
	On-rpc-termination Callback

	Note
	Return Values
	Related Information

	trpc_CallOnServerException
	Synopsis
	Parameters
	Description
	Notes
	On-server-exception Callback

	Return Values
	Related Information

	trpc_CallToGetTid
	Synopsis
	Parameters
	Description
	Get-Tid Callback

	Return Values
	Related Information

	trpc_ConsBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_CreateBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_DumpState
	Synopsis
	Description
	Output
	Related Information

	trpc_Free
	Synopsis
	Parameters
	Description

	trpc_FreeBinding
	Synopsis
	Parameters
	Description
	Caution
	Return Values
	Related Information

	trpc_GetAddressFromBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_GetApplIdFromBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_GetCompatibleLocalAddress
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_GetEnvironment
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_GetRpcHandleFromBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_GetWrapTid
	Synopsis
	Description
	Note
	Related Information

	trpc_Init
	Synopsis
	Description
	Return Values
	Related Information

	trpc_InitWithTrdce
	Synopsis
	Description
	Return Values
	Related Information

	trpc_IsLocallyWrapped
	Synopsis
	Description
	Notes
	Related Information

	trpc_InqObjectFromBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_InqTimeoutFromBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_ReceiveCallbackData
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_ResetBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_SendCallbackData
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_ServerSideAbortReason
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_SetEnvironment
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_SetObjectBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_SetTimeoutBinding
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_SetTranTimeout
	Synopsis
	Parameters
	Description
	Related Information

	trpc_Terminate
	Synopsis
	Description
	Related Information

	trpc_TerminateRpc
	Synopsis
	Parameters
	Description
	Related Information

	trpc_UseProtseqVector
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	trpc_UseWkEndpoints
	Synopsis
	Parameters
	Description
	Return Values
	Related Information


	Chapter 45.  TRPC Data Types
	Constants
	Cautions
	trpc_handle_t
	Description

	trpc_ifSpec_t
	Synopsis
	Fields
	Description

	trpc_outOfBandMode_t
	Synopsis
	Enumerated Constants
	Description

	trpc_status_t
	Synopsis
	Description
	Related Information

	trpc_tranInfo_t
	Synopsis
	Fields
	Description


	Chapter 46.  X/Open TX Interface Functions
	Header Files
	Standard TX Functions
	Encina TX Extension Functions
	tx_allow_nesting
	Synopsis
	Description
	Return Values
	Related Information

	tx_begin
	Synopsis
	Description
	For Nested Transactions

	Return Values
	Related Information

	tx_close
	Synopsis
	Description
	Return Values
	Related Information

	tx_commit
	Synopsis
	Description
	For Nested Transactions

	Return Values
	Related Information

	tx_get_rollback_code
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tx_get_rollback_string
	Synopsis
	Description
	Related Information

	tx_info
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tx_open
	Synopsis
	Description
	Return Values
	Related Information

	tx_RegisterXaUpcalls
	Synopsis
	Parameters
	Description
	Get-XID Upcall
	Open-resource-manager Upcall
	Close-resource-manager Upcall

	Notes
	Related Information

	tx_rollback
	Synopsis
	Description
	For Nested Transactions

	Return Values
	Related Information

	tx_set_commit_return
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tx_set_rollback_code
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tx_set_rollback_string
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tx_set_transaction_control
	Synopsis
	Parameters
	Description
	Notes
	Return Values
	Related Information

	tx_set_transaction_timeout
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tx_DumpState
	Synopsis
	Description
	Output


	Chapter 47.  General Functions and Commands
	encina_StatusToString
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_StatusToSymbol
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_StringToStatus
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	encina_SymbolToStatus
	Synopsis
	Parameters
	Description
	Return Values
	Related Information

	tidl
	Synopsis
	Arguments
	Description
	Notes
	Examples


	Chapter 48.  Trace Facility Functions
	indentTrace
	Synopsis
	Arguments
	Description
	Examples
	Output
	Related Information

	interpretTrace
	Synopsis
	Arguments
	Description
	Examples
	Output
	Related Information

	trace_DumpRingBuffer
	Synopsis
	Parameters
	Description

	trace_FileUpcall
	Synopsis
	Parameters
	Description

	trace_FormatBuffer
	Synopsis
	Parameters
	Description

	trace_Register
	Synopsis
	Parameters
	Description

	trace_Unregister
	Synopsis
	Parameters
	Description

	traceListener
	Synopsis
	Arguments
	Description
	Examples
	Related Information

	translateError
	Synopsis
	Arguments
	Description
	Examples

	translateTraceId
	Synopsis
	Arguments
	Description
	Examples


	Chapter 49.  Trace Facility Data Types
	trace_buffer_t
	Synopsis
	Description
	Notes

	trace_uid_t
	Synopsis
	Description
	Notes


	Appendix A.  Messages
	TRAN Diagnostics
	TRAN Fatal Error Messages
	TRAN Warning Messages
	TRAN Audit Messages
	TRAN Abort Reasons
	TRAN Status Codes

	Tran-C Diagnostics
	Tran-C Fatal Error Messages
	Tran-C Warning Messages
	Tran-C Audit Messages
	Tran-C Abort Codes
	Tran-C Status Codes

	TRPC Diagnostics
	TRPC Fatal Error Messages
	TRPC Warning Messages
	TRPC Audit Messages
	TRPC Status Codes
	TRPC Abort Codes

	ThreadTid Diagnostics
	ThreadTid Fatal Error Messages
	ThreadTid Warning Messages
	ThreadTid Audit Messages
	ThreadTid Status Codes
	ThreadTid Abort Codes

	TRDCE Diagnostics
	TRDCE Fatal Error Messages
	TRDCE Warning Messages
	TRDCE Audit Messages
	TRDCE Status Codes
	TRDCE Abort Codes

	TX Diagnostics
	TX Fatal Error Messages
	TX Warning Messages
	TX Audit Messages
	TX Abort Reasons
	TX Status Codes

	BDE Diagnostics
	BDE Fatal Error Messages
	BDE Warning Messages
	BDE Audit Messages

	Utilities Diagnostics
	DCE Diagnostics

	Appendix B.  Administrative RPC Interfaces for the Encina Toolkit
	General Information
	Naming Conventions for Administrative RPC Functions
	Errors Returned By Administrative RPC Functions
	Using the RPC Interfaces in Applications
	Using Administrative RPC Interfaces in Server Programs
	Using Administrative RPC Interfaces in Administrative Client Programs


	RPC Interfaces for Toolkit Administration
	Support Files for Administrative RPC Interfaces
	Administrative RPC Interfaces for General Service


	Appendix C.  Building Encina Applications
	Encina Include Files and Libraries for C and C++ Programs
	Platform-Specific Libraries

	Appendix D.  Source Code for the Sample Applications
	The telshop.c File
	The base_merchandise.c File
	The merch_client.c File
	The base_recArray.c File
	The server_utils.c File
	The utilities.h File
	The merch.h File
	The recArray.h File
	The server_utils.h File
	The merchandise.tidl File
	The merchandise.tacf File

	Appendix E.  Notices
	Trademarks
	Programming Interface Information

	Glossary
	Bibliography
	z/OS DCE Publications
	Overview
	Planning
	Administration
	Application Development
	Reference

	z/OS SecureWay® Security Server Publications
	Tool Control Language Publication
	IBM C/C++ Language Publication
	z/OS DCE Application Support Publications
	Encina Publications

	Index


